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Abstract. This paper, having a tutorial character, is intended to provide an in-
troduction to the theory of noncooperative differential games.

Section 2 reviews the theory of static games. Different concepts of solution
are discussed, including Pareto optima, Nash and Stackelberg equilibria, and the
co-co (cooperative-competitive) solutions.

Section 3 introduces the basic framework of differential games for two players.
Open-loop solutions, where the controls implemented by the players depend only
on time, are considered in Section 4. These solutions can be computed by solving
a two-point boundary value problem for a system of ODEs, derived from the
Pontryagin maximum principle. Section 5 deals with solutions in feedback form,
where the controls are allowed to depend on time and also on the current state
of the system. In this case, the search for Nash equilibrium solutions leads to a
highly nonlinear system of Hamilton-Jacobi PDEs. In dimension higher than one,
we show that this system is generically not hyperbolic and the Cauchy problem
is thus ill posed. Due to this instability, feedback solutions are mainly considered
only in the special case with linear dynamics and quadratic costs.

In Section 6, a game in continuous time is approximated by a finite sequence
of static games, by a time discretization. Depending of the type of solution adopted
in each static game, one obtains different concepts of solutions for the original
differential game.

Section 7 deals with differential games in infinite time horizon, with expo-
nentially discounted payoffs. Section 8 contains a simple example of a game with
infinitely many players. This is intended to convey a flavor of the newly emerging
theory of mean field games.

Modeling issues, and directions of current research, are briefly discussed in
Section 9. Finally, the Appendix collects background material on multivalued func-
tions, selections and fixed point theorems, optimal control theory, and hyperbolic
PDEs.
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1. Introduction

A basic problem in optimization theory is to find the maximum value of a function:

max
x∈X

φ(x) . (1.1)

Typically, φ is a continuous function and the maximum is sought over a closed, pos-
sibly unbounded domain X ⊆ IRm. An extensive mathematical theory is currently
available on the existence of the maximum, on necessary and sufficient conditions
for optimality, and on computational methods. Interpreting φ as a payoff function,
one can regard (1.1) as a decision problem. Among all possible choices x ∈ X, we
seek the one that provides the maximum possible payoff.

As in (1.1), optimization theory deals with the case where there is only one
individual, making a decision and achieving a payoff. Game theory, on the other
hand, is concerned with the more complex situation where two or more individuals,
or “players”, are present. Each player can choose among a set of available options.
His payoff, however, depends also on the choices made by all the other players.

For simplicity, consider the case of two players. Player 1 can choose a strategy
x1 ∈ X1, while Player 2 can choose x2 ∈ X2. For i = 1, 2, the goal of Player i is

maximize: φi(x1, x2) . (1.2)

In contrast with (1.1), it is clear that the problem (1.2) does not admit an “optimal”
solution. Indeed, in general it will not be possible to find a couple (x̄1, x̄2) ∈ X1×X2

which at the same time maximizes the payoff of the first player and of the second
player, so that

φ1(x̄1, x̄2) = max
x1,x2

φ1(x1, x2) , φ2(x̄1, x̄2) = max
x1,x2

φ2(x1, x2) .

For this reason, various alternative concepts of solutions have been proposed in the
literature. These can be relevant in different situations, depending on the information
available to the players and their ability to cooperate.

For example, if the players have no means to talk to each other and do not
cooperate, then an appropriate concept of solution is the Nash equilibrium, defined
as a fixed point of the best reply map. In other words, (x∗1, x∗2) is a Nash equilibrium
if

(i) the value x∗1 ∈ X1 is the best choice for the first player, in reply to the
strategy x∗2 adopted by the second player. Namely

φ1(x∗1, x
∗
2) = max

x1∈X1

φ1(x1, x
∗
2),

(ii) the value x∗2 ∈ X2 is the best choice for the second player, in reply to the
strategy x∗1 adopted by the first player. Namely

φ2(x∗1, x
∗
2) = max

x2∈X2

φ2(x∗1, x2).
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On the other hand, if the players can cooperate and agree on a joint course of
action, their best strategy (x∗1, x∗2) ∈ X1 ×X2 will be one which maximizes the sum:

φ1(x∗1, x
∗
2) + φ2(x∗1, x

∗
2) = max

x1,x2

[
φ1(x1, x2) + φ2(x1, x2)

]
.

In general, in order to be acceptable to both players, this strategy will also require
a side payment to compensate the player with the smaller payoff.

The situation modeled by (1.2) represents a static game, sometimes also called
a “one-shot” game. Each player makes one choice xi ∈ Xi, and this completely
determines the payoffs. In other relevant situations, the game takes place not in-
stantaneously but over a whole interval of time. This leads to the study of dynamic
games, also called evolutionary games. In this case, the strategy adopted by each
player is described by a function of time t �→ ui(t). Here the time variable t can take
a discrete set of values, or range over a whole interval [0, T ].

We recall that, in the standard model of control theory, the state of a system
is described by a variable x ∈ IRn. This state evolves in time, according to an ODE

ẋ(t) = f(t, x(t), u(t)) t ∈ [0, T ] . (1.3)

Here t �→ u(t) ∈ U is the control function, ranging within a set U of admissible
control values.

Given an initial condition
x(0) = x0 , (1.4)

a basic problem in optimal control is to find a control function u(·) which maximizes
the payoff

J(u) = ψ(x(T )) −
∫ T

0
L(t, x(t), u(t)) dt . (1.5)

Here ψ is a terminal payoff, while L accounts for a running cost.
Differential games provide a natural extension of this model to the case where

two or more individuals are present, and each one of them seeks to maximize his own
payoff. In the case of two players, one thus considers a system whose state x ∈ IRn

evolves according to the ODE

ẋ(t) = f(t, x(t), u1(t), u2(t)) t ∈ [0, T ] . (1.6)

Here t �→ ui(t) ∈ Ui, i = 1, 2, are the control functions implemented by the two
players.

Given the initial condition (1.4), the goal of the i-th player is

maximize: Ji = ψi(x(T )) −
∫ T

0
Li(t, x(t), u1(t), u2(t)) dt . (1.7)

As in the case of one-shot games, various concepts of solution can be considered.
In addition, one can further distinguish between open-loop strategies ui = ui(t),
depending only on the time variable, and feedback strategies ui = ui(t, x), depend-
ing also on the current state of the system. In a situation where each player has
knowledge only of the initial state of the system, it is natural to consider open-loop
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strategies. On the other hand, if the players can observe the current state of the
system, it is more appropriate to consider feedback strategies.

In the literature, a first, well known example of a non-cooperative game in
economics appeared in [19]. Within this monograph, Cournot studied a duopoly,
where two firms selling the same product seek to adjust their production levels in
order to maximize profits. His solution can be interpreted as the fixed point of a
best reply map.

The classic book [38] by von Neumann and Morgenstern is widely regarded as
the starting point of the mathematical theory of games. While this book focuses
on two-players, zero-sum games, the later paper of Nash [31] provided a concept of
solution for general non-cooperative games for N players.

The theory of differential games was first developed by Isaacs [26], followed by
other authors; see [23, 28]. A comprehensive presentation of dynamic games, with
applications to economic models, can be found in [9, 20].

Aim of the present notes is to provide a concise introduction to the mathemat-
ical theory of games for two players. The first chapter deals with static games, while
the remaining chapters deal with dynamic games.

For static games, the existence of Nash equilibrium solutions is proved by an
application of the Kakutani fixed point theorem for multivalued maps. Using the
approximate selection theorem of Cellina [16], this can be derived as an easy conse-
quence of the classical Brouwer fixed point theorem. Specializing to zero-sum games,
some basic results by von Neumann can then be deduced as corollaries.

The analysis of differential games relies heavily on concepts and techniques of
optimal control theory. Equilibrium strategies in open-loop form can be found by
solving a two-point boundary value problem for an ODE derived from the Pontryagin
maximum principle. On the other hand, equilibrium strategies in feedback form are
best studied by looking at a system of Hamilton-Jacobi-Bellman PDEs for the value
functions of the various players, derived from the principle of dynamic programming.

A review of background material on multifunctions, fixed point theorems, and
control theory, is provided in the Appendix to these lecture notes.

2. Static Games

In its basic form, a game for two players, say ‘Player A” and “Player B”, is given
by:

• The two sets of strategies: A and B, available to the players.
• The two payoff functions: ΦA : A×B �→ IR and ΦB : A×B �→ IR.

If the first player chooses a strategy a ∈ A and the second player chooses b ∈ B, then
the payoffs achieved by the two players are ΦA(a, b) and ΦB(a, b), respectively. The
goal of each player is to maximize his own payoff. We shall always assume that each
player has full knowledge of both payoff functions ΦA,ΦB , but he may not know in
advance the strategy adopted by the other player.
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If ΦA(a, b)+ ΦB(a, b) = 0 for every pair of strategies (a, b), the game is called a
zero sum game. Clearly, a zero-sum game is determined by one single payoff function
Φ = ΦA = −ΦB.

Throughout the following, our basic assumption will be
(A1) The sets A and B are compact metric spaces. The payoff functions ΦA,ΦB are

continuous functions from A×B into IR.
The simplest class of games consists of bi-matrix games, where each player has

a finite set of strategies to choose from. Say,

A
.= {a1, a2 , . . . , am} , B

.= {b1, b2 , . . . , bn} . (2.1)

In this case, each payoff function is determined by its m× n values

ΦA
ij

.= ΦA(ai, bj) , ΦB
ij

.= ΦB(ai, bj) . (2.2)

Clearly, these numbers can be written as the entries of two m × n matrices. The
game can also be conveniently represented by an m × n “bi-matrix”, where each
entry consists of the two numbers: ΦA

ij , ΦB
ij, as shown in figures 3, 4, and 5.

2.1. Solution concepts

In general, one cannot speak of an “optimal solution” of the game. Indeed, an out-
come that is optimal for one player can be very bad for the other one. We review
here various concepts of solutions. These can provide appropriate models in spe-
cific situations, depending on the information available to the players and on their
willingness to cooperate.

I - Pareto optimality. A pair of strategies (a∗, b∗) is said to be Pareto optimal
if there exists no other pair (a, b) ∈ A×B such that

ΦA(a, b) > ΦA(a∗, b∗) and ΦB(a, b) ≥ ΦB(a∗, b∗)

or
ΦB(a, b) > ΦB(a∗, b∗) and ΦA(a, b) ≥ ΦA(a∗, b∗) .

In other words, it is not possible to strictly increase the payoff of one player
without strictly decreasing the payoff of the other.

