Differential Games and Representation
Formulas for Solutions of
Hamilton-Jacobi-Isaacs Equations
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1. Introduction

Recent work by the authors and others has demonstrated the connections be-
tween the dynamic programming approach to two-person, zero-sum differential
games and the new notion of “viscosity” solutions of Hamilton-Jacobi PDE, in-
troduced in Crandall-Lions [8]. The formal relationships here were observed by
Isaacs in the early 1950’s (cf. [18]): he showed that if the values of various dif-
ferential games are regular enough, then they solve certain first order PDE with
“max-min” or “min-max” type nonlinearity (the Isaacs equations). The problem
here is that usually the value functions are not sufficiently smooth to make sense
of these PDE in any obvious way. Many later papers in the subject have worked
around this difficulty: see especially Fleming [13], [14], Friedman [15], [16],
Elliott-Kalton [9]-[11], Krassovski-Subbotin [20], Subbotin [26], etc., and the
references therein.

Recently, however, M. Crandall and P. L. Lions [8] have discovered a new
notion of weak or so-called “viscosity” solution for Hamilton-Jacobi equations,
and, most importantly, have proved uniqueness of such a solution in a wide va-
riety of circumstances. This concept was reconsidered and simplified in part by
Crandall, Evans, Lions [7], whose approach we follow below. Additionally, Lions
in his new book [21] has made the fundamental observation that the dynamic
programming optimality condition for the value in differential control theory prob-
lems implies that this value function is the viscosity solution of the associated
Hamilton-Jacobi-Bellman PDE: see [21, pages 53—54] for more explanation. Some
related papers are Lions [23], Lions-Nisio [24], Capuzzo Dolcetta-Evans [5], Barles
[2], Capuzzo Dolcetta [4], Capuzzo Dolcetta-Ishii [6], etc.

The foregoing considerations turn out to extend to differential game theory,
where additional complications arise with respect to the definition of the value
functions. Nevertheless the basic idea is still valid, that the dynamic programming
optimality conditions imply that the values are viscosity solutions of appropriate
PDE. See Souganidis [27] for a demonstration of this based on both the Fleming
and the Friedman definitions of upper and lower values for a differential game,
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and Barron-Evans-Jensen [3] for a different proof for the Friedman definition.
Some similar results are to be found in P. L. Lions [22].

The present paper represents a simplification of this previous work. The new
approach here is to define the values of the differential game following Elliott-
Kalton [9]-[11] (cf. Roxin [25]) rather than Fleming or Friedman. This results
in a great simplification in the statements and proofs, as the definitions are explicit
and do not entail any kind of approximations.

The appropriate terminology is introduced in §2. In §3 we reproduce (and sim-
plify a bit) Elliott and Kalton’s proof of the optimality conditions and of the Lip-
schitz continuity of the upper and lower value functions. Then in §4 we prove
that the value functions are the (unique) viscosity solutions of the appropriate
Isaacs equations; our demonstration of this owes a lot to previous papers (espe-
cially [3] and [27]), but is essentially simpler in many ways.

The remainder of the paper is devoted to some applications. First, in §5 we
discuss (cf. Fleming [14]) how to write a fairly arbitrary Hamilton-Jacobi equation
as the upper Isaacs equation for some differential game, so that the viscosity so-
lution is this upper value. The consequence is a kind of representation formula
for the solution of the original, fully nonlinear first-order PDE. We thereafter in
§7 employ this representation formula to prove results about the level sets of
solutions to Hamilton-Jacobi equations with homogeneous Hamiltonians; these
equations we motivate in §6 with a discussion of geometric optics and Huygens’
principle. Part of the point of this application is to show that the game theory
methods provide mathematically rigorous and relatively simple procedures for jus-
tifying various formal calculations concerning Hamilton-Jacobi equations. Roughly
speaking, the trajectories for the differential game serve as “generalized charac-
teristics” existing in the large.

We should note also that our hypotheses throughout are almost always stronger
than is really necessary, since we wish to display the methods in the clearest
setting. The interested reader should consult Ishii [19] for some extensions of our
results to differential game problems under much weaker hypotheses.

We conclude by recording here the relevant definition of viscosity solutions,
from [7], [8], [3].

Assume H: [0,T] X R" X R" — R is continuous, and g:R” — R" is bound-
ed, uniformly continuous. A bounded, uniformly continuous function u:
[0,T] X R" — R"™ is called a viscosity solution of the Hamilton-Jacobi equation

) {(1.1) u, + H(t,x,Du) = 0 in (0,T) X R™
(1.2) u(T,x) = g(x) in R"
provided (1.2) holds and for each & € C'((0,T) X R™)
(a) if u — ¢ attains a local maximum at (¢,,x,) € (0,T) X R", then
(1.3) i (t0,%0) + H(to,X0,Dd(t9,%0)) = 0,

and
(b) if u — ¢ attains a local minimum at (¢,,x,) € (0,7) X R", then
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(1.4) b, (to,%0) + H(to,X0,Dd(t9,%0)) = 0.

