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Bernoulli’s principle

For incompressible fluids with steady flow:

pu’

p + pgh+7 = cost.

The pressure drops of a closed circuit should be equal to the head of
the pump:
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Pressure losses

The pressure losses in a hydronic circuit are of two types:
= Distributed (or continuous) losses: proportional to the pipe length

L pu?
Ap=f55"

" Localized losses: dependent on the element (fitting, valve, heat

exchanger etc) encountered by the flow
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Continuous pressure losses

Friction factor

In general, the friction factor f depends on the Reynolds number and
on relative pipe roughness
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Continuous pressure losses

Reynolds number

The Reynolds number is the ratio between between inertial and viscous

forces on a fluid in motion
uDp ubD
Re = = —
Wl V

L = dynamic viscosity [Pa-s] or [N-s/m?] or [kg/(m-s)]

vV = g kinematic viscosity [m?/s]



Continuous pressure losses

Friction factor

= At low Reynolds numbers (Re < 2000), the flow is laminar and the friction
factor depends only on the Reynolds number

_64
f_Re

= At high Reynolds numbers (Re > 3000), the flow is turbulent and the
friction factor depends also on relative pipe roughness according to
Colebrook’s correlation:
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Continuous pressure losses

Friction factor ~ Moody Diagram
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Continuous pressure losses

Friction factor

Alternatively, some approximated
correlations can be used to calculate the
friction factor. Their validity is limited to
the case considered:

Material

Absolute
Roughness (mm})

Copper, Lead, Brass, Aluminum
(new)

PVC and Plastic Pipes

0.001 - 0.002

Flexible Rubber Tubing - Smooth
Stainless Steel

Steel Commercial Pipe

Weld Steel

Carbon Steel (New)

Carbon Steel (Slightly Corroded)
Carbon Steel (Moderately

I: Il"‘r'."{i:‘{':."

Carbon Steel (Badly Corroded)
Asphalted Cast Iron

New Cast [ron

Wormn Cast Iron

REusty Cast Iron

Galvanized [ron

Wood Stave

Wood Stave, used

Smoothed Cement

Concrete — Rough, Form Marks

0.02-0.05

0.05-0.15




Continuous pressure losses

Friction factor

Alternatively, some approximated correlations can be used to calculate
the friction factor. Their validity is limited to the case considered:

" Low roughness

Commercially available copper, inox, multi-layer and plastic pipes can
be considered as low roughness pipes (0.001 < € < 0.007 mm)

f =0.316 Re 025



Continuous pressure losses

Low roughness pipes

Commercially available copper, inox, multi-layer and plastic pipes can
be considered as low roughness pipes (0.001 < £ < 0.007 mm)

I/h

G1.75
r=14.68v°%2 p

D4.75

mm.w.c./m  mp2/s kg/m?3 mm



Continuous pressure losses

Friction factor

Alternatively, some approximated correlations can be used to calculate
the friction factor. Their validity is limited to the case considered:

= Average roughness

Commercially available iron and galvanized steel pipes can be
considered as average roughness pipes (0.020 < £ < 0.090 mm)

f — 0.07 Re —0.13D —0.14



Continuous pressure losses

Average roughness pipes

Commercially available iron and galvanized steel pipes can be
considered as average roughness pipes (0.020 < £ < 0.090 mm)

I/h

Gl.87

_ 0.13
r=33v P H5.01

mm.w.c./m m2/s kg/m3 mm



Continuous pressure losses

Effects of temperature

The viscosity and density of the water are affected by its temperature.

Viscosity of water
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Continuous pressure losses

Effects of temperature

The viscosity and density
of the water are affected
by its temperature.

[Source: www.engineersedge.com]

999,84 | 992,21 | 992.22 | 983.20 | 971.82 | 958.40 kg m3
-0.07 | 0207 | 0385 | 0.523 | 0.643 | 0.752 “qod g
5.0879 | 4.5895 | 4.4241 | 4.4507| 46418 | 49015 4010 pg-t
1793 | 1.002 | 0.6532 | 0.4665|0.3544 | 0.2813 | *103 kgm' s (Pas)
1787 | 1.004 | 0.658 | 0.475 | 0365 | 0.294 06 m2 e
561.0 | 598.4 | 6305 | 6543 | 670.0 | 679.1 03 Wt KT
42176| 41818 | 41785 | 4.1843 | 4.1963 | 4.2159 103 Jkg T KT
0% J kg KT