In general, a game can admit several Pareto optima (see Fig. 6). In order to
construct a pair of strategies which is Pareto optimal, one can proceed as follows.
Choose any number λ ∈ [0, 1] and consider the optimization problem

max
(a,b)∈A×B

λΦA(a, b) + (1 − λ)ΦB(a, b) . (2.3)

By the compactness and continuity assumptions (A1), an optimal solution does exist.
Any pair (a∗, b∗) where the maximum is attained yields a Pareto optimum.

Further concepts of solution can be formulated in terms of the best reply maps.
For a given choice b ∈ B of player B, consider the set of best possible replies of
player A:

RA(b) .=
{
a ∈ A ; ΦA(a, b) = max

ω∈A
ΦA(ω, b)

}
. (2.4)



6 A. Bressan

Similarly, for a given choice a ∈ A of player A, consider the set of best possible
replies of player B:

RB(a) .=
{
b ∈ B ; ΦB(a, b) = max

ω∈B
ΦB(a, ω)

}
. (2.5)

By the assumption (A1), the above sets are non-empty. However, in general they
need not be single-valued. Indeed, our assumptions imply that the maps a �→ RB(a)
and b �→ RA(b) are upper semicontinuous, with compact values.

II - Stackelberg equilibrium. This models a situation with asymmetry of infor-
mation. We assume that player A (the leader) announces his strategy in advance,
and then player B (the follower) makes his choice accordingly.

In this case, the game can be reduced to a pair of optimization problems, solved
one after the other. In connection with the strategy a adopted by the first player,
the second player needs to maximize his payoff function b �→ ΦB(a, b). He will thus
choose a best reply b∗ ∈ RB(a). Assuming that this reply is unique, say b∗ = β(a),
the goal of Player A is now to maximize the composite function a �→ ΦA(a, β(a)).

More generally, we shall adopt the following definition, which does not require
uniqueness of the best reply map. In case where player B has several best replies to
a value a ∈ A, we take here the optimistic view that he will choose the one which is
most favorable to Player A.

A pair of strategies (aS , bS) ∈ A × B is called a Stackelberg equilibrium if
bS ∈ RB(aS) and moreover

ΦA(a, b) ≤ ΦA(aS , bS) for every pair (a, b) with b ∈ RB(a).

Under the assumption (A1), it is easy to check that a Stackelberg equilibrium
always exists. Indeed, consider the domain

R
.= {(a, b) ; b ∈ RB(a)} ⊆ A×B .

By the compactness of A,B and the continuity of ΦB , the set R is closed, hence
compact. Therefore, the continuous function ΦA attains its global maximum at some
point (aS , bS) ∈ R. This yields a Stackelberg equilibrium.

III - Nash equilibrium. This models a symmetric situation where the players
have no means to cooperate and do not share any information about their strategies.

The pair of strategies (a∗, b∗) is a Nash equilibrium of the game if, for every
a ∈ A and b ∈ B, one has

ΦA(a, b∗) ≤ ΦA(a∗, b∗) , ΦB(a∗, b) ≤ ΦB(a∗, b∗) . (2.6)

In other words, no player can increase his payoff by single-mindedly changing
his strategy, as long as the other player sticks to the equilibrium strategy. Observe
that a pair of strategies (a∗, b∗) is a Nash equilibrium if and only if it is a fixed point
of the best reply map:

a∗ ∈ RA(b∗) , b∗ ∈ RB(a∗) .
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P

Figure 1. The figure shows the level curves of the two payoff functions.
Here player A chooses the horizontal coordinate, player B the vertical co-
ordinate. The payoff function ΦA attains its global maximum at P , while
ΦB attains its maximum at Q. If the first player chooses a strategy a ∈ A,
then β(a) ∈ B is the best reply for the second player. The pair of strategies
(aS , bS) is a Stackelberg equilibrium. Notice that at this point the curve
b = β(a) is tangent to a level curve of ΦA.

b

A

= constantΦ
A

ΦB
= constant

Q

P

B

a
Nash

Nash

Figure 2. Here player A chooses the horizontal coordinate, player B the
vertical cooordinate. The payoff function ΦA attains its global maximum
at P , while ΦB attains its global maximum at Q. The pair of strategies
(aNash , bNash) is a Nash equilibrium. Notice that at this point the level
curve of ΦA has horizontal tangent while the level curve of ΦB has vertical
tangent.

The following examples show that:

(i) in general, a Nash equilibrium may not exist,
(ii) the Nash equilibrium need not be unique,
(iii) different Nash equilibria can yield different payoffs to each player,
(iv) a Nash equilibrium may not be a Pareto optimum.
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Example 1. Assume that each player draws a coin, choosing to show either head or
tail. If the two coins match, player A earns $1 and player B loses $1. If the two coins
do not match, player B earns $1 and player A loses $1.

This is a zero-sum game, described by the bi-matrix in Figure 3. By direct
inspection, one checks that it does not admit any Nash equilibrium solution.

T

T

1
−1 1

1
1

−1

−1
−1

1

1

−1

−1

H

H

T

T

Player B

 APlayer 

H

H

Figure 3. The bi-matrix of the payoffs for the “head and tail” game.
Since this is a zero-sum game, it can be represented by a single matrix
(right), containing the payoffs for the first player.

Example 2. Consider the game whose bi-matrix of payoffs is given in Figure 4. The
pair of strategies (a1, b3) is a Nash equilibrium, as well as a Pareto optimum. On
the other hand, the pair of strategies (a2, b1) is a Nash equilibrium but not a Pareto
optimum. Indeed, (a1, b3) is the unique Pareto optimum.

1

3

5

3

0
0

0
0

0
0

4

0
0

a

a

1

2

b
2

b
3

b

Figure 4. A bi-matrix of payoffs, with two Nash equlibrium points but
only one Pareto optimum.

Example 3 (prisoners’ dilemma). Consider the game with payoffs described by the
bi-matrix in Figure 5. This models a situation where two prisoners are separately
interrogated. Each one has two options: either (C) confess and accuse the other
prisoner, or (N) not confess. If he confesses, the police rewards him by reducing his
sentence. None of the prisoners, while interrogated, knows about the behavior of the
other.

The negative payoffs account for the number of years in jail faced by the two
prisoners, depending on their actions. Taking the side of player A, one could argue
as follows. If player B confesses, my two options result in either 6 or 8 years in jail,
hence confessing is the best choice. On the other hand, if player B does not confess,
then my two options result in either zero or one year in jail. Again, confessing is the
best choice. Since the player B can argue exactly in the same way, the outcome of
the game is that both players confess, and get a 6 years sentence. In a sense, this
is paradoxical because an entirely rational argument results in the worst possible
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Player  A
C

N

C N

−6
−6

−1
−1

−8
0

0
−8

Player 

Figure 5. The bi-matrix of payoffs for the “prisoners’ dilemma”.

outcome: the total number of years in jail for the two prisoners is maximal. If they
cooperated, they could both have achieved a better outcome, totaling only 2 years
in jail.

Observe that the pair of strategies (C,C) is the unique Nash equilibrium, but it
is not Pareto optimal. On the other hand, all three other pairs (C,N), (N,C), (N,N)
are Pareto optimal.

a

b

Φ
A

B
Φ

0

Pareto optima
Nash equilibrium

4

4

1

20

Figure 6. The payoff map (a, b) �→ (ΦA,ΦB) for the game (2.7). The
Nash equilibrium is (2, 1), which does not yield a Pareto optimum.

Example 4. Let A = B = [0, 4] and consider the payoff functions (see figure 6)

ΦA(a, b) = 2a+ 2b− a2

2
, ΦB(a, b) = a+ b− b2

2
. (2.7)

If (a∗, b∗) is a Nash equilibrium, then

a∗ = argmax
a∈A

{
2a+ 2b∗ − a2

2

}
= 2 ,

b∗ = argmax
b∈B

{
a∗ + b− b2

2

}
= 1 .

Hence (2, 1) is the unique Nash equilibrium solution. This is not a Pareto optimum.
Indeed,

ΦA(2, 1) = 4 , ΦB(2, 1) =
5
2
,
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while the pair of strategies (3, 2) yields a strictly better payoff to both players:

ΦA(3, 2) =
11
2
, ΦB(3, 2) = 3 .

To find Pareto optimal points, for any 0 < λ < 1 we consider the optimization
problem

max
(a,b)∈A×B

{
λΦA(a, b) + (1 − λ)ΦB(a, b)

}

= max
a,b∈[0,4]

{
(λ+ 1)a+ (λ+ 1)b− λa2 + (1 − λ)b2

2

}
.

This yields the Pareto optimal point (aλ, bλ), with

aλ = arg max
a∈[0,4]

{
(λ+ 1)a− λa2

2

}
= min

{
1 +

1
λ
, 4
}
,

bλ = arg max
b∈[0,4]

{
(λ+ 1)b− (1 − λ)b2

2

}
= min

{1 + λ

1 − λ
, 4
}
.

2.2. Existence of Nash equilibria

We now state a basic existence theorem for a Nash equilibrium, valid under suitable
continuity and convexity assumptions. The proof is a straightforward application of
Kakutani’s fixed point theorem.

Theorem 2.1 (Existence of Nash equilibria). Assume that the sets of strategies A,B
are compact, convex subsets of IRn. Let the payoff functions ΦA,ΦB be continuous
and assume that

a �→ ΦA(a, b) is a concave function of a, for each fixed b ∈ B,
b �→ ΦB(a, b) is a concave function of b, for each fixed a ∈ A.

Then the non-cooperative game admits a Nash equilibrium.

Proof. Consider the best reply maps RA, RB , defined at (2.4)-(2.5).

1. The compactness of B and the continuity of ΦB imply that the function

a �→ m(a) .= max
b∈B

ΦB(a, b)

is continuous. Therefore, the set

graph(RB) =
{
(a, b) ; b ∈ RB(a)

}
=
{
(a, b) ; ΦB(a, b) = m(b)

}
is closed. Having closed graph, the multifunction a �→ RB(a) ⊆ B is upper semicon-
tinuous.

2. We claim that each set RB(a) ⊆ B is convex. Indeed, let b1, b2 ∈ RB(a), so that

ΦB(a, b1) = ΦB(a, b2) = m(a)

and let θ ∈ [0, 1]. Using the concavity of the function b �→ ΦB(a, b) we obtain

m(a) ≥ ΦB(a , θb1 + (1 − θ)b2) ≥ θΦB(a, b1) + (1 − θ)ΦB(a, b2) = m(a).
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Since B is convex, one has θb1 + (1 − θ)b2 ∈ B. Hence θb1 + (1 − θ)b2 ∈ RB(a),
proving our claim.

3. By the previous steps, the multifunction a �→ RB(a) ⊆ B is upper semicontinuous,
with compact, convex values. Of course, the same holds for the multifunction b �→
RA(b) ⊆ A.