See [7] for a proof that if u is a viscosity solution of (HJ) and if u is differentiable
at some point (#,x,), then

u,(t9,%0) + H(tg,x0,Du(ty,x0)) = 0.

Remark. We have described here the appropriate definition for the terminal
value problem (1.1), (1.2); this is, as we shall see, the kind of PDE arising in
game theory applications. A viscosity solution of the initial value problem (1.1),

1.2) u(x,0) = g(x) in R”,
is defined by reversing the inequalities in (1.3), (1.4).

2. Terminology

We mostly adopt here the notation of Elliott-Kalton [9].

(A) Definition of the differential game. Fix 7>t = 0, x € R" and consider
the differential equation

(ODE){X(S) =f(s,x(s),y(s),2(s)) t=s=T
x(1) = x.
Here
y:[t,T]—>Y
and
z:[t,T]1—>Z

are given measurable functions (called the controls employed by players I and II,
respectively) and ¥ C R¥, Z C R are given compact sets. We assume

fi0TIXR" XY X Z—>R"

is uniformly continuous, with

{!f(tyxay,z)l = Cl
|f(t.x,y,2) = f(t,%,9,2)] = Cy|x — %]

for some constant C; and all 0 <t =T, x, £ ER", y€E€ Y, z € Z. The (unique)
solution x(+) of (ODE) is the response of the system to the controls y(:), z(*).
Associated with (ODE) is the payoff functional

2.1

T
(P) P(y,z) = Pix(y(1),z(")) = f h(s,x(s),y(s),z(s))ds + g(x(T)),

where g:R” — R satisfies
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=C
2.2) {lg(x)l 2

8(0) — g®)| = Calx — £,
and £:[0,T] X R" X Y X Z— R is uniformly continuous, with
|h(t,x,y,2)| = Cy
{Ih(t,x,y,z) = h(t,2,y,2)| = G3|x — 4|

for constants C,, C; and all 0=¢t=<T, x,£€R", yEY, zE€ Z. The goal of
player I is to maximize P and the goal of player II is to minimize P.

(2.3)

(B) The upper and lower values. Set
M) = {y:[t,T]— Y| y measurable}
N(t) = {z:[t,T] > Z| z measurable};

these are the sets of all controls for I and II, respectively. We will henceforth
identify any two controls which agree a.e.
Following now Varaiva [29], Roxin [25] and Elliott-Kalton [9] we define any
mapping
a:N(@)— M)
to be a strategy for I (beginning at time f) provided for each t <s =T and
z,2€ N(t):
z(t) = Z(t) forae. t=7=s
(2.4) I
implies a[z](T) = a[Z](T) fora.e. t=7=<s.
Similarly a mapping
B:M()— N(@)
is a strategy for II (beginning at time ¢) provided for eacht<s=<Tand y,y €
M():
(1) =y(7)forae. t=7=<sys
(2.5) {y )=y
implies B[y](t) = B[F1(z) fora.e. t=r71=<s.

Denote by I'(#) the set of all strategies for I and by A(¢) the set of all strategies
for II, beginning at time ¢.

Finally define
V(t,x)

inf sup P(y,B[y])

BEAW) yEM()

(2.6)

BEA() yEM()

T
inf sup { f h(s,x(s),y(s),B[y1(s))ds + g(x(T))},

x(+) solving (ODE) for y(-) and z(-) = B[y](-). Analogously set
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U(t,x) = sup inf P(a[z],z)

aE€I'(t) ZEN()

2.7 T
= sup inf {J h(s,x(s),a[z](s),z(s))ds+g(x(T))},

aE€L(t) ZEN()

x(-) solving (ODE) with z(-) and y(-) = a[z]().

We call V the lower value and U the upper value of the differential game (ODE),
(P). Our goal is to show that V and U solve certain nonlinear PDE (in the viscosity
sense).

3. Properties of the Upper and Lower Values

The results in this section are proved in Elliott-Kalton [10]. We reproduce and
simplify slightly their arguments for the reader’s convenience.

Theorem 3.1. ForeachQ<t<t+ o <Tand x €R"

(3.1) V(t,x)= inf sup {f h(s,x(s),y(s),Blyl(s))ds + V(t + o,x(t + 0))},

BEA(@) yEM()

and

t+o
3.2) U(,x)= sup inf {f h(s,x(s),a[z](s),z(s))ds + U(t + o,x(t + 0'))}.
a€l'(t) zZEN(®) '
These are the dynamic programming optimality conditions.

Remark. 1In (3.1) and (3.2), as elsewhere below, we implicitly mean x(*) to
solve (ODE) with the appropriate controls y(-) and z(-).

Proof. We prove (3.1) only, as the proof of (3.2) is similar. Set

(3.3) W(,x)= inf sup {f h(s,x(s),y(s),Blyl(s))ds + V(t + o,x(t + 0))}

BEA() yEM(1)

and fix € > 0. Then there exists 8 € A(¢) such that

(3.4 W(t,x) = sup {f h(s,x(s),0[yl(s))ds + V(t + o,x(¢t + o))} — €.
) Ly

YEM(t

Also, for each w € R™

T
V(@ +o,w)= inf  sup {J h(s,x(s),y(s),B[y1(s))ds + g(x(T))},

BEA(+0o) yEM(tt0) +o

x(+) solving (ODE) on (¢t + o,T), with the initial condition x(# + o) = w. Thus
there exists §,, € A(¢ + o) for which

T
(3.5) V@e+ow)= sup {f h(s,x(s),y(5),8, [yl(s))ds + g(X(T))} — .