0 | 0296 | 0581 | 0.832 | 1.076 | 1.307 103 Jkg KT

0 | 838 [ 1676 | 2515|3353 | 4191 0 Jkg
611.3 | 2,338.2 7,381.4 | 19,932 | 47,373 | 101,325 Pa

7564 | 7275 | 69.60 | 66.24 | 6247 | 58.91 0% N
1,403 | 1,481 | 1,526 | 1,552 | 1,555 | 1,543 ms1




Continuous pressure losses

Friction factor

Alternatively, some approximated correlations can be used to calculate
the friction factor. Their validity is limited to the case considered:

* High roughness

Pipes with deposits and corroded pipes can be considered as high
roughness pipes (0.200 < € < 1.000 mm)

f:...



Continuous pressure losses
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Continuous pressure losses
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Continuous pressure losses

PRESSURE DROP, Pa/m
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Fig. 16 Friction Loss for Water in Plastic Pipe (Schedule 80)




Localized pressure losses

Internal diameter copper tube, PEad, PEX | 816 mm | 18:28 mm | 30+54 mm | >54 mm
External diameter steel tube 38" 142" EIEAEN 1 Li4"e2" 2"
. .
Loss coefficients for valves
Shut-off valve _DTQ_ 10,0 | 8,0 7.0 6,0
|
Shut-off valve 8- 5.0 1,0 3,0 3,0
Reduced passage gate valve I 1,2 1,0 0.8 0,6
Total passage gate valve i 0,2 0.2 0,1 0,1
Reduced passage ball valve L= 1,6 1,0 0,8 0,6
Total passage ball valve e} 0,2 0,2 0,1 0,1
Burterfly valve —. 3.5 20 L5 1,0
Check valve _{‘_\T‘J_ 3.0 2,0 1,0 1,0
Radiator valve &5 8,5 7.0 6,0 —_
Radiator valve '—? 4,0 4,0 3,0 —
Lockshield —&5— 1,5 1,5 1.0 -
Lockshield —? 1.0 1,0 0,5 | —_
Aeway valve —B%}— 6,0 4.0 . .
_ _ [source: M. Doninelli,

Sy valve S 100 80 Design principles of
Passage through radiator —/ 30 hydronlc heatlng SyStemSl
— Caleffi Handbooks]
Passage through boiler |;| 3,0




Localized pressure losses

Loss coefficients for elbows,
bends, section changes, T-
joints and other elements

Internal diameter copper tube, PEad, PEX | 8:16 mm | 18:28 mm | 30:54 mm | >54 mm
External diameter steel tube 381020 34'+1" 1 1/4"+2"
Localised loss type
Marrow bend 90° rd = 1,3 20 1,5 Lo 0,8
Normal bend 90° rid = 2,5 1,5 1,0 0,5 0,
Wide bend 90° rid > 3.5 L0 0,5 0.3 0.3
Narrow bend U rid = 1,% 2,3 2,0 1,5 1.0
i [
Normal bend [ | 20 L5 0,8 0,5
B ! -

Wide bend U e'd > 3,3 1,5 0,8 0,4 0,4
Se chang 1.0
Secrion change 05
T joi 1.0
T joint 1.0
T joi 30
T joint 3,0

. . 0,5
Angele joine (45°- 607)

e e 0,3
Angle joint (45°- 607)
Bend joine 20
Bend joinr

[source: M. Doninelli,
Design principles of
hydronic heating systems,
Caleffi Handbooks]



Localized pressure losses

Loss coefficients for valves,
section changes, T-joints and
other elements

Diametro nominale (DN)
10 [ 1520 [25]32]40]50]65]80]100 [125[150]200
Curva arrotondata
(raggio curv./diam. = 1,5) | <= 0,5 »
Gomito 2 (2 15]1,5]= 1 -
Brusco allargamento
(sbocco) V= 1+1,2 >
Brusca restrizione —__
(imbocco) Y| - 0,5+0,7 »
Radiatore 7 14,513,5(2,5
Valvola per radiatore
(o detentore) 17(1019 |8
Caldaia e 3 »
Valvola a sfera
(passaggio totale) - 0,5 >
0 saracinesca
Valvola a sfera
(passaggio ridotto) < ] = »
w W
T diretto 0,8 10,710,610,5(0,4|0,3]0,3[0,3]0,2{ 0,2 ] 0,2 10,2 | 0,1
w w;
T deviato T 2502 |L5|1,5(1,5{1,5[1,4[1,4{14(1,3]1,3|1,2|1,2
T confluente T 4r(0,8]0,7|0,60,5]0,4]0,3{0,3|0,3]0,2{ 0,2 {0,2 {0,1 | 0,1
Tconfluente 1~ % [17[13(1 [ 1] 1| 1]1]11]0909[09 |08 [08
Valvola di ritegno
a clapet - s s s »>
Filtro a “Y”
(pulito) - 4+5 »
Valvola di ritegno a disco
a molla morbida - 10+12 >