We now consider the multifunction on the product space A×B, defined as

(a, b) �→ RA(b) ×RB(a) ⊆ A×B.

By the previous arguments, this multifunction is upper semicontinuous, with com-
pact convex values. Applying Kakutani’s fixed point theorem, we obtain a pair of
strategies (a∗, b∗) ∈ (RA(b∗), RB(a∗)

)
, i.e. a Nash equilibrium solution.

2.3. Randomized strategies

If the convexity assumptions fail, the previous theorem does not apply. Clearly, the
above result cannot be used if one of the players can choose among a finite number
of strategies.

As shown by Example 1, there are games which do not admit any Nash equilib-
rium solution. To achieve a general existence result, one needs to relax the definition
of solution, allowing the players to choose randomly among their sets of strategies.

Definition 2.2. A randomized strategy for player A is a probability distribution μ on
the set of strategies A. Similarly, a randomized strategy for player B is a probability
distribution ν on the set B.

Given two randomized strategies μ, ν for players A and B respectively, the
corresponding payoff functions are defined as

Φ̃A(μ, ν) .=
∫

A×B
ΦA(a, b) dμ⊗ dν ,

Φ̃B(μ, ν) .=
∫

A×B
ΦB(a, b) dμ⊗ dν .

(2.8)

Remark 2.3. The above quantities Φ̃A(μ, ν) and Φ̃B(μ, ν) are the expected values of
the payoffs, if the two players choose random strategies, independent of each other,
according to the probability distributions μ, ν, respectively.

In the following, by P(A),P(B) we denote the family of all probability measures
on the sets A, B, respectively. Notice that to each a ∈ A there corresponds a unique
probability distribution concentrating all the mass at the single point a. This will
be called a pure strategy. Pure strategies are a subset of all randomized strategies.

Remark 2.4. If A = {a1, a2, . . . , am} is a finite set, a probability distribution on A
is uniquely determined by a vector x = (x1, . . . , xm) ∈ Δm, where

Δm
.=

{
x = (x1, . . . , xm) ; xi ∈ [0, 1] ,

m∑
i=1

xi = 1

}
(2.9)
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is the unit simplex in IRm. Here xi is the probability that player A chooses the
strategy ai.

Given the bi-matrix game described at (2.1)-(2.2), the corresponding random-
ized game can be represented as follows. The two players choose from the sets of
strategies

Ã
.= Δm , B̃

.= Δn . (2.10)
Given probability vectors x = (x1, . . . , xm) ∈ Δm and y = (y1, . . . , yn) ∈ Δn , the
payoff functions are

Φ̃A(x, y) .=
∑
ij

ΦA
ij xiyj , Φ̃B(x, y) .=

∑
ij

ΦB
ij xiyj . (2.11)

The concept of Nash equilibrium admits a natural extension to the class of
randomized strategies. A fundamental result proved by J. Nash is that every game
has an equilibrium solution, within the family of randomized strategies.

Theorem 2.5 (Existence of Nash equilibria for randomized strategies). Let the
assumptions (A1) hold. Then there exist probability measures μ∗ ∈ P(A) and
ν∗ ∈ P(B) such that

Φ̃A(μ, ν∗) ≤ Φ̃A(μ∗, ν∗) for all μ ∈ P(A) , (2.12)

Φ̃B(μ∗, ν) ≤ Φ̃B(μ∗, ν∗) for all ν ∈ P(B) . (2.13)

Proof. The theorem will first be proved for a bi-matrix game, then in the general
case.
1. Consider the bi-matrix game described at (2.1)-(2.2). We check that all assump-
tions of Theorem 2.1 are satisfied.

The sets of randomized strategies, defined at (2.9)-(2.10), are compact convex
simplexes. The payoff functions ΦA,ΦB : Δm × Δn �→ IR, defined at (2.11), are
bilinear, hence continuous.

For each given strategy y ∈ Δn chosen by the second player, the payoff function
for the first player

x �→ ΦA(x, y) =
∑
i,j

ΦA
ij xiyj

is linear, hence concave. Similarly, for each x ∈ Δm, the payoff function for the
second player

y �→ ΦB(x, y) =
∑
i,j

ΦB
ij xiyj

is linear, hence concave.
We can thus apply Theorem 2.1 and obtain the existence of a Nash equilibrium

solution (x∗, y∗) ∈ Δm × Δn .
2. In the remainder of the proof, using an approximation argument we extend the
result to the general case where A,B are compact metric spaces. Let {a1, a2, . . .}
be a sequence of points dense in A, and let {b1, b2, . . .} be a sequence of points
dense in B. For each n ≥ 1, consider the game with payoffs ΦA,ΦB but where the
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players can choose only among the finite sets of strategies An
.= {a1, . . . , an} and

Bn
.= {b1, . . . , bn}. By the previous step, this game has a Nash equilibrium solution,

given by a pair of randomized strategies (μn, νn). Here μn and νn are probability
distributions supported on the finite sets An and Bn, respectively. Since both A
and B are compact, by possibly extracting a subsequence we can achieve the weak
convergence

μn ⇀ μ∗, νn ⇀ ν∗ as n→ ∞, (2.14)

for some probability measures μ∗ ∈ P(A) and ν∗ ∈ P(B).

3. We claim that the pair (μ∗, ν∗) in (2.14) provides a Nash equilibrium solution,
i.e. (2.12)-(2.13) hold. This will be proved by showing that∫

A×B
ΦA(a, b) dμ∗ ⊗ dν∗ = max

μ∈P(A)

∫
A×B

ΦA(a, b) dμ⊗ dν∗, (2.15)

together with the analogous property for ΦB.
Let ε > 0 be given. By the assumption (A1), there exists δ > 0 such that

d(a, a′) ≤ δ and d(b, b′) ≤ δ imply
∣∣∣ΦA(a, b) − ΦA(a′, b′)

∣∣∣ < ε. (2.16)

Since the sequences {ak ; k ≥ 1} and {bk ; k ≥ 1} are dense in A and B respectively,
we can find an integer N = N(δ) such that the following holds. The set A is covered
by the union of the open balls B(ai, δ), i = 1, . . . , N , centered at the points ai with
radius δ > 0. Similarly, the set B is covered by the union of the open balls B(bj , δ),
j = 1, . . . , N , centered at the points bj with radius δ > 0.

Let {ϕ1, . . . , ϕN} be a continuous partition of unity on A, subordinated to the
covering {B(ai, δ) ; i = 1, . . . , N}, and let {ψ1, . . . , ψN} be a continuous partition of
unity on B, subordinated to the covering {B(bj , δ) ; j = 1, . . . , N}.

Any probability measure μ ∈ P(A) can now be approximated by a probability
measure μ̂ supported on the discrete set AN = {a1, . . . , aN}. This approximation is
uniquely defined by setting

μ̂({ai}) .=
∫
ϕi dμ i = 1, . . . , N .

Similarly, any probability measure ν ∈ P(B) can now be approximated by a proba-
bility measure ν̂ supported on the discrete set BN = {b1, . . . , bN}. This approxima-
tion is uniquely defined by setting

ν̂({bj}) .=
∫
ψj dν j = 1, . . . , N .
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For every pair of probability measures (μ, ν), by (2.16) the above construction
yields ∣∣∣∣∫

A×B
ΦA(a, b) dμ⊗ dν −

∫
A×B

ΦA(a, b) dμ̂⊗ dν̂

∣∣∣∣
≤
∫

A×B

∑
i,j

ϕi(ai)ψj(bj)
∣∣ΦA(a, b) − ΦA(ai, bj)

∣∣ dμ⊗ dν

≤
∫

A×B
ε dμ ⊗ dν = ε .

(2.17)

4. For all i, j = 1, . . . , N , as n→ ∞ the weak convergence (2.14) yields

μ̂n({ai}) =
∫
ϕi dμn →

∫
ϕi dμ

∗ = μ̂∗({ai}) . (2.18)

Similarly, ν̂n({bj}) → ν̂∗({bj}).
Observe that, for every μ ∈ P(A) and n ≥ N , one has

Φ̃A(μ̂, νn) ≤ Φ̃A(μn, νn). (2.19)

Indeed, μ̂ is a probability measure supported on the finite set AN = {a1, . . . , aN} ⊆
An, and the pair of randomized strategies (μn, νn) provides a Nash equilibrium to
the game restricted to An ×Bn. Using (2.17), (2.18), and (2.19), for every μ ∈ P(A)
we obtain

Φ̃A(μ, ν∗) − ε ≤ Φ̃A(μ̂, ν̂∗) = lim
n→∞ Φ̃A(μ̂, ν̂n)

≤ lim sup
n→∞

Φ̃A(μ̂, νn) + ε ≤ lim
n→∞ Φ̃A(μn, νn) + ε = Φ̃A(μ∗, ν∗) + ε .

Since μ ∈ P(A) and ε > 0 were arbitrary, this proves (2.12). The proof of (2.13) is
entirely similar.

2.4. Zero-sum games

Consider again a game for two players, with payoff functions ΦA,ΦB : A×B �→ IR.
In the special case where ΦB = −ΦA, we have a zero-sum game, described by a
single function

Φ : A×B �→ IR . (2.20)
Given any couple (a, b) with a ∈ A and b ∈ B, we think of Φ(a, b) as the amount of
money that B pays to A, if these strategies are chosen. The goal of player A is to
maximize this payoff, while player B wishes to minimize it. As before, we assume

(A1′) The domains A,B are compact metric spaces and the function Φ : A×B �→ IR
is continuous.
In particular, this implies that the maps

b �→ max
a∈A

Φ(a, b), a �→ min
b∈B

Φ(a, b) (2.21)

are both continuous.
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In a symmetric situation, each of the two players will have to make his choice
without a priori knowledge of the action taken by his opponent. However, one may
also consider cases where one player has this advantage of information.

CASE 1: The second player chooses a strategy b ∈ B, then the first player makes
his choice, depending on b.

This is clearly a situation where player A has the advantage of knowing his
opponent’s strategy. The best reply of player A will be some α(b) ∈ A such that

Φ(α(b), b) = max
a∈A

Φ(a, b) .

As a consequence, the minimum payment that the second player can achieve is

V + .= min
b∈B

Φ(α(b), b) = min
b∈B

max
a∈A

Φ(a, b) . (2.22)

CASE 2: The first player chooses a strategy a ∈ A, then the second player makes
his choice, depending on a.

In this case, it is player B who has the advantage of knowing his opponent’s
strategy. The best reply of player B will be some β(a) ∈ B such that

Φ(a, β(a)) = min
b∈B

Φ(a, b) .