YEM(t+0) ‘o
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Define B € A(¢) in this way: for each y € M(¢) set
S[y1(s) t=s<t+o
Bly1(s) = {

[ B9 (€)) t+to<s=T.

Consequently for any y € M(¢), (3.4) and (3.5) imply

T
Wi(t,x) = f h(s,x(s),y(s),Bly1(s)ds + g(x(T)) — 2s;

so that
T
sup. { J h(s,x(s), y(s),BIy1(s))ds + g(x(T))} = W(t,x) + 2.
y t t
Hence
(3.6) V(t,x) = W(t,x) + 2¢.

On the other hand there exists B € A(¢) for which

T
3.7 V(t,x) = sup { f h(s,x(s),y(s),B[y1(s))ds + g(x(T))} —&.

YEM()

Then

W(t,x) = sup { f h(s,x(5),y(s),Blyl(s))ds + V(¢t + o,x(¢ + cr))},

YEM()

and consequently there exists y, € M(¢) such that
t+o

(3.8) W(t,x) = j h(s,x(s),y1(5),B[y11(s))ds + V(¢ + o,x(t + 7)) + &.
t

Now for each y € M(¢t + o) define y € M(¢) by

; y1(s) t=s<t+o
y(s) =
y(s) t+o=s=T

and then define § € A (t + o) by
BlyIs) =BIyls) (+o=s=T).

Hence

T
V(@ +o,x(t+0)= sup { f h(s,x(s),y(s),B[y1(s))ds + g(x(T))}

YEM(t+o)

and so there exists y, € M(¢ + o) for which
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T

(3.9 V@+oxt+o)= f h(s,x(s),2(8),BLy21(s)ds + g(x(T)) + .

t+o
Define y € M(t) by
y1(8) t=ss<t+o
yis) =
2 (s) t+o=s=<T.
Then (3.8) and (3.9) yield

T
(3.10) W(,x) = f h(s,x(s),y(s),BLyl(s)ds + gx(T)) + 2e,

and so (3.7) implies
W(t,x) = V(t,x) + 3e.

This and (3.6) complete the proof. O
Next we examine the boundedness and continuity of the value functions:
Theorem 3.2. There exists a constant C, such that

(3.11) V@), [U@x| =< C,

(3.12) V(t,x) — V(E,2)|, [U@,x) — Ut,2)| < Co(lt — 1] + |x — %)

forall0<t,i<T, x, £ ER"

Proof. We give the proof for U only since similar arguments work for V.
First, owing to (2.2) and (2.3) we have

|P(y,2)| = TC3 + C2

for all y(-) € M(z), z(-) € N(¢). This at once implies estimate (3.11) for U.
To prove (3.12) for V let us first choose x;,x, ER", 0=t =t,=T. Pick
€ > 0 and then select a € I'(#;) so that

(3.13) U(t,,x;) = inf P(a[z],z) + e.

ZEN(t1)

Pick some z, € Z, and then define for any z € N(z,)

ZEN()
by
Z Hh=s<t
z’(s)={0 1 2
z(s) L=s=T.

Now define o € I'(¢,) by setting for each z € N(¢,)

alz] =alZ] (=s=T).
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Finally select z € N(¢,) so that
(3.14) U(ty,x;) = P(alz],z) — e.

According to (3.13)

3.15) U(t;,x) =< P(a[£],2) + &.

Now let x;(*) solve
dx,(s) _ . .
i = f(s,x(s),alZ](s),Z(s)) tH<s<T)
x(h) =x

and let x,(*) solve
dx,(s)
s = f(s,x(s),alz](5),2(s)) (L <s<T)
X () = x;.

We have

) — x| < Cilh — 6.

Furthermore, since z = 7 and ¢[z] = «[Z] on (¢,,T),

(3.16) |x,(s) = x,(8)| =Clxy(ty) — x| =sC(ti— | + |x1 — %)  (G=s=<T).
Thus (3.14) and (3.15) imply
B.17) U@t,x) — U(ty,xy)

= P(a[Z],2) — P(a[z],z) + 2¢

= f h(s,x,(s),al2](s),2(s))ds

T
+ j h(s,x1(5),alz](s),2(s)) — h(s,x,(s),a[z](s),z(s))ds

+ g(x(T)) — g(x,(T)) + 2¢
=C(t — | + % — x,|) + 2e,

by (2.1)-(2.3) and (3.16).
On the other hand let us select a € I'(z,) such that

(3.18) U(t,,x,) = inf P(alz],z) + e.

ZEN(t2)

For each z € N(t,) define z € N(¢,) by
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z(s) = z(s) t,=s<T).

Fix any y, € Y and then define & € I'(¢;) by

Yo L=s=1
alz] =
alz] t,=s=T.

