Hydronic systems - design principles

Heating, Ventilation and Air Conditioning Systems A.A. 2022/23

Jacopo Vivian
4/5/2023

Bernoulli's principle

For incompressible fluids with steady flow:

$$
\mathrm{p}+\rho g h+\frac{\rho u^{2}}{2}=\text { cost } .
$$

The pressure drops of a closed circuit should be equal to the head of the pump:

$$
\Delta \mathrm{p}=\sum_{j} \rho\left(f_{j} \frac{L_{j}}{D_{j}}+\beta_{j}\right) \frac{u^{2}}{2}=\sum_{j} \frac{\rho}{2 S_{j}^{2}}\left(f_{j} \frac{L_{j}}{D_{j}}+\beta_{j}\right) Q_{v, j}^{2}
$$

Pressure losses

The pressure losses in a hydronic circuit are of two types:

- Distributed (or continuous) losses: proportional to the pipe length

$$
\Delta \mathrm{p}=f \frac{L}{D} \frac{\rho u^{2}}{2}
$$

- Localized losses: dependent on the element (fitting, valve, heat exchanger etc) encountered by the flow

$$
\Delta \mathrm{p}=\beta \frac{\rho u^{2}}{2}
$$

Continuous pressure losses

Friction factor

In general, the friction factor f depends on the Reynolds number and on relative pipe roughness

$$
f=f\left(\frac{\varepsilon}{D}, R e\right)
$$

Continuous pressure losses

Reynolds number

The Reynolds number is the ratio between between inertial and viscous forces on a fluid in motion

$$
R e=\frac{u D \rho}{\mu}=\frac{u D}{v}
$$

$\mu=$ dynamic viscosity [Pa•s] or [$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$] or [$\left.\mathrm{kg} /(\mathrm{m} \cdot \mathrm{s})\right]$
$v=\frac{\mu}{\rho}$ kinematic viscosity $\left[\mathrm{m}^{2} / \mathrm{s}\right]$

Continuous pressure losses

Friction factor

- At low Reynolds numbers ($R e<2000$), the flow is laminar and the friction factor depends only on the Reynolds number

$$
f=\frac{64}{R e}
$$

- At high Reynolds numbers ($R e>3000$), the flow is turbulent and the friction factor depends also on relative pipe roughness according to Colebrook's correlation:

$$
\frac{1}{f^{0.5}}=-2 \log _{10}\left(\frac{2.51}{R e \cdot f^{0.5}}+\frac{\frac{\varepsilon}{D}}{3.71}\right)
$$

Continuous pressure losses

Friction factor

The graphical representation of Colebrook's correlation is the Moody Diagram.

Continuous pressure losses

Friction factor

Alternatively, some approximated correlations can be used to calculate the friction factor. Their validity is limited to the case considered:

Material	Absolute Roughness (mm)
Copper, Lead, Brass, Aluminum (new)	$0.001-0.002$
PVC and Plastic Pipes	$0.0015-0.007$
Flexible Rubber Tubing - Smooth	$0.006-0.07$
Stainless Steel	0.0015
Steel Commercial Pipe	$0.045-0.09$
Weld Steel	$0.02-0.05$
Carbon Steel (New)	$0.05-0.15$
Carbon Steel (Slightly Corroded)	$0.15-1$
Carbon Steel (Moderately	$1-3$
Corroded)	$0.1-1$
Carbon Steel (Badly Corroded)	$0.25-0.8$
Asphalted Cast Iron	$0.8-1.5$
New Cast Iron	$1.5-2.5$
Worn Cast Iron	$0.025-0.15$
Rusty Cast Iron	$0.18-0.91$
Galvanized Iron	$0.25-1$
Wood Stave	0.3
Wood Stave, used	$0.3-1$
Smoothed Cement	$0.8-3$
Ordinary Concrete	
Concrete - Rough, Form Marks	

Continuous pressure losses

Friction factor

Alternatively, some approximated correlations can be used to calculate the friction factor. Their validity is limited to the case considered:

- Low roughness

Commercially available copper, inox, multi-layer and plastic pipes can be considered as low roughness pipes ($0.001<\varepsilon<0.007 \mathrm{~mm}$)

$$
f=0.316 R e^{-0.25}
$$

Continuous pressure losses

Low roughness pipes

Commercially available copper, inox, multi-layer and plastic pipes can be considered as low roughness pipes ($0.001<\varepsilon<0.007 \mathrm{~mm}$)

Continuous pressure losses

Friction factor

Alternatively, some approximated correlations can be used to calculate the friction factor. Their validity is limited to the case considered:

- Average roughness

Commercially available iron and galvanized steel pipes can be considered as average roughness pipes ($0.020<\varepsilon<0.090 \mathrm{~mm}$)

$$
f=0.07 R e^{-0.13} D^{-0.14}
$$

Continuous pressure losses

Average roughness pipes

Commercially available iron and galvanized steel pipes can be considered as average roughness pipes ($0.020<\varepsilon<0.090 \mathrm{~mm}$)

Continuous pressure losses

Effects of temperature

The viscosity and density of the water are affected by its temperature.

Continuous pressure losses

Effects of temperature

The viscosity and density of the water are affected by its temperature.

Property of Water	$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	Units
Density	999.84	998.21	992.22	983.20	971.82	958.40	$\mathrm{kg} \mathrm{m}^{-3}$
Thermal Expansion	-0.07	0.207	0.385	0.523	0.643	0.752	${ }^{*} 10^{-3} \mathrm{~K}^{-1}$
Isothermal Compression (Volume Viscosity)	5.0879	4.5895	4.4241	4.4507	4.6418	4.9015	${ }^{*} 10^{-10} \mathrm{~Pa}^{-1}$
Dynamic Viscosity	1.793	1.002	0.6532	0.4665	0.3544	0.2818	${ }^{*} 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ (Pas)
Kinematic Viscosity	1.787	1.004	0.658	0.475	0.365	0.294	${ }^{*} 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
Thermal Conductivity	561.0	598.4	630.5	654.3	670.0	679.1	${ }^{*} 10^{-3} \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$
Specific Heat at constant pressure C_{p}	4.2176	4.1818	4.1785	4.1843	4.1963	4.2159	${ }^{*} 10^{3} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
Specific Heat at constant volume C_{v}							${ }^{1} 10^{3} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
Specific Entropy e	0	0.296	0.581	0.832	1.076	1.307	* $10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Specific Enthalpy	0	83.8	167.6	251.5	335.3	419.1	${ }^{*} 10^{3} \mathrm{Jkg}^{-1}$
Saturation Vapor Pressure	611.3	2,338.8	7,381,4	19,932	47,373	101,325	Pa
Surface Tension	75.64	72.75	69.60	66.24	62.47	58.91	${ }^{*} 10^{-3} \mathrm{~N} \mathrm{~m}^{-1}$
Speed of Sound	1,403	1,481	1,526	1,552	1,555	1,543	$\mathrm{m} \mathrm{s}^{-1}$

Continuous pressure losses

Friction factor

Alternatively, some approximated correlations can be used to calculate the friction factor. Their validity is limited to the case considered:

- High roughness

Pipes with deposits and corroded pipes can be considered as high roughness pipes ($0.200<\varepsilon<1.000 \mathrm{~mm}$)

$$
f=\cdots
$$

Continuous pressure losses

Fig. 14 Friction Loss for Water in Commercial Steel Pipe (Schedule 40)

Continuous pressure losses

Fig. 15 Friction Loss for Water in Copper Tubing (Types K, L, M)

Continuous pressure losses

Fig. 16 Friction Loss for Water in Plastic Pipe (Schedule 80)