As a consequence, the maximum payment that the first player can secure is

V − .= max
a∈A

Φ(a, β(a)) = max
a∈A

min
b∈B

Φ(a, b) . (2.23)

Lemma 2.6. In the above setting, one has

V − .= max
a∈A

min
b∈B

Φ(a, b) ≤ min
b∈B

max
a∈A

Φ(a, b) .= V + . (2.24)

Proof. Consider the (possibly discontinuous) map a �→ β(a), i.e. the best reply map
for player B. Since

V − = sup
a∈A

Φ(a, β(a)),

given any ε > 0 there exists aε ∈ A such that

Φ(aε, β(aε)) > V − − ε . (2.25)

In turn, this implies

V + = min
b∈B

max
a∈A

Φ(a, b) ≥ min
b∈B

Φ(aε, b) = Φ(aε, β(aε)) > V − − ε .

Since ε > 0 was arbitrary, this proves the lemma.
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In general, one may have the strict inequality V − < V +. In the case where
equality holds, we say that this common value V .= V − = V + is the value of the
game.

Moreover, if there exist strategies a∗ ∈ A and b∗ ∈ B such that

min
b∈B

Φ(a∗, b) = Φ(a∗, b∗) = max
a∈A

Φ(a, b∗) , (2.26)

then we say that the pair (a∗, b∗) is a saddle point of the game. Calling V the
common value of the two quantities in (2.26), the following holds:

• If A adopts the strategy a∗, he is guaranteed to receive no less than V .
• If B adopts the strategy b∗, he is guaranteed to pay no more than V .

For a zero-sum game, the concept of saddle point is thus the same as a Nash equi-
librium.

Theorem 2.7 (Value and saddle point). Under the assumptions (A′), the zero-sum
game (2.20) has a value V if and only if a saddle point (a∗, b∗) exists. In the positive
case, one has

V = V − = V + = Φ(a∗, b∗) . (2.27)

Proof. 1. Assume that a saddle point (a∗, b∗) exists. Then

V − .= max
a∈A

min
b∈B

Φ(a, b) ≥ min
b∈B

Φ(a∗, b)

= max
a∈A

Φ(a, b∗) ≥ min
b∈B

max
a∈A

Φ(a, b) .= V +.

By (2.24) this implies V .= V − = V +, showing that the game has a value.

2. Next, assume V .= V − = V +. Let a �→ β(a) be the best reply map for player B.
For each ε > 0 choose aε ∈ A such that (2.25) holds. Since the sets A and B are
compact, we can choose a subsequence εn → 0 such that the corresponding strategies
converge, say

aεn → a∗ , β(aεn) → b∗.

We claim that (a∗, b∗) is a saddle point. Indeed, the continuity of the payoff function
Φ yields

Φ(a∗, b∗) = lim
n→∞Φ(aεn , β(aεn)).

From

V − − εn < Φ(aεn , β(aεn)) ≤ sup
a∈A

Φ(a, β(a)) = V +,

letting ε→ 0 we conclude

V − ≤ lim
n→∞Φ(aεn , β(aεn)) = Φ(a∗, b∗) ≤ V +.

Since we are assuming V − = V +, this shows that (a∗, b∗) is a saddle point, concluding
the proof.
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Remark 2.8. As noted in Example 2, a non-zero-sum game may admit several Nash
equilibrium solutions, providing different payoffs to each players. However, for a
zero-sum game, if a Nash equilibrium exists, then all Nash equilibria yield the same
payoff. Indeed, this payoff (i.e., the value of the game) is characterized as

V = min
b∈B

max
a∈A

Φ(a, b) = max
a∈A

min
b∈B

Φ(a, b) .

By applying Theorem 2.1 to the particular case of a zero-sum game we obtain

Corollary 2.9 (Existence of a saddle point). Consider a zero-sum game, satisfying
the conditions (A1′). Assume that the sets A,B are convex, and moreover

a �→ Φ(a, b) is a concave function of a, for each fixed b ∈ B,
b �→ Φ(a, b) is a convex function of b, for each fixed a ∈ A.

Then the game admits a Nash equilibrium, i.e. a saddle point.

More generally, as stated in Theorem 2.5, a game always admits a Nash equi-
librium in the class of randomized strategies. Specializing this result to the case of
zero-sum games one obtains

Corollary 2.10 (Existence of a saddle point in the class of randomized strategies).

Under the assumptions (A1′), a zero-sum game always has a value and a saddle
point, within the class of randomized strategies.

Otherwise stated, there exists a pair (μ∗, ν∗) of probability measures on A and
B respectively, such that∫

A×B
Φ(a, b) dμ ⊗ dν∗ ≤

∫
A×B

Φ(a, b) dμ∗ ⊗ dν∗ ≤
∫

A×B
Φ(a, b) dμ∗ ⊗ dν ,

for every other probability measures μ ∈ P(A) and ν ∈ P(B).
If the game already has a value with in the class of pure strategies, the two

values of course coincide.

We now specialize this result to the case of a matrix game, where A =
{a1, . . . , am} and B = {b1, . . . , bn}. The sets of randomized strategies can now be
identified with the simplexes Δm, Δn defined at (2.9). Let Φij

.= Φ(ai, bj). According
to Corollary 2.10, there exist x∗ ∈ Δm and y∗ ∈ Δn such that

max
x∈Δm

⎛⎝∑
i,j

Φijxiy
∗
j

⎞⎠ ≤
∑
i,j

Φij x
∗
i y

∗
j ≤ min

y∈Δn

⎛⎝∑
i,j

Φij x
∗
i yj

⎞⎠ .

To compute the optimal randomized strategies x∗, y∗ we observe that any linear
function on a compact domain attains its global maximum or minimum at an extreme
point of the domain. Therefore

max
x∈Δm

⎛⎝∑
i,j

Φij xiyj

⎞⎠ = max
i∈{1,...,m}

⎛⎝∑
j

Φij yj

⎞⎠ ,
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min
y∈Δn

⎛⎝∑
i,j

Φij xiyj

⎞⎠ = min
j∈{1,...,n}

(∑
i

Φij xi

)
.

The value x∗ = (x∗1, . . . , x∗m) ∈ Δm is thus the point where the function

x �→ Φmin(x) .= min
j

(∑
i

Φij xi

)
(2.28)

attains its global maximum. Similarly, the value y∗ = (y∗1 , . . . , y
∗
n) ∈ Δn is the point

where the function

y �→ Φmax(y) .= max
i

⎛⎝∑
j

Φij yj

⎞⎠ (2.29)

attains its global minimum.

A P

R

R P S

Player   B

Player   −1

−1

1

S 1 0

0

−10 1

Figure 7. The matrix describing the “rock-paper-scissors” game. Its en-
tries represent the payments from player B to player A.

Example 5 (Rock-paper-scissors game). This is a zero-sum matrix game. Each player
has a set of three choices, which we denote as {R,P, S}. The corresponding matrix of
payoffs for player A is given in Figure 7. The upper and lower values of the game are
V + = 1, V − = −1. No saddle point exists within the class of pure strategies. How-
ever, the game has a saddle point within the class of randomized strategies, where
each player chooses among his three options with equal probabilities

(
1
3 ,

1
3 ,

1
3

)
. In

this case, the value of the game is V = 0.

Example 6. Player B (the defender) has two military installations. He can defend
one, but not both. Player A (the attacker) can attack one of the two. An installation
which is attacked but not defended gets destroyed. The first installation is worth
three times more than the second one. Each player must decide which installation
to attack (or defend), without knowledge of the other player’s strategy.

This situation can be modeled as a zero-sum game, where the payoff matrix is
given in Figure 8, left. Still in Fig. 8, center and right, are the graphs of the functions
in (2.28)-(2.29), namely

Φmin(x) = min
j=1,2

(
Φ1j x1 + Φ2j x2

)
= min

{
3x1 , x2

}
(x1 = 1 − x2),
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(y)
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1
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0

Player  A

a
1

a
2

Player  B

0 1

3

1
3/4

1

3

0 1
2

y
2

x
Φmin

(x)

Φ
max

Figure 8. Left: the payoff matrix for the zero-sum game described in
Example 6. Center and right: the thick lines represent the graphs of the
functions Φmin and Φmax.

Φmax(y) = max
i=1,2

(
Φi1 y1 + Φi2 y2

)
= max

{
y1 , 3y2

}
(y1 = 1 − y2).

A saddle point, in randomized strategies, is provided by the pair (x∗, y∗), where

x∗ =
(

1
4
,

3
4

)
, y∗ =

(
3
4
,

1
4

)
.

In other words, Player B should favor defending his first (and more valuable) instal-
lation with odds 3 : 1. Player A should favor attacking the second (less valuable)
installation with odds 3 : 1. The more valuable installation is destroyed with prob-
ability 1/16, while the less valuable one gets destroyed with probability 9/16. The
value of the game is 3/4.

2.5. The co-co solution

Consider again a general non-zero sum game, described by the payoff functions

ΦA : A×B �→ IR , ΦB : A×B �→ IR , (2.30)

under the assumptions (A1). If the two players can talk to each other and cooperate,
they can adopt a pair of strategies (a�, b�) which maximizes their combined payoffs:

ΦA(a�, b�) + ΦB(a�, b�) = max
(a,b)∈A×B

{
ΦA(a, b) + ΦB(a, b)

}
. (2.31)

This choice, however, may favor one player much more that the other. For example,
one may have ΦB(a�, b�) << ΦA(a�, b�), an outcome which may not be agreeable
to Player B. In this case Player A needs to provide some incentive, in the form of a
side payment, inducing Player B to adopt the strategy b�.

In general, splitting the total payoff in two equal parts will not be acceptable,
because it does not reflect the relative strength of the players and their personal
contributions to the common achievement. A more realistic procedure to split the
total payoff among the two players, recently proposed in [27], goes as follows.

Given the two payoff functions ΦA,ΦB , define

Φ�(a, b) .=
ΦA(a, b) + ΦB(a, b)

2
, Φ�(a, b) .=

ΦA(a, b) − ΦB(a, b)
2

. (2.32)
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Observing that

ΦA = Φ� + Φ� , ΦB = Φ� − Φ�,

one can split the original game as the sum of a purely cooperative game, where both
players have exactly the same payoff Φ�, and a purely competitive (i.e., zero-sum)
game, where the players have opposite payoffs: Φ� and −Φ�.

Define

V � .=
ΦA(a�, b�) + ΦB(a�, b�)

2
=

1
2

max
(a,b)∈A×B

{
ΦA(a, b) + ΦB(a, b)

}
. (2.33)

Moreover, let V � be the value of the zero-sum game with payoff Φ�. Notice that
this value is always well defined, possibly in terms of randomized strategies. The
cooperative-competitive value (or co-co value, in short) of the original game (2.30)
is then defined as the pair of payoffs(

V � + V � , V � − V �
)
. (2.34)

A cooperative-competitive solution (or co-co solution, in short) of the game
described at (2.30) is defined as a pair of strategies (a�, b�) together with a side
payment p from Player B to Player A, such that

ΦA(a�, b�) + p = V � + V �, ΦB(a�, b�) − p = V � − V �.