Now choose z € N(¢;) so that

(3.19) U(t,,x,) = P(a[z],z) — &.
According to (3.18)
(3.20) U(t,,x;) = P(alz],2) + e.

Let x;(-) solve

ds

xi(t) = x

dx,(s) _
—— =fx8),0[2](s),2(s)) (1 <s<T)

and let x,(*) solve

ds

X(t) = x;.

dxy(s) _
= f(s,x(8),2[2](5),2(5)) (L <s<T)

As above |x;(t,) — x;| = C,|t; — t,]; and since z = z, &[z] = a[z] on (1,,T),

(3.21)  |xi(s) = x,(8)| = Clxy(t) = 2| = C (|t = 1| + |31 — x2]) ty=s<T).
Therefore (3.18) and (3.20) imply
U(ty,xy) — U(t,xy) = P(afz],2z) — P(&[z],2) + 2¢

=- J h(s,x,(s),a[z](s),2(s))ds

T
+ f h(s,x(s),a[2](s),2)(s)) = h(s,x,(s),a[2](s),z(s))ds

+ 8(xx(1)) — gxy(T)) + 2¢
= C(t, — &) + |x; — x)) + 2e,

by (2.1)-(2.3) and (3.21).
This and (3.17) prove estimate (3.12) for U. O



782 L. C. EVANS & P. E. SOUGANIDIS

4. Viscosity Solutions of Isaacs’ Equations
Next is the observation that the dynamic programming optimality conditions
imply U and V to be viscosity solutions of certain PDE.
Theorem 4.1. (a). U is the viscosity solution of the upper Isaacs equation
0" {U, + H*(t,x,DU) =0 O=<t=Tx€ER"
U(T,x) = gx) (x €R™),
where
H*(t,x,p) = min max {f(t,x,y,z)* p + h(t,x,y,z)}
€EZ yEY
is the upper Hamiltonian.
(b). V is the viscosity solution of the lower Isaacs equation
. {V, + H (t,x,DV) =0 0O=t=Tx€ER™
V(T,x) = g(x) (x €R™),
where

H™(t,x,p) = max min {f (¢,x,y,2) - p + h(t,x,y,2)}
yEY

Z2E€Z

is the lower Hamiltonian.

Corollary 4.2. (i) V=U0O=tr=Tx€R")

(i) If forall0<=t<T,x,p €ER"

H*(t,x,p) = H (t,x,p), (minimax condition)
then
u=v.
The corollary follows from the standard comparison and uniqueness theorems

for viscosity solutions: see [7], [8], [21], [27].

Proof of Theorem 4.1. We prove assertion (a) only.
Let ¢ € C'((0,T) X R™) and suppose U — ¢ attains a local maximum at
(to,%0) € (0,7) X R™. We must prove

“4.1) blto,xo0) + H (t,%0,Dd(20,%)) = 0.
Should this fail, there would exist some 6 > 0 so that
(42) ¢t(t0’x0) + H+(t0ax09D¢(t0ax0)) = _e < O

According to Lemma 4.3 (a) (stated and proved below) this implies that for each
sufficiently small o > 0 and all a € I'())
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4.3) j h(s,x(s),a[z](s),2(s)) + f(s,x(s),a[z](s),2(s))

- Db(5,x(s)) + bi(s,x(s))ds = T""

for some z € N(t,). Thus

toto

(4.4) sup inf {[ h(s,x(s),a[z](s),z(s))

€T (%) zEN(1y)

+ f(s,x(s),a[z](s),2(5)) - Dd(s,x(s)) + ¢,(s,x(S))dS} = _;r_ﬁ'

However Theorem 3.1 states

toto

f h(s,x(s),alz](s),z(s))ds

t

4.5) U(ty,xy) = sup inf {

a€T(t) zEN(2y)

+ Uty + o, x(t; + a)) r.
Since U — ¢ has a local maximum at (#y,x,), we have for o small enough that
4.6)  Ulty,xo) — d(tg,x0) = Uty + o,x(8p + 0)) — oty + o,x(ty + o))

where x(+) solves (ODE) on (¢, + o) for any y(-), z(+), with the initial condition
x(ty) = xo. Now (4.5) and (4.6) give

thto

4.7) sup inf { J’ h(s,x(s),a[z](s),z(s))ds

a€T(t) zEN(2)

+ &t + 0,x(tp + 0)) — ¢(t0axo)} = 0.
But
4.8) oty + 0,x(t) + 0)) — d(to, %))

thtao

= f(s,x(5),a[z1(5),2(s5)) - Dd(s,x(s)) + b,(s,x(s))ds;

to

and so (4.7) contradicts (4.4). Thus (4.1) must in fact be valid.
Next, suppose U — ¢ has a local minimum at (%,%,) € (0,7) X R™. We must
demonstrate

4.9 ddtoX%0) + H (10,%0,Db(t0,%)) < 0
and so will assume the contrary that
(4 10) ¢t(t0’x0) + H+ (.tony,Dd)(tO’xO)) = 9 > O
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for some constant 6 > 0. Then Lemma 4.3(b) asserts that there exists for all suf-
ficiently small o > 0 some o € ['(¢) such that

thto
4.11) f h(s,x(s),a[z](s),2(s)) + f(s,x(s),a[z](s),2(s)) - DD(s,x(5))