Localized pressure losses

Loss coefficients for valves

Internal diameter copper tube, PEad, PEX		$8 \pm 16 \mathrm{~mm}$	$18 \div 28 \mathrm{~mm}$	$30+54 \mathrm{~mm}$	> 54 mm
External diameter steel tube		$3 / 88^{\prime \prime}+1 / 2^{\prime \prime}$	$3 / 4^{*+1}+1^{\text {² }}$	$11 / 4^{\prime \prime}+2^{\prime \prime}$	>2"
Localised loss type	Symbol				
Shut-off valve	$-\infty<$	10,0	8,0	7,0	6,0
Shut-off valve	$\rightarrow \infty$	5,0	4,0	3,0	3,0
Reduced passage gate valve		1,2	1,0	0,8	0,6
Total passage gate valve		0,2	0,2	0,1	0,1
Reduced passage ball valve	$-\infty$	1,6	1,0	0,8	0,6
Total passage ball valve	$\rightarrow \infty$	0,2	0,2	0,1	0,1
Buttefly valve	tort	3,5	2,0	1,5	1,0
Check valve	\rightarrow	3,0	2,0	1,0	1,0
Radiator valve	-	8.5	7,0	6,0	-
Radiator valve	-	4,0	4,0	3,0	-
Lockshield	-б-	1,5	1,5	1,0	-
Lockshield	$-\Phi$	${ }^{1,0}$	1,0	0,5	-
4-way valve			6,0		. 0
3 -way valve			10,0		, 0
Passage through radiator	\square			3,0	
Passage through boiler	\triangle			3,0	

[source: M. Doninelli,
Design principles of hydronic heating systems, Caleffi Handbooks]

Localized pressure losses

Loss coefficients for elbows, bends, section changes, Tjoints and other elements

Internal diameter copper tube, PEad, PEX External diameter steel tube			${ }^{8+16 \mathrm{~mm}}$	$18+28 \mathrm{~mm}$	$30+54 \mathrm{~mm}$	>54mm
			$3 / 8^{\text {* }}+1 / 2^{\prime \prime}$	$3 / 4^{+}+1^{\text { }}$	$11 / 4^{\prime \prime}+2^{\prime \prime}$	>2"
Localised loss type		Symbol				
Narrow bend 90°	r/d $=1,5$		2,0	1,5	1,0	0,8
Normal bend 90°	r/d $=2.5$		1,5	1,0	0.5	0,4
Wide bend 90°	t/d >3.5		1,0	0,5	0,3	0,3
Narrow bend U	$t / d=1,5$	R	2,5	2,0	1.5	1,0
Normal bend U	F/4-2,		2,0	1.5	0,8	0.5
Wide bend U	tid >3.5		1,5	0,8	0,4	0,4
Section change		\square	1.0			
Section change		島雨	0,5			
T joint		7	1,0			
T joint		Γ	1,0			
T joint		7	3,0			
T joint		1	3,0			
Angle joint (450.60)			0,5			
Angle joine (450.60)			0,5			
Bend joint		\rightarrow	2,0			
Bend joint		r	2,0			

Localized pressure losses

Loss coefficients for valves, section changes, T -joints and other elements

Pipe design

Rules of thumb for pipe sizing

- The general range for pipe sizing is between 100 and $400 \mathrm{~Pa} / \mathrm{m}$, with the mean value of $250 \mathrm{~Pa} / \mathrm{m}$ being a commonly used target for pipe design
- Upper limits to avoid noise are $1.2 \mathrm{~m} / \mathrm{s}$ for piping with D<50 mm and $400 \mathrm{~Pa} / \mathrm{m}$ for bigger pipes, where higher velocities are allowed.

Note: Noise is not directly caused by high velocity, but rather by free air, pressure drops, turbulence or a combination of these that cause cavitation of flashing of water into steam.

Pipe design

Rules of thumb for pipe sizing

Note: Noise is not directly caused by high velocity, but rather by free air, pressure drops, turbulence or a combination of these that cause cavitation of flashing of water into steam.