Here V � is the value in (2.33), while V � is the value of the zero-sum game with payoff
Φ� defined at (2.32).

The concept of co-co solution models a situation where the players join forces,
implement a strategy (a�, b�) which achieves their maximum combined payoff. Then
one of the two makes a side payment to the other, so that in the end the payoffs
(2.34) are achieved.

Example 7. Consider the bi-matrix game described in Fig. 9. In this case we have
V � = 6, V � = 2. Observe that (a2, b2) is a saddle point for the corresponding zero-
sum game.

In a co-co solution of the game, the players should receive the payoffs V � +
V � = 8 and V � − V � = 4 respectively. A co-co solution is thus provided by the
pair of strategies (a1, b2) together with the side payment p = 5 (from Player B to
Player A). A second co-co solution is given by (a2, b1), with side payment p = −1
(i.e. with side payment 1 from A to B).

Example 8 (Co-co solution of the prisoners’ dilemma). For the game with payoff
matrix given in Fig. 5, the co-co solution is the pair of strategies (N,N), yielding
the values (−1, −1). Since the game is symmetric, the corresponding zero-sum game
has value V � = 0 and no side payment is needed.
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3

Player  A

b

a
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1

2

Player B

b

2
2

3
9

3
9

5

1 2

cooperative game zero−sum game

2 6

6

0 −3

3
1 2

Figure 9. Left: the payoffs of a bi-matrix game, where each player has
two options. This can be represented as the sum of a cooperative game
where both players have exactly the same payoff, plus a zero-sum game. In
the center is the matrix of payoffs Φ�, on the right is the matrix of payoffs
Φ�.

3. Differential Games

From now on we consider games in continuous time. Let x ∈ IRN describe the state
of the system, evolving in time according to the ODE

ẋ(t) = f(t, x, u1, u2) t ∈ [0, T ] , (3.1)

with initial data
x(0) = x0 . (3.2)

Here u1(·), u2(·) are the controls implemented by the two players. We assume that
they satisfy the pointwise constraints

u1(t) ∈ U1 , u2(t) ∈ U2 , (3.3)

for some given sets U1, U2 ⊆ IRm.
For i = 1, 2, the goal of the i-th player is to maximize his own payoff, namely

Ji(u1, u2)
.= ψi(x(T )) −

∫ T

0
Li(t, x(t), u1(t), u2(t)) dt . (3.4)

Here ψi is a terminal payoff, while Li accounts for a running cost.
In order to completely describe the game, it is essential to specify the informa-

tion available to the two players. Indeed, the strategy adopted by a player depends
on the information available to him at each time t. Therefore, different information
structures result in vastly different game situations.

In the following, we shall assume that each player has perfect knowledge of

• The function f determining the evolution of the system, and the sets U1, U2 of
control values available to the two players.

• The two payoff functions J1, J2.
• The instantaneous time t ∈ [0, T ] (i.e. both players have a clock).
• The initial state x0.

However, we shall consider different cases concerning the information that each
player has, regarding: (i) the current state of the system x(t), and (ii) the control
u(·) implemented by the other player.
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CASE 1 (open-loop strategies): Apart from the initial data, Player i cannot make
any observation of the state of the system, or of the strategy adopted by the other
player.

In this case, his strategy must be open loop, i.e. it can only depend on time
t ∈ [0, T ]. The set Si of strategies available to the i-th player will thus consist of all
measurable functions t �→ ui(t) from [0, T ] into Ui.

CASE 2 (Markovian strategies): Assume that, at each time t ∈ [0, T ], Player i
can observe the current state x(t) of the system. However, he has no additional
information about the strategy of the other player. In particular, he cannot predict
the future actions of the other player.

In this case, each player can implement a Markovian strategy (i.e., of feedback
type): the control ui = ui(t, x) can depend both on time t and on the current state x.
The set Si of strategies available to the i-th player will thus consist of all measurable
functions (t, x) �→ ui(t, x) from [0, T ] × IRn into Ui.

CASE 3 (hierarchical play): Player 1 (the leader) announces his strategy in advance.
This can be either open loop u1 = u♣1 (t), or feedback u1 = u♣1 (t, x). At this stage,
the game yields an optimal control problem for Player 2 (the follower). Namely

maximize: ψ2(x(T )) −
∫ T

0
L2

(
t, x(t), u♣1 (t, x(t)), u2(t)

)
dt , (3.5)

subject to

ẋ(t) = f(t, x, u♣1 (t, x) , u2) , x(0) = x0 , u2(t) ∈ U2 . (3.6)

Notice that in this case the knowledge of the initial point x0 together with the
evolution equation (3.6) provides Player 2 with complete information about the
state of the system for all t ∈ [0, T ].

From the point of view of Player 1, the task is to devise a strategy u1 = u♣1 (t, x)
such that the reply u2 of the other player yields a payoff (for Player 1) as large as
possible.

CASE 4 (delayed information): Assume that each player cannot observe the state
x(t), but gets information about the actions taken by the other player, with a time
delay δ > 0. In other words, assume that at each time t > 0 Player i gets to know
the strategy {uj(s) ; s ∈ [0, t− δ]} adopted earlier by the other player.
This is a situation where cooperative agreements among the two players can be
implemented, using strategies that trigger a punishment for the player who “cheats”,
deviating from the agreed course of action. For example, assume that the players
agree in advance to adopt the controls t �→ u♥1 (t), t �→ u♥2 (t), yielding a Pareto
optimum. However, assume that after time τ Player 2 changes his mind and adopts
a different control, say

t �→ u♠2 (t) 
= u♥2 (t) t > τ.

Here u♠2 can be a control that increases the payoff of Player 2 at the expense of
Player 1. After time t = τ + δ, Player 1 discovers that he has been cheated. He can
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then punish his partner, choosing a new control t �→ u♠1 (t) yielding a very low payoff
to Player 2.

Remark 3.1. At first sight, the threat of a punishment should induce both players to
stick to their original agreement and implement the cooperative strategies (u♥1 , u

♥
2 )

during the entire time interval t ∈ [0, T ]. However one should keep in mind that,
by punishing Player 2 if he cheats, also Player 1 may have to reduce his own payoff
as well. Since delivering a punishment can be very costly, in each given situation
one should carefully evaluate whether the threat of punishment by one player to the
other is credible or not.

4. Open loop strategies

In this section we consider solutions to the differential game (3.1)–(3.4), in the case
where the strategies implemented by the players must be functions of time alone.

4.1. Open-loop Nash equilibrium solutions

Definition 4.1 (Open-loop Nash equilibrium). A pair of control functions t �→
(u∗1(t), u

∗
2(t)) is a Nash equilibrium for the game (3.1)–(3.4) within the class of

open-loop strategies if the following holds.
(i) The control u∗1(·) provides a solution to the optimal control problem for Player

1:

maximize: J1(u1, u
∗
2) = ψ1(x(T )) −

∫ T

0
L1

(
t, x(t), u1(t), u∗2(t)

)
dt . (4.1)

over all controls u1(·), for the system with dynamics

x(0) = x0 ∈ IRN , ẋ(t) = f(t, x, u1, u
∗
2(t)) , u1(t) ∈ U1 , t ∈ [0, T ] . (4.2)

(ii) The control u∗2(·) provides a solution to the optimal control problem for Player
2:

maximize: J2(u∗1, u2) = ψ2(x(T )) −
∫ T

0
L2

(
t, x(t), u∗1(t), u2(t)

)
dt . (4.3)

over all controls u2(·), for the system with dynamics

x(0) = x0 ∈ IRN , ẋ(t) = f(t, x, u∗1(t), u2) , u2(t) ∈ U2 , t ∈ [0, T ] . (4.4)

To find Nash equilibrium solutions, we thus need to simultaneously solve two
optimal control problems. The optimal solution u∗1(·) of the first problem enters as
a parameter in the second problem, and viceversa.

Assuming that all functions f, ψ1, ψ2, L1, L2 are continuously differentiable, nec-
essary conditions for optimality are provided by the Pontryagin Maximum Principle,
see Theorem 10.7 in the Appendix.

Based on the PMP, we now describe a procedure for finding a pair of open-loop
strategies t �→ (u∗1(t), u∗2(t)) yielding a Nash equilibrium. Toward this goal, we need
to assume that a family of pointwise maximization problems can be uniquely solved.
More precisely, we assume
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(A2) For every (t, x) ∈ [0, T ] × IRN and any two vectors q1, q2 ∈ IRN , there exists a
unique pair (u�

1, u
�
2) ∈ U1 × U2 such that

u�
1 = argmax

ω∈U1

{
q1 · f(t, x, ω, u�

2) − L1(t, x, ω, u
�
2)
}
, (4.5)

u�
2 = argmax

ω∈U2

{
q2 · f(t, x, u�

1, ω) − L2(t, x, u
�
1, ω)

}
. (4.6)

The corresponding map will be denoted by

(t, x, q1, q2) �→
(
u�

1(t, x, q1, q2) , u
�
2(t, x, q1, q2)

)
. (4.7)

The assumption (A2) can be interpreted as follows. For any given (t, x, q1, q2) ∈
[0, T ] × IRN × IRN × IRN , consider the “one-shot” game where the players choose
strategies ui ∈ Ui in order to maximize their instantaneous payoffs

Φi(u1, u2) = qi · f(t, x, u1, u2) − Li(t, x, u1, u2) i = 1, 2 . (4.8)

According to (A2), for every t, x, q1, q2 this one-shot game has a unique Nash equilib-
rium solution. Notice that, if the sets U1, U2 of control values are compact, from this
uniqueness property it follows that the map in (4.7) is continuous. We now describe
an important class of problems where this assumption is satisfied.

Lemma 4.2. Assume that the dynamics and the running costs take the decoupled
form

f(t, x, u1, u2) = f0(t, x) +M1(t, x)u1 +M2(t, x)u2 , (4.9)

Li(t, x, u1, u2) = Li1(t, x, u1) + Li2(t, x, u2). (4.10)

Assume that

(i) The domains U1, U2 are closed and convex subsets of IRm, possibly unbounded.
(ii) M1,M2 are N ×m matrices, continuously depending on t, x,
(iii) The functions u1 �→ L11(t, x, u1) and u2 �→ L22(t, x, u2) are strictly convex,
(iv) For each i = 1, 2, either Ui is compact, or Lii has superlinear growth, i.e.

lim
|ω|→∞

Lii(t, x, ω)
|ω| = +∞ .

Then the assumption (A2) holds.