+ ds,x(s))ds = 229

for all z € N(,). Consequently

toto

f h(s,x(s),a[z](s),2(s))

to

(4.12) sup inf {

a€I'(to) zEN (1)

ab
+ f(s,x(s),a[z](s),2(s)) - Dd(s,x(s)) + d>,(s,x(S))dS} =7
But since U — ¢ has a local minimum at (¢,x,), we have for small enough o >
0 that
U(to,Xo) - ¢(t0,xo) = U(tO + U,x(to + U)) - ¢(t0 + U',x(to + 0')),
x(+) solving (ODE) on (ty,t, + o) for any y(:), z(-), with the initial condition
x(ty) = xo. This and (4.5) imply

fht+o

sup inf { J h(s,x(s),a[z](s),z(s))ds

a€l'(t) zEN() o

+ &ty + o, x(t, + 0)) — ¢(t0,xo)} =0.

Recalling now (4.8), we see that this contradicts (4.12), and thus (4.9) must
hold. O

Lemma 4.3. Assume & is C*.

(a). If & satisfies (4.2), then for all sufficiently small o > 0 there exists z €
N(2,) such that (4.3) holds for all o € T'(ty).

(b). If & satisfies (4.10), then for all sufficiently small o > 0 there exists
o € I'(ty) such that (4.11) holds for all z € N(t,).

Proof. Set
At,x,y,2) = dft,x) + f(t,x,y,2) - D(t,x) + h(t,x,y,2).
(a). According to (4.2)

min max A(ty,xy,y,z) = —6 < 0.
z€EZ y€EY

Hence there exists some z* € Z such that
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max A(tOeray’Z*) =- 9.
yEY
Since A is uniformly continuous, we also have
0
max A(s,x(s),y,z*¥) = — =
yEY 2

provided fy=s=t,+ o (for any small 0 >0) and x(-) solves (ODE) on
(to,ty + o) for any y(-), z(-), with the initial condition x(#) = x,. Hence for
z() = z* and any a € I'(%)

-0
Ods,x(8)) + f(5,x(5),a[z](5),2(5)) - Dd(s,x(s)) + h(s,x(s),alz](s),2(s)) = By
for t, = s = t, + o. Integrate this from ¢, to ¢, + o to obtain (4.3).

(b). Inequality (4.10) reads

min max A(fy,xg,y,z) = 6 > 0.
Z€EZ y€Y

Hence for each z € Z there exists y = y(z) € Y such that
A(ty,x0,y,2) = 6.

Since A is uniformly continuous we have in fact

360
A(thxO’y9§) = I

for all { € B(z,r) N Z and some r = r(z) > 0. Because Z is compact there exist
finitely many distinct points zy, ..., 2, € Z, y;, ..., y, €Y, and r, ..., r, > 0 such
that

zZC Ln_J B(z;,r)

i=1

and

30

A(to,xo,J’i,C) = _Z- for g € B(ziari)-

Define

b:Z—>Y
by setting

b(2) = yi
if

k-1

zEBrd\U B(Our)  (k=1,...,n).

i=1
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Thus

30
A(to,Xo,d)(Z),Z) = —4_

for all z € Z. Since A is uniformly continuous we therefore have for each suffi-
ciently small o > 0

(4.13) A(s,x(s),d(2),2) = g

forall z€Z, ty=s <1, + o, and any solution x(-) of (ODE) on (%, + o) for
any y(+), z(-), with initial condition x(¢;) = xo.
Finally define a € I'(%) in this way:

alz](s) = d(z(s))
for each z € N(¢), t, = s = T. Owing to (4.13)

A(s,x(s),a[z](s),z(s)) = g (tr=s=t+o0)

for each z € N(f,). Integrate this inequality from #, to #, + o to arrive at
4.11). O
5. Representation of Solutions of Hamilton-Jacobi Equations

We next employ the theory from §2-4 to derive a representation formula for
the viscosity solution of

u,+ Hit,x,Du) =0
5.1 xER™0<tLT)
u(0,x) = g(x).
Here g:R" — R and H:[0,T] X R" X R™ — R satisfy
wl=c
(5.2) {|g | 5 )
lg(x) — @) = Cs|x — %
and
H(t,x,0)|=C
(5.3) {l | o .
|H(t,x,p) — H(E,%,p)| = Cs(|t — £| + [x — £ + [p — p])

for some constant Cs and all0 = ¢, f < T, x, £, p, p € R".
Then results of Crandall-Lions [8], Lions [21], and Souganidis [27], [28] imply
the existence of a unique viscosity solution u of (5.1), with

{|u(t,x)| =GCs
lu(t,x) — u(f,®)| = Ce(|t — #| + |x — £|)

for some constant Cy.

(5.4)
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First we write H as the max-min of appropriate affine functions:

Lemma 5.1. For each0 <t =T, x € R"” and constant A > 0,

(5.5) H(t,x,p) = max min {f(y)‘p + h(t,x,y,z)}
ZEZ y€Y

if |p| = A, where
Y=B(@0,1) CR"
Z=B(0O,A) CR"
f(y)=Csy
h(t,x,y,z) = H(t,x,z) — Csy-z.