[source: Miniguida AICARR]



Pipe design

Rules of thumb for pipe sizing

* The general range for pipe sizing is between 100 and 400 Pa/m, with
the mean value of 250 Pa/m being a commonly used target for pipe
design

= Upper limits to avoid noise are 1.2 m/s for piping with D<50 mm and
400 Pa/m for bigger pipes, where higher velocities are allowed.

Note: Noise is not directly caused by high velocity, but rather by free air, pressure drops, turbulence
or a combination of these that cause cavitation of flashing of water into steam.



Pipe design

Rules of thumb for pipe sizing

Note: Noise is not directly caused by high velocity, but rather by free air, pressure drops, turbulence
or a combination of these that cause cavitation of flashing of water into steam.

= Air in hydronic systems is undesirable because (i) it causes flow
noise, (ii) allows oxygen to react with piping material, (iii) might
prevent flow in parts of a system.

" The solubility of air in water increases with pressure and decreases
with temperature: therefore, air separation is best achieved in the
point of lowest pressure and/or highest temperature.



Pipe design

Rules of thumb for pipe sizing

Note: Air can be entrained in the water and carried to separation units at flow velocities higher
than 0.5-0.6 m/s in pipes with D<50 mm.

* For this reason, a minimum velocity of 0.6 m/s is recommended for
pipes with D<50 mm.

» For bigger pipes, velocities that correspond to at least 75 Pa/m are
sufficient.

Note: The constraint of minimum velocity is particularly important in the upper floors of high rise
buildings, where air tends to come out due to reduced pressures.



Pipe design

Sizing procedure

1.

Given the heat load of the building zones, size the terminal units and
calculate the corresponding flow rates

Sketch the distribution system connecting the heat supply station to the
terminal units (see previous lecture)

Set a target value to the flow velocity (m/s) or to the linear pressure loss
(Pa/m) in all pipes, valves and fittings

Calculate the corresponding diameter and find the closest available
diameter

Recalculate velocities and pressures according to the selected diameters
and check if they are within upper and lower limits.



Pump selection

Characteristic curve of the circuit
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Pump selection

Characteristic curves of the pump

Ap (Az)
P, = pQy,g9 Az

p _ PQuglz_ Qylp
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Pump selection

Efficiency of the pump

Hydraulic efficiency

Electric efficiency

Overall efficiency

Ng




Pump selection

Net Positive Suction Head (NPSH)

Pl NPSH, > NPSH,

l Pg = ATMOSPHERIC HEAD

" Az

o e s NPSH, =ps +p g Az — Apy — py(T)

=0 ) [
Ap f PUMP,
Pypa AT TEMPERATURE ¢ Pypa AT TEMPERATURE t
NPSA=p,+p,—pa=py - NPSA=p, +p + V2pl2g-p,p,
PROPOSED DESIGN EXISTING INSTALLATION

Fig. 33 Net Positive Suction Pressure Available

[source: 2020 ASHRAE Handbook — HVAC systems and Equipment]



Pump selection

Net Positive Suction Head (NPSH)

PUMBE,
Pypa AT TEMPERATURE ¢

NPSA = 2, + P, =By
PROPOSED DESIGN

Pa = ATMOSPHERIC HEAD

Pypa AT TEMPERATURE t

NPSA=p, +ps+V2pl2g-p,.,
EXISTING INSTALLATION

Fig. 33 Net Positive Suction Pressure Available

[source: 2020 ASHRAE Handbook — HVAC systems and Equipment]

NPSH, > NPSH,
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Pump selection

Affinity laws
Q1 _ ™ Ap, _ Az
sz nz Apz AZZ
~ AP, nq
N1 =12 AP, = <n2

(

nq
np



Pump selection

Characteristic curves of the pump
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Pump selection

Pumps in series

Pl P2

——p—

Ap

____________________
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Ap

Ap
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Pump selection

Pumps in parallel




Pump selection

Working point
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Fig.5 Pump Curve and System Curve



Pump selection

Working point
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