Proof. For any given (t, x, q1, q2), the control values u�
1, u

�
2 are determined by

u�
1 = argmax

ω∈U1

{
q1 ·M1(t, x)ω − L11(t, x, ω)

}
,

u�
2 = argmax

ω∈U2

{
q2 ·M2(t, x)ω − L22(t, x, ω)

}
.

(4.11)

The assumptions (i)–(iv) guarantee that the above maximizers exist and are unique.



Noncooperative Differential Games 25

Finding a Nash equilibrium using the PMP. Assume that (A2) holds, and let
x∗(·), u∗1(·), u∗2(·) be respectively the trajectory and the open-loop controls of the two
players, in a Nash equilibrium. By definition, the controls u∗1 and u∗2 provide solutions
to the corresponding optimal control problems for the two players. Applying the
Pontryagin Maximum Principle (see Theorem 10.7 in the Appendix), one obtains
the following set of necessary conditions.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f(t, x, u�
1, u

�
2),

q̇1 = −q1 ∂f
∂x

(t, x, u�
1, u

�
2) +

∂L1

∂x
(t, x, u�

1, u
�
2) ,

q̇2 = −q2 ∂f
∂x

(t, x, u�
1, u

�
2) +

∂L2

∂x
(t, x, u�

1, u
�
2) ,

(4.12)

with initial and terminal conditions⎧⎨⎩
x(0) = x0 ,

q1(T ) = ∇ψ1(x(T )) ,
q2(T ) = ∇ψ2(x(T )) .

(4.13)

Notice that in (4.12) the variables u�
1, u

�
2 are functions of (t, x, q1, q2), defined at

(4.5)–(4.7).

One can use the above system in order to compute a Nash equilibrium solution
to the differential game. Notice that (4.12) consists of three ODEs in IRN . This needs
to be solved with the mixed boundary data (4.13). Here the value of variable x (the
state of the system) is explicitly given at the initial time t = 0. On the other hand,
since x(T ) is not a priori known, the values for q1, q2 (the adjoint variables) are only
determined by two implicit equations at the terminal time t = T . Together with the
strong nonlinearity of the maps u�

1, u
�
2 in (4.7), this makes the problem (4.12)-(4.13)

hard to solve, in general.

As soon as a solution t �→ (x(t), q1(t), q2(t)) to the two-point boundary value
problem (4.12)-(4.13) is found, the trajectory x∗ and the controls u∗1, u∗2 are deter-
mined by

x∗(t) = x(t) ,

{
u∗1(t) = u�

1(t, x(t), q1(t), q2(t)) ,
u∗2(t) = u�

2(t, x(t), q1(t), q2(t)) .

One should keep in mind that the Pontryagin maximum principle is only a
necessary condition, not sufficient for optimality. In other words, any pair t �→
(u∗1(t), u

∗
2(t)) of open-loop strategies which is a Nash equilibrium must provide a

solution to (4.12)-(4.13). On the other hand, being a solution of (4.12)-(4.13) does
not guarantee that the pair (u∗1, u∗2) is a Nash equilibrium. A (very restrictive) setting
where the PMP is actually sufficient for optimality is described in Theorem 10.13 of
the Appendix.

Example 9 (Duopolistic competition). Two companies sell the same product, com-
peting for market share. Let x1 = x(t) ∈ [0, 1] be the market share of the first
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company at time t, so that x2 = 1 − x(t) is the market share of the second. Call-
ing ui(t) the advertising effort of firm i ∈ {1, 2} at time t, the Lanchester model is
described by the dynamics

ẋ = (1 − x)u1 − xu2 , x(0) = x0 ∈ [0, 1] . (4.14)

The i-th firm should plan its strategy t �→ ui(t) in order to maximize the total payoff

Ji
.=
∫ T

0

[
ai xi(t) − ci

u2
i (t)
2

]
dt+ Sixi(T ) , (4.15)

for suitable constants ai, ci, Si > 0. Here the term aix accounts for the earnings of the
i-th company, proportional to its market share, while ciu2

i /2 is the advertising cost.
The value attached by firm i to its terminal market share is described by Sixi(T ). A
Nash equilibrium solution to this differential game, in terms of open-loop controls,
can be found as follows.

STEP 1: the optimal controls are determined in terms of the adjoint variables:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u�

1(x, q1, q2) = argmax
ω≥0

{
q1 · (1 − x)ω − c1

ω2

2

}
= (1 − x)

q1
c1
,

u�
2(x, q1, q2) = argmax

ω≥0

{
q2 · xω − c2

ω2

2

}
=

q2
c2
.

(4.16)

STEP 2: the state x(·) and the adjoint variables q1(·), q2(·) are determined by
solving the boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = (1 − x)u�
1 + xu�

2 = (1 − x)2
q1
c1

+ x2 q2
c2
,

q̇1 = −q1 (u�
1 + u�

2) − a1 = −q1
[
(1 − x)

q1
c1

+ x
q2
c2

]
− a1 ,

q̇2 = −q2 (u�
1 + u�

2) − a2 = −q2
[
(1 − x)

q1
c1

+ x
q2
c2

]
− a2 ,

(4.17)

with initial and terminal conditions⎧⎨⎩
x(0) = x0 ,

q1(T ) = S1 ,
q2(T ) = S2 .

(4.18)

Example 10 (Producer-consumer game with sticky price). Let p(t) denote the price
of a good at time t. We assume that this good can be produced by one of the players,
at rate u1(t), and consumed by the other player at rate u2(t). In a very simplified
model, the variation of the price in time can be described by the differential equation

ṗ = (u2 − u1)p , (4.19)

Here the non-negative functions t �→ u1(t) and t �→ u2(t) represent the controls
implemented by the two players. According to (4.19), the price increases when the
consumption is larger than the production, and decreases otherwise.
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Let the payoffs for the two players be described by

Jprod =
∫ T

0

[
p(t)u2(t) − c

(
u1(t)

)]
dt , (4.20)

Jcons =
∫ T

0

[
φ(u2(t)) − p(t)u2(t)

]
dt . (4.21)

The payoff for the producer is given by the profit generated by sales, minus the cost
c(u1) of producing the good at rate u1. The payoff for the consumer is measured
by a utility function φ(u2), minus the price payed to buy the good. For sake of
definiteness, assume

c(s) =
s2

2
, φ(s) = 2

√
s . (4.22)

A Nash equilibrium solution for this differential game, in terms of open-loop
controls, is found as follows.
STEP 1: the optimal controls are determined in terms of the adjoint variables:

u�
1(x, q1, q2) = argmax

ω≥0

{
q1 · (−ωp) − ω2

2

}
= −q1p ,

u�
2(x, q1, q2) = argmax

ω≥0

{
q2 · (ωp) + 2

√
ω − pω

}
=

1
(1 − q2)2 p2

.

Notice that here we are assuming p > 0, q1 ≤ 0, q2 < 1.
STEP 2: the state p(·) and the adjoint variables q1(·), q2(·) are determined by solving
the boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ = (u�
2 − u�

1)p =
1

(q2 − 1)2 p
+ q1p

2 ,

q̇1 = −q1(u�
2 − u�

1) − u�
2 = −q21 p−

q1 + 1
(1 − q2)2 p2

,

q̇2 = −q2(u�
2 − u�

1) + u�
2 = −q1q2p+

1
(1 − q2)p

,

(4.23)

with initial and terminal conditions⎧⎨⎩
x(0) = x0 ,
q1(T ) = 0 ,
q2(T ) = 0 .

(4.24)

4.2. Open-loop Stackelberg equilibrium solutions

We now assume that the strategies of the players are not chosen simultaneously,
but in two stages. First, Player 1 (the leader) chooses his strategy t �→ u1(t), and
communicates it to Player 2. In a second stage, Player 2 (the follower) chooses
his control function u2(·) maximizing his own payoff, relative to the strategy u1(·)
already chosen by the first player.

Given any admissible control u♣1 : [0, T ] �→ U1 for the first player, we denote by
R2(u♣1 ) the set of best replies for the second player. More precisely, R2(u♣1 ) is the
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set of all admissible control functions u2 : [0, T ] �→ U2 for Player 2, which achieve
the maximum payoff in connection with u♣1 . Namely, they solve the optimal control
problem

maximize: ψ2(x(T )) −
∫ T

0
L2

(
t, x(t), u♣1 (t), u2(t)

)
dt , (4.25)

over all control functions u2(·), subject to

ẋ(t) = f(t, x, u♣1 (t) , u2), x(0) = x0 , u2(t) ∈ U2 . (4.26)

In the following, given two control functions u1(·) and u2(·), we denote by
t �→ x(t, u1, u2) the solution of the Cauchy problem

ẋ = f(t, x, u1(t), u2(t)) , x(0) = x0 .

Definition 4.3 (Open-loop Stackelberg equilibrium). A pair of control functions t �→
(u∗1(t), u∗2(t)) is a Stackelberg equilibrium for the game (3.1)–(3.4) within the class
of open-loop strategies if the following holds.

(i) u∗2 ∈ R2(u∗1) ,
(ii) Given any admissible control u1(·) for Player 1 and every best reply u2(·) ∈

R2(u1) for Player 2, one has

ψ1(x(T, u1, u2)) −
∫ T

0
L1

(
t, x(t, u1, u2), u1(t), u2(t)

)
dt

≤ ψ1(x(T, u∗1, u
∗
2)) −

∫ T

0
L1

(
t, x(t, u∗1, u

∗
2), u

∗
1(t), u

∗
2(t)

)
dt .

(4.27)

To find a Stackelberg solution, Player 1 has to calculate the best reply of Player 2
to each of his controls u1(·), and choose the control function u∗1(·) in order to maxi-
mize his own payoff J1. We are here taking the optimistic view that, if Player 2 has
several best replies to a strategy u∗1(·), he will choose the one which is most favorable
to Player 1.

Necessary conditions in order that a pair of open-loop strategies (u∗1, u
∗
2) be a

Stackelberg equilibrium can be derived by variational analysis. Let t �→ x∗(t) be the
trajectory of the system determined by the controls u∗1, u∗2. Since u∗2(·) is an optimal
reply for Player 2, the Pontryagin maximum principle yields the existence of an
adjoint vector q∗2(·) such that⎧⎪⎨⎪⎩

ẋ∗(t) = f(t, x∗(t), u∗1(t), u∗2(t)) ,

q̇∗2(t) = −q∗2 ·
∂f

∂x
(t, x∗(t), u∗1(t), u

∗
2(t)) +

∂L2

∂x
(t, x∗(t), u∗1(t), u

∗
2(t)) ,

(4.28)

with boundary conditions ⎧⎨⎩
x∗(0) = x0 ,

q∗2(T ) = ∇ψ2(x∗(T )) .
(4.29)
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Moreover, for a.e. t ∈ [0, T ] the following optimality condition holds

u∗2(t) ∈ argmax
ω∈U2

{
q∗2(t) · f(t, x∗(t), u∗1(t), ω) − L2(t, x∗(t), u∗1(t), ω)

}
. (4.30)

We now take the side of the first player. To derive a set of necessary conditions
for optimality, our main assumption is:

(A3) For each (t, x, u1, q2) ∈ [0, T ] × IRn × U1 × IRn, there exists a unique optimal
choice u�

2 ∈ U2 for Player 2, namely

u�
2(t, x, u1, q2)

.= argmax
ω∈U2

{
q2 · f(t, x, u1, ω) − L2(t, x, u1, ω)

}
. (4.31)

The optimization problem for Player 1 can now be formulated as an optimal
control problem in an extended state space, where the state variables are (x, q2) ∈
IRn × IRn.