(5.6)

Proof. Since
H(t,x,z) — H(t,x,p) < Cs|p — z| (z ER™),
we have for |p| = A

H(t,x,p) = max {H(t,x,z) — Cs|p — z|}
zEZ

= max min {H(¢,x,z) + Csy- (p — z)}.

ZEZ y€Y

787

O

Remark. See Fleming [14, pages 996—1000] or Evans [12] for other, more
complicated ways of writing a nonlinear function as the max-min (or min-max)

of affine mappings.
Note that f and & satisfy (2.1) and (2.3), respectively. Now set
A(t,x,p) = max min {f(y)-p + h(t,x,y,2)}  (p ER™)
Z€EZ y€Y

for A = C¢ from (5.4), Y, Z, f, h from (5.6). Then
H(t,x,p) = H(t,x,p)  provided |p| =< Cs.

As u satisfies (5.4) it follows from the theory in [8] that u is also the unique

viscosity solution of
u, + H(t,x,Du) = 0
xER™MO<tLT)
u(x,0) = g(x).
Hence
5.7 v(t,x) = u(T — t,x)
is the viscosity solution of
{v, + H*(t,x,Dv) = 0

xeER"0<t<T)
v(T,x) = g(x)
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for

H™(t,x,p) = min max {— f(y)-p — h(T — t,x,y,2)}.
ZEZ y€EY
Thus the developments in §2-4 imply

T
v(t,x) = U(t,x) = sup inf {— f KT — 5,x(s),alz](s),2(s))ds + g(x(T))},

a€l'(r) zEN()

where x(-) solves
{x'(S) ==f(yE) = —Csy(s) (@<s<T)
x(t) =x

for y(-) = a[z]; that is
x(s) =x—Cs f a[z](r)dr <s<T).

Recall now (5.7) to complete the proof of
Theorem 5.2. We have for each 0 = t = T and x € R",

T
(5.8) u(x)= sup inf {— f (T — s,x(s),a[z](s),z(s))ds + g(x(T))},

oET(T—1) zEN(T—1) T—t
where for each z € N(T — t) and y = a[z] € M(T — 1), x(*) solves
X(s) = —=Csy(s) T—t<s<T
(5.9) { )
x(T —t) = x.

Remark. A formula analogous to (5.8) obtains for any choices of Y, Z, f and
h for which (5.5) holds (even if f = f(t,x,y,z)). The representation we have taken
has particularly simple dynamics: note that player II can affect only the running
cost h.

An easy application is the following domain-of-dependence assertion.
Corollary 5.3. (cf. [8]). Assume H satisfies (5.3) and that
8 8:R"—>R

satisfy (5.2). Suppose also that u is the viscosity solution of (5.1) and @ is the
viscosity solution of

{ﬁ, + H(t,x,D4) = 0
#(0,x) = g(x).
Fixx ER",0<t=T. Then if

5.1 xER™0<t<T)

g=§  onB(x,1Cs)
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we have
u(x,t) = d(x,t).
Proof. By Theorem 5.2

T
u(t,x) = sup inf {-— f T — 5,x(s),a[z](s),z(s))ds + g‘(x(T))}

oET(T —1) zEN(T~1) T—t

where for I', N, h, etc. as above and for each z € N(T — 1), y = afz] €
M(T — t), x solves (5.9). But then

|x(T) — x| = «Cs
and so
8(x(T)) = gx(T)).
Thus
T
a(t,x) = sup inf {-— j T — s,x(s),0[z](s),z(s))ds + g(x(T))}

aEL(T -1) zENT~1) T—t

= u(t,x), by Theorem 5.2 again. g

For an application in §6, §7 we will require a modification of (5.5), (5.6) in
the case that H(z,x,-) is positively homogeneous of degree one.

Lemma 5.4. Suppose in addition to (5.3) that
H(t,x,\p) = NH(t,x,p) O=t=Tx,pER"A=0).
Then there exist compact sets Y C R*", Z C R™ and
f:[0T] XR"XYXZ—>R"
satisfying (2.1) such that

H(t,x,p) = max min {f(¢,x,y,z) - p}
2€Z y€EY

forall0=t=T,x,p €R".
Proof. If |y| = 1, then according to Lemma 5.1.
H(t,x,m) = max min {f(y;)*m + h(t,x,y1,71)}
1

2€Z N
for

Y,=Z =B0,1)CR"

F(y1) = Csy

h(t,x,y,,21) = H(t,x,z;) — Csy,* 2.
Thus for any p # 0
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H(t,x,p) = |p| H(t,x, |-£|>
p

= max mm {f(y) P + h(t.x,y1,2))|p|}.