- Air in hydronic systems is undesirable because (i) it causes flow noise, (ii) allows oxygen to react with piping material, (iii) might prevent flow in parts of a system.
- The solubility of air in water increases with pressure and decreases with temperature: therefore, air separation is best achieved in the point of lowest pressure and/or highest temperature.

Pipe design

Rules of thumb for pipe sizing

Note: Air can be entrained in the water and carried to separation units at flow velocities higher than $0.5-0.6 \mathrm{~m} / \mathrm{s}$ in pipes with $\mathrm{D}<50 \mathrm{~mm}$.

- For this reason, a minimum velocity of $0.6 \mathrm{~m} / \mathrm{s}$ is recommended for pipes with D<50 mm.
- For bigger pipes, velocities that correspond to at least $75 \mathrm{~Pa} / \mathrm{m}$ are sufficient.

Note: The constraint of minimum velocity is particularly important in the upper floors of high rise buildings, where air tends to come out due to reduced pressures.

Pipe design

Sizing procedure

1. Given the heat load of the building zones, size the terminal units and calculate the corresponding flow rates
2. Sketch the distribution system connecting the heat supply station to the terminal units (see previous lecture)
3. Set a target value to the flow velocity (m / s) or to the linear pressure loss (Pa / m) in all pipes, valves and fittings
4. Calculate the corresponding diameter and find the closest available diameter
5. Recalculate velocities and pressures according to the selected diameters and check if they are within upper and lower limits.

Pump selection

Characteristic curve of the circuit

$$
\Delta \mathrm{p}=\sum_{j} \frac{\rho}{2 S_{j}^{2}}\left(f_{j} \frac{L_{j}}{D_{j}}+\beta_{j}\right) Q_{v, j}^{2}=k Q_{v}{ }^{2}
$$

Pump selection

Characteristic curves of the pump

$$
\begin{gathered}
P_{i}=\rho Q_{v} g \Delta z \\
P=\frac{\rho Q_{v} g \Delta z}{\eta}=\frac{Q_{v} \Delta p}{\eta}
\end{gathered}
$$

Pump selection

Efficiency of the pump

Pump selection

Net Positive Suction Head (NPSH)

$$
\mathrm{NPSH}_{a} \geq \mathrm{NPSH}_{r}
$$

$p_{a}=$ ATMOSPHERIC HEAD

$$
N P S H_{a}=p_{s}+\rho g \Delta z-\Delta p_{f}-p_{v}(T)
$$

Pump selection

Net Positive Suction Head (NPSH)

Fig. 33 Net Positive Suction Pressure Available
$\operatorname{NPSH}_{a} \geq \boldsymbol{N P S H}_{r}$

$$
N P S H_{a}=p_{a}+p_{i n}+\frac{\rho u^{2}}{2}-p_{v}(T)
$$

Pump selection

Affinity laws

$$
\begin{array}{rlrl}
\frac{Q_{v 1}}{Q_{v 2}} & =\frac{n_{1}}{n_{2}} & \frac{\Delta p_{1}}{\Delta p_{2}}=\frac{\Delta z_{1}}{\Delta z_{2}}=\left(\frac{n_{1}}{n_{2}}\right)^{2} \\
\eta_{1} \cong \eta_{2} & \frac{\Delta P_{1}}{\Delta P_{2}}=\left(\frac{n_{1}}{n_{2}}\right)^{3}
\end{array}
$$

Pump selection

Characteristic curves of the pump

$$
\begin{aligned}
& \frac{Q_{v 1}}{Q_{v 2}}=\frac{D_{1}}{D_{2}} \\
& \frac{\Delta p_{1}}{\Delta p_{2}}=\left(\frac{D_{1}}{D_{2}}\right)^{2}
\end{aligned}
$$

Pump selection

Pumps in series

Pump selection

Pumps in parallel

Pump selection

Working point

Fig. 5 Pump Curve and System Curve

FLOW RATE

Pump selection

Working point

Fig. 5 Pump Curve and System Curve

Fig. 35 Pump Selection Regions