Maximize : ψ1(x(T )) −
∫ T

0
L1

(
t, x(t), u1(t), u�

2(t, x(t), u1(t), q2(t))
)
dt (4.32)

for the system on IR2n with dynamics⎧⎪⎨⎪⎩
ẋ(t) = f(t, x, u1, u

�
2(t, x, u1, q2)) ,

q̇2(t) = −q2 · ∂f
∂x

(t, x, u1, u
�
2(t, x, u1, q2)) +

∂L2

∂x
(t, x, u1, u

�
2(t, x, u1, q2)) ,

(4.33)
and with boundary conditions

x(0) = x0, q2(T ) = ∇ψ2(x(T )) . (4.34)

This is a standard problem in optimal control. Notice, however, that the state
variables (x, q2) are not both assigned at time t = 0. Instead, we have the constraint
x = x0 valid at t = 0 and another constraint q2 = ∇ψ2(x) valid at t = T . In
order to apply the PMP, we need to assume that all functions in (4.32)–(4.34) are
continuously differentiable w.r.t. the new state variables x, q2. More precisely

(A4) For every fixed t ∈ [0, T ] and u1 ∈ U1, the maps

(x, q2) �→ L̃1(t, x, u1, q2)
.= L1

(
t, x, u1, u

�
2(t, x, u1, q2)

)
,

(x, q2) �→ F (t, x, u1, q2)
.= f(t, x, u1, u

�
2(t, x, u1, q2)) ,

(x, q2) �→ G(t, x, u1, q2)
.= −q2 · ∂f

∂x
(t, x, u1, u

�
2(t, x, u1, q2))

+
∂L2

∂x
(t, x, u1, u

�
2(t, x, u1, q2)) ,

x �→ ∇ψ2(x) ,

are continuously differentiable.
An application of the PMP to the above optimal control problem with initial

and terminal state constraints yields
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Theorem 4.4 (Necessary conditions for an open-loop Stackelberg equilibrium). Let
the assumptions (A3)–(A4) hold. Let t �→ (u∗1(t), u∗2(t)) be open-loop strategies yield-
ing a Stackelberg equilibrium for the differential game (3.1)–(3.4). Let x∗(·), q∗2(·) be
the corresponding trajectory and adjoint vector for Player 2, satisfying (4.28)–(4.30).

Then there exists a constant λ0 ≥ 0 and two absolutely continuous adjoint
vectors λ1(·), λ2(·) (not all equal to zero), satisfying the equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ̇1 = λ0
∂L̃1

∂x
− λ1

∂F

∂x
− λ2

∂G

∂x
,

λ̇2 = λ0
∂L̃1

∂q2
− λ1

∂F

∂q2
− λ2

∂G

∂q2
,

(4.35)

for a.e. t ∈ [0, T ], together with the boundary conditions

λ2(0) = 0 , λ1(T ) = λ0 ∇ψ1(x∗(T )) − λ2(T )D2ψ2(x∗(T )) . (4.36)

Moreover, for a.e. t ∈ [0, T ] one has

u∗1(t) = argmax
ω∈U1

{
− λ0 L̃1

(
t, x∗(t), q∗2(t), ω

)
+ λ1(t) · F

(
t, x∗(t), q∗2(t), ω

)

+λ2(t) ·G
(
t, x∗(t), q∗2(t), ω

)}
.

(4.37)

In the ODEs (4.35), it is understood that the right hand sides are computed at
(t, x∗(t), q∗2(t), u∗1(t)). In (4.36), by D2ψ2(x) we denote the Hessian matrix of second
derivatives of ψ2, at the point x.

The above result is obtained by applying Theorem 10.10 in the Appendix to the
optimal control problem (4.32)–(4.34). Observe that the initial data is constrained
to the set

S0 = {(x, q2) ∈ IRn+n ; x = x0} .
Since there is no cost associated with the initial condition, the initial value of the
adjoint vector λ = (λ1, λ2) ∈ IRn+n can be any vector perpendicular to S0. Hence

λ1(0) ∈ IRn , λ2(0) = 0.

On the other hand, the terminal data is constrained to the set

ST =
{
(x, q2) ∈ IRn+n ; q2 −∇ψ2(x) = 0

}
.

A vector (v1, v2) ∈ IR2n is tangent to the manifold ST at the point (x, q2) provided
that

v2 = D2
xψ2(x)v1 .

Hence a vector (n1, n2) ∈ IR2n is normal to ST provided that

n1 = −D2
xψ2(x)n2 .
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Recalling that the terminal payoff is ψ1(x(T )), from (10.25) we obtain the terminal
condition

λ1(T ) = λ0 ∇ψ1(x∗(T )) − λ2(T )D2ψ2(x(T )) ,

for some constant λ0 ≥ 0.

Example 11 (a model of economic growth). Let x(t) describe the total wealth of
capitalists in a country, at time t. Assume that this quantity evolves according to

ẋ = ax− u1x− u2 , x(0) = x0 , t ∈ [0, T ] . (4.38)

Here a > 0 is a constant growth rate, u2(t) is the instantaneous amount of consump-
tion, and u1 is the capital tax rate imposed by the government. The payoffs for the
government and for the capitalists are given by

J1 = bx(T ) +
∫ T

0
φ1

(
u1(t)x(t)

)
dt , (4.39)

J2 = x(T ) +
∫ T

0
φ2

(
u2(t)

)
dt . (4.40)

Here φ1, φ2 are utility functions. To fix the ideas, assume φi(s) = ki ln s.
We seek a Stackelberg equilibrium for this differential game, where the govern-

ment is the leader, announcing in advance the tax rate u1(·) as a function of time,
and the capitalists are the followers. For this example, the functions considered in
(A3)-(A4) take the form

u�
2(x, u1, q2) = argmax

ω≥0

{
− q2ω + k2 lnω

}
=

k2

q2
,

L̃1(x, q2, u1) = φ1(u1x) = k1 ln(u1x) ,

F (x, q2, u1) = ax− u1x− k2

q2
,

G(x, q2, u1) = −q2(a− u1) .

The government, playing the role of the leader, now has to solve the following opti-
mization problem.

maximize: bx(T ) +
∫ T

0
k1 ln

(
u1(t)x(t)

)
dt , (4.41)

for a system with two state variables (x, q2), with dynamics⎧⎪⎪⎨⎪⎪⎩
ẋ = ax− u1x− k2

q2
,

q̇2 = −q2(a− u1) ,

(4.42)

and boundary conditions

x(0) = x0 , q2(T ) = 1 . (4.43)

By the Pontryagin maximum principle (Theorem 10.10), an optimal control can
be found as follows.
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STEP 1: For any constants λ0 ≥ 0, λ1, λ2, compute the optimal feedback control

u�
1(x, q2, λ0, λ1, λ2)

.= argmax
ω≥0

{
λ1 (−ωx) + λ2q2ω + λ0 k1 ln(ωx)

}
=

λ0k1

λ1x− λ2q2
.

STEP 2: Solve the boundary value problem for the system of ODEs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = (a− u�
1)x− k2

q2
=
(
a− λ0k1

λ1x− λ2q2

)
x− k2

q2
,

q̇2 = −q2(a− u�
1) =

(
λ0k1

λ1x− λ2q2
− a

)
q2 ,

λ̇1 = −λ0
k1

x
− λ1(a− u�

1) = −λ0
k1

x
+ λ1

(
λ0k1

λ1x− λ2q2
− a

)
,

λ̇2 = −λ1
k2

q22
+ λ2(a− u�

1) = −λ1
k2

q22
+ λ2

(
a− λ0k1

λ1x− λ2q2

)
,

with initial and terminal conditions (see figure 10)

x(0) = x0 , q2(T ) = 1 , λ1(T ) = λ0b , λ2(0) = 0 .

2

2
q

S

n

T

T
n

0

0

S

0

1

x
0

x

(x(t), q (t))

Figure 10. The initial and terminal constraints for the optimal con-
trol problem (4.41)–(4.43). According to (10.25), at time t = 0 one has
(λ1(0), λ2(0)) = n0 for some vector n0 perpendicular to the manifold
S0 = {(x, q2) ; x = x0}. Hence λ2(0) = 0 while λ1(0) can be arbitrary.
On the other hand, at time t = T one has (λ1(T ), λ2(T )) = λ0(b, 1) + nT

for some vector nT perpendicular to the manifold ST = {(x, q2) ; q2 = 1}.
Hence λ1(T ) = λ0b while λ2(T ) can be arbitrary.

5. Markovian strategies

We consider here the case where both players can observe the current state of the
system. Their strategies will thus be functions ui = ui(t, x) of time t and of the state
x.
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Observe that, in the open-loop case, the optimal controls ui = u∗i (t) strongly
depend on the initial data x0 in (3.2). On the other hand, in the Markovian case, it
is natural to look for optimal feedback strategies ui = u∗i (t, x) that are optimal for
the problems (3.1), (3.4), simultaneously for any choice of initial data

x(τ) = y, (5.1)

with τ ∈ [0, T ], y ∈ IRN .
In the following, we say that a control (t, x) �→ u(t, x) ∈ U is an optimal

feedback for the optimization problem

max
u

{
ψ(x(T )) −

∫ T

τ
L
(
t, x, u)

)
dt

}
, (5.2)

with dynamics
ẋ = f(t, x, u) , u(t) ∈ U , (5.3)

if, for every initial data (τ, y) ∈ [0, T ] × IRN , every Carathéodory solution of the
Cauchy problem

ẋ(t) = f(t, x, u(t, x)) , x(τ) = y

is optimal, i.e. it achieves the maximum payoff in (5.2).

Definition 5.1 (Feedback Nash equilibrium). A pair of control functions (t, x) �→
(u∗1(t, x), u

∗
2(t, x)) is a Nash equilibrium for the game (3.1), (3.3), (3.4) within the

class of feedback strategies if the following holds.
(i) The control (t, x) �→ u∗1(t, x) provides an optimal feedback in connection

with the optimal control problem for Player 1:

max
u1

{
ψ1(x(T )) −

∫ T

0
L1

(
t, x(t), u1 , u

∗
2(t, x(t))

)
dt

}
, (5.4)

for the system with dynamics

ẋ(t) = f(t, x, u1, u
∗
2(t, x)) , u1(t) ∈ U1 . (5.5)

(ii) The control (t, x) �→ u∗2(t, x) provides an optimal feedback in connection
with the optimal control problem for Player 2:

max
u2

{
ψ2(x(T )) −

∫ T

0
L2

(
t, x(t), u∗1(t, x(t)), u2)

)
dt

}
, (5.6)

for the system with dynamics

ẋ(t) = f(t, x, u∗1(t, x), u2) , u2 ∈ U2 . (5.7)

5.1. Finding feedback Nash equilibria by solving a system of PDEs.

Assume that the pair of feedback controls (u∗1, u∗2) provides a Nash equilibrium.
Given an initial data (τ, y) ∈ [0, T ] × IRN , call t �→ x∗(t; τ, y) the solution of

ẋ = f
(
t, x, u∗1(t, x), u

∗
2(t, x)

)
, x(τ) = y .

We here assume that all these solutions are well defined. This is clearly true if the
feedback controls u∗1, u∗2 are Lipschitz continuous w.r.t. the variable x, but it is a
nontrivial assumption in general.
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We can then define the corresponding value functions V1, V2 as

Vi(τ, y) = ψi(x∗(T )) −
∫ T

τ
Li

(
t, x∗(t), u∗1(t, x

∗(t)), u∗2(t, x
∗(t))

)
dt ,

where x∗(t) .= x∗(t, τ, y). Notice that Vi(τ, y) is the total payoff achieved by Player
i if the game starts at y, at time τ .

Let the assumption (A2) hold. On a region where V1, V2 are C1, by the dynamic
programming principle (see Theorem 10.15) they satisfy the system of Hamilton-
Jacobi PDEs ⎧⎨⎩

V1,t + ∇V1 · f(t, x, u�
1, u

�
2) = L1(t, x, u

�
1, u

�
2) ,

V2,t + ∇V2 · f(t, x, u�
1, u

�
2) = L2(t, x, u

�
1, u

�
2) .

(5.8)

This system is closed by the equations

u�
i = u�

i(t, x, ∇V1, ∇V2) i = 1, 2, (5.9)

introduced at (4.7), and complemented by the terminal conditions

V1(T, x) = ψ1(x) , V2(T, x) = ψ2(x) . (5.10)

Because of the nonlinearity of the functions (t, x, q1, q2) �→ u�
i(t, x, q

1, q2), the
system (5.8) is a strongly non-linear system of two scalar PDEs, and difficult to
solve. The well-posedness of the Cauchy problem can be studied by looking at a
linearized equation.

Let V = (V1, V2) be a smooth solution of (5.8), and let

V ε(t, x) = V (t, x) + εZ(t, x) + o(ε) (5.11)

describe a small perturbation. Here the Landau symbol o(ε) denotes a higher order
infinitesimal, as ε → 0. Assuming that V ε is also a solution, we can insert (5.11)
in the equation (5.8) and compute a linearized equation satisfied by the first or-
der perturbation Z = (Z1, Z2). Writing f = (f1, . . . , fn), q1 = (q11, . . . q1n), q2 =
(q21, . . . q2n), for i = 1, 2 we find

Zi,t +
n∑

α=1

fα Zi,xα +
n∑

α=1

2∑
j=1

(
∇Vi · ∂f

∂uj
− ∂Li

∂uj

)(
∂u�

j

∂q1α
Z1,xα +

∂u�
j

∂q2α
Z2,xα

)
= 0 .

(5.12)
Observe that, if the maxima in (4.5)-(4.6) are attained at interior points of the
domains Ui, then the necessary conditions for a maximum yield

∇V1 · ∂f
∂u1

− ∂L1

∂u1
= 0 , ∇V2 · ∂f

∂u2
− ∂L2

∂u2
= 0. (5.13)

Therefore, these terms drop off from the right hand sides of (5.12). In matrix nota-
tion, this homogeneous linear system can be written as(

Z1,t

Z2,t

)
+

n∑
α=1

Aα

(
Z1,xα

Z2,xα

)
=
(

0
0

)
, (5.14)
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where the 2 × 2 matrices Aα are given by

Aα =

⎛⎜⎜⎜⎜⎜⎝
fα +

(
∇V1 · ∂f

∂u2
− ∂L1

∂u2

)
∂u�

2

∂q1α

(
∇V1 · ∂f

∂u2
− ∂L1

∂u2

)
∂u�

2

∂q2α(
∇V2 · ∂f

∂u1
− ∂L2

∂u1

)
∂u�

1

∂q1α
fα +

(
∇V2 · ∂f

∂u1
− ∂L2

∂u1

)
∂u�

1

∂q2α

⎞⎟⎟⎟⎟⎟⎠ .

(5.15)
Fix a point (t̄, x̄), and freeze the coefficients of the above matrices at the correspond-
ing point

(
t̄, x̄, V (t̄, x̄), DxV (t̄, x̄)

)
. In this way we obtain a linear system of two

first order linear homogeneous PDEs with constant coefficients.
According to Theorem 10.22, a necessary condition in order that the system

(5.14) be hyperbolic (and hence that the linear Cauchy be well posed), is that for
all ξ ∈ IRn the matrix

A(ξ) =
∑
α

Aαξα (5.16)

has real eigenvalues.
To understand whether this condition can be satisfied, consider first the simpler

situation where the dynamics and the payoff functions can be decoupled, i.e.

f = f (1)(t, x, u1) + f (2)(t, x, u2) , Li = L
(1)
i (t, x, u1) + L

(2)
i (t, x, u2) .

In this case the function u�
1 in (4.5) does not depend on q2, and similarly the function

u�
2 in (4.6) does not depend on q1. The 2 × 2 matrix A(ξ) thus takes the simpler

form

A(ξ) =
n∑

α=1

⎛⎜⎜⎜⎜⎜⎝
fαξα

(
∇V1 · ∂f

∂u2
− ∂L1

∂u2

)
∂u�

2

∂q2α
ξα

(
∇V2 · ∂f

∂u1
− ∂L2

∂u1

)
∂u�

1

∂q1α
ξα fα ξα

⎞⎟⎟⎟⎟⎟⎠ .

Consider the two vectors

v = (v1, . . . ,vn) , vα
.=
(
∇V1 · ∂f

∂u2
− ∂L1

∂u2

)
∂u�

2

∂q2α
, (5.17)

w = (w1, . . . ,wn) , wα
.=
(
∇V2 · ∂f

∂u1
− ∂L2

∂u1

)
∂u�

1

∂q1α
. (5.18)

Observe that the matrix A(ξ) in (5.16) has real eigenvalues if and only if the two
inner products satisfy

(v · ξ) (w · ξ) ≥ 0 . (5.19)

The condition (5.19) is satisfied for all ξ ∈ IRn if and only if the two vectors
v,w are linearly dependent and have the same orientation. That is, if and only if
there exist scalar coefficients a, b ≥ 0, not both zero, such that au = bw.
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In any dimension n ≥ 2, this condition generically fails. Indeed, if v,w are
linearly independent, we can find a vector of the form ξ = v − θw which is perpen-
dicular to v+w, so that (5.19) fails. Hence the system (5.8) is NOT hyperbolic, and
the linearized Cauchy problem is ill-posed, both forward and backward in time.

Going back to the general case (5.15), recall that a 2×2 matrix
(
a b
c d

)
has real

eigenvalues if and only if (a−d)2+4bc ≥ 0. Introducing the vector z = (z1, . . . , zn)
with components

zα =
(
∇V1 · ∂f

∂u2
− ∂L1

∂u2

)
∂u�

2

∂q1α
−
(
∇V2 · ∂f

∂u1
− ∂L2

∂u1

)
∂u�

1

∂q2α
, (5.20)

one checks that the matrices A(ξ) have real eigenvalues if and only if

(z · ξ)2 + 4(v · ξ)(w · ξ) ≥ 0 for all ξ ∈ IRn. (5.21)

In any space dimension n ≥ 3, the condition (5.21) generically fails. Indeed, assume
that the vectors v,w, z are linearly independent. Then we can always find a nonzero
vector

ξ ∈ {z, v + w}⊥ ∩ span{v,w, z} .
With this choice, the quantity in (5.21) is strictly negative.

When the space dimension is n = 2, however, there are cases where

min
ξ∈IR2, |ξ|=1

{
(z · ξ)2 + 4(v · ξ)(w · ξ)

}
> 0 .

For example, if the vectors in (5.17), (5.18), (5.20) are

v = (1, 0) , w = (1, 1) , z = (0, 2) ,

then the system (5.14)-(5.15), in two space dimensions, would be locally hyperbolic.
Indeed, for any ξ = (ξ1, ξ2), one has

(z · ξ)2 + 4(v · ξ)(w · ξ) = 4ξ21 + 4ξ1(ξ1 + ξ2) = 3(ξ1 + ξ2)2 + (ξ1 − ξ2)2 ≥ 0.

Remark 5.2. In the special case of a zero-sum game, we have ψ2 = −ψ1, L2 =
−L1, and V2 = −V1. The matrices Aα in (5.15) should be computed only at points
(t, x, q1, q2) where q2 = ∇V2 = −∇V1 = −q1. By (5.13), this yields

∇V2 · ∂f
∂u1

− ∂L2

∂u1
= −

(
∇V1 · ∂f

∂u1
− ∂L1

∂u1

)
= 0 ,

∇V1 · ∂f
∂u2

− ∂L1

∂u2
= −

(
∇V2 · ∂f

∂u2
− ∂L2

∂u2

)
= 0 .

Therefore, in the case of zero sum games we simply have

Aα =
(
fα 0
0 fα

)
,

and the system is clearly hyperbolic.
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Apart from zero-sum games, to find relevant cases where the backward Cauchy
problem (5.8)–(5.10) is well posed, one has to restrict the attention to games in
one space dimension. An existence theorem of Nash equilibria in feedback form,
valid for one-dimensional noncooperative games, can be found in [13]. This result is
obtained differentiating the equations (5.8) w.r.t. the space variable x. This yields a
nonlinear system of conservation laws for the variables q1 = V1,x and q2 = V2,x. If this
system is hyperbolic, well known PDE theory yields the existence and uniqueness
of an entropy weak solution to the Cauchy problem. In turn, this yields a Nash
equilibrium solution to the non-cooperative game, in feedback form.

5.2. Linear-quadratic differential games