1€z NE
Choose C; > 0 such that
e
foral0=t=T,x€R", z; €Z, y, €Y,. Then
H(t,x,p) = max min {f(y:)p + Cylp| + (ht.x,y1,20) = C)lpl}

71€2Z; NE

= max min max min {f(y,)-p + Ciz, - p + (h(t,x,y1,z1) — C7)y,* p}

21€Z) 1€Y1 2€Z; y,EY

= max min {f(¢,x,y,z) - p}
ZEZ y€Y

where
Y =Z = B(0,1) X B(0,1) C R*™"
z2=(21,22), ¥y = (Y1,¥2)
f@x,y,2) = f(y1) + Cizp + (W(t,x,y1,21) — C7)y,
= Csy, + Ciz, + (H(t,x,zy) — Cs5y,-2; — C7)y,.
Note that the interchanging of min and max above is valid. O

»NEYy 2€Z,

6. Propagation of Disturbances and Huygens’ Principle

As an application of the representation formulas developed in §5 we will discuss
in the next section the level sets of solutions of Hamilton-Jacobi equations with
Hamiltonians positively homogeneous of degree one. The following considera-
tions—adapted directly from Gelfand-Fomin [17, pages 208—217] and Arnold [1,
pages 248—258]—provide motivation.

Regard R™ as a heterogeneous, nonisotropic medium, comprised of points at
each moment in either an “excited” or a “rest” state. Once any given point x is
excited by a disturbance propagating in the medium, it thereafter remains excited
and so itself serves as a source for further disturbances emanating from it. We
wish to describe mathematically the evolution of the disturbances from a given
excited set.

For this let L(x,z) denote the reciprocal of the speed of the disturbance leaving
x in the direction z € "', Extend L to be positively homogeneous of degree one
and set

Ix)={zE€R":L(x,z) = 1};

I(x) is the indicatrix of L at x. We will assume this to be the smooth boundary
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of an open, strictly convex set. We consider also the figuratrix
F(x)={p =D,L(x,2):z € I(x)}.
Next define the Hamiltonian H so that
Hx,p) =1 ifp € F(x)
{H(x,~) is positively homogeneous of degree one.

This is the standard Hamiltonian for the parametric Lagrangian L (see Young [30,
pages 50-51]), and the reader should check that

6.1) H(x,p) = sup{z - p:z € I(x)}.

Next suppose I'y denotes the set of points excited initially and I', D T, the set
of points excited at time ¢ > 0. We introduce a function u:R" X R” — R such
that

6.2) T, = {x:u(t,x) > 0}
and
(6.3) 3, = {x:u(tx) = 0} = o,

for each ¢t = 0; here %, is the wave front at time t. We will show heuristically
that u solves a Hamilton-Jacobi equation.

To see this, fix any # > 0, x € 3,, and 0 < At < t. According to Huygens’
principle 2, is the envelope of the wave fronts emanating from points in 3,_,,:
see [1, page 250]. Thus there exists y € 3,_,, such that y + A#d(y) is—up to
error terms of order o(Ar)—tangent to 3, at x. So for some z € I(y),

y + (Ar)z is (approximately) equal to x

and

p = —Du(t,x) is (approximately) normal to y + Atl(y) at x.
Consequently
6.4) Hx,p)=p-z+ o0(1) as At— 0.

On the other hand
o(Ar) = u(t — At,x — (ADz) — u(t,x) = (—AD)(u,(t,x) + Du(t,x) - z) + o(Ar)
and so
u(t,x) =p-z+ o(l) as Ar— 0.
This and (6.4) give
(6.5) u, + Hx,Du) = 0
for

H(x,p) = —H(x,—p).
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Note that the reasoning here works just as well on the sets {u = a} for each real
number a. Thus (6.5) holds in all of R" X (0,T).

In (6.5) we have derived the required Hamilton-Jacobi equation for u; therefore,
in principle, to find the excited sets I', we need only find some function g:R" —
R such that

(6.6) [o = {x:g(x) > 0}
and then solve (6.5) subject to the initial condition
6.7 u(x,0) = g(x) (x € R™).

The sets I, are then given by (6.2).

However, in addition to the obvious objection that (6.5), (6.7) will in general
have no smooth solution for large time, it is not immediately clear that our cal-
culation of T', = {x: u(t,x) > 0} is independent of the choice of g. As we will see
in §7 below, a formal calculation using characteristics indicates that I', does indeed
only depend upon g’s satisfying (6.6) and not on the particular choice of this
function. Nevertheless a rigorous proof cannot use characteristics (which need not
exist in the large) and will instead rely upon our game theoretic representation
formulas for the viscosity solution of (6.5), (6.7).

Remark. For the case at hand H(x,-) is convex and so control theory, rather
than game theory, techniques will work. A point of the next section is therefore
that the homogeneity and not the convexity of H(x,") is the crucial property. The
reader should also note in the above context that Huygens’ principle is a version
of the optimality principle in dynamic programming.

7. Level Sets

Motivated by considerations in §6 we now prove

Theorem 7.1. Let H:R™ X R™ — R be uniformly Lipschitz and positively

homogeneous of degree 1 in its second argument. Assume g, ¢ are bounded,
uniformly Lipschitz and are positive on the same set; that is,

7.1 (xER™:g(x) >0} = {x ER": g(x) > 0}.
Suppose u, 0 are the viscosity solutions of, respectively,

u, + Hx,Du) = 0 t>0,xER"
(71.2) { '

u(0,x) = g(x)
and

7.3) {12, + H(x,Di) =0 t>0x€ER"

4(0,x) = g(x).
Then for each T > 0
(7.4) {xER":u(T,x) >0} ={x €R":4(T,x) > 0}.
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Note that we do not require H to be convex in p, and that “0” in (7.1), (7.4)
can be replaced by any real number.

Formal proof of (7.4). For heuristic purposes we begin with a formal proof
of (7.4) under the additional assumptions
HeC' forp#0,u,i4€C?
(7.5) 3o = d{g > 0} = 9{¢ > 0} is a smooth manifold,
Dg,Dg #0 on 2.

Consider first (7.2), and for each x, € R™ define the characteristics x, p:
[0,0) — R™ as follows:

{X(t) = D,H(x(t),p(t)), x(0) = x,
p® = —DHx(®),p(®),  p(0) = po,
for p, = Dg(x,). Since u is C?, we have

p(t) = Du(t,x(®))  (>0)

(7.6)

and
u(t,x(t)) = gxo) + f H(x(s),p(s)) — p(s) - D,H(x(s),p(s))ds.
0
But
.7 H=p-DH
since H is homogeneous of degree one; consequently
(7.8) u,x(1) =gx)  (=0).
In particular
(7.9) utx@®)) =0 ifxo € 3.

We next claim that

D
(7.10) x(+) depends only on x, and n, = Po _ Dgx) .
lpo|  [Dg(xo)l
To see this set
p()
n=—> (>0
lp@)|

and compute
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G b @D
| IpP
_~D.Hxp) (p-D.Hxp)p
|p| Ipl?

—DxH(x’n) + (T] 'DxH(x»Tl))'fl’ (t > O)

since H and therefore D,H are homogeneous of degree one. On the other hand
D,H is homogeneous of degree zero and so

X = D,H(x,p) = D,H(x,m).
Thus

a1 {x =D,H(x,m), x(0)=x

M = —=D,H(x,m) + (- D,H(x,m))M, n(0) = mp;

this proves (7.10).

Finally let £,p: [0,0] — R™ be the characteristics for #:
% =D H®#Pp), £0) = x
7.12) {; " (.If) 0) = xo

p = _DxH(x’ﬁ)9 ﬁ(O) =p0’

where

Do = Dg(x,).
As above £(-) depends only on

A

_ P _ Dg(x,)
8ol DGO
Hence if xo € 2, o = f)o; and thus
x(t) = (1) t=0).

Since therefore 4(z,x(¢)) = 0 and since both u and @ are constant along charac-
teristics, we have

{x ER™:ut,x) =0} = {x € R™:4(¢,x) = 0} t=0).
This completes the formal proof of (7.4). O

Tio

A rigorous proof along the lines above seems unlikely, as the solutions u, #
are generally not even C', the characteristics may cross, p or p may equal zero,
etc. Instead we use the game theoretic representation of the solution afforded by
Theorem 5.1. Here we regard the (approximate) optimal trajectories as being (ap-
proximate) generalized characteristics.

Proof of Theorem 7.1. According to Lemma 5.4
H(x,p) = max min {f(x,y,2)-p}  (p,x ER")
zEZ y€EY
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for appropriate compact sets Y, Z, and f satisfying (2.1). Thus u is the viscosity
solution of

(7.13) {"‘ + max min {f(x,y,2) Du} = 0
u(x,0) = g(x).
Fix any T > 0 and set
U@tx) = uT — t,x) O=t=Tx€ER™);
then U is the viscosity solution of

{U + min max {—f(x,y,z) DU} =0

2€Z y€EY
U(T,x) = g(x).
Thus, by the uniqueness of viscosity solutions,
U(t,x) = sup inf {g(x(T))},

a€l(t) zEN(r)
where
(7.14) {x(s) = — f(x(s),alz](s),2(s)) (¢ <s<T)
x(t) =x.
Similarly define

U@t,x) = iT — t,x) O0=t=Tx€ER™,

so that
O(t,x) = sup inf {g(x(T))},
a€I'(r) zEN(r)
x(+) solving (7.14).
Next assume
(7.15) u(T,x,) > 0;
then
U@0,xy) = sup inf {g(x(T))}> 0.
a€l'(0) zEN(0)
Fix

0 < 2e < UWO,xp)
and then choose a € TI'(0) such that

(7.16) inf {gx(T))} > e,
ZEN(0)

x(+) solving



796 L. C. EVANS & P. E. SOUGANIDIS

317 {x(s) = f(x(s),a[z](s),z(s)) 0<s<TD
x(0) = x,.

Thus for any z € N(0),

x(T) C{g > o}
for some o = a(e) > 0. Consequently

inf {§(T))} = o,
ZENO)

x(+) solving (7.17). Therefore
AT,xo) = U(0,x,) = sup inf {g(x(T))}> 0.

aE€I'(0) zEN(0)

We have proved u(T,x,) > 0 implies 4(T,x,) > 0, and the opposite implication
follows from interchanging u and # in the argument above. This proves (7.4).

a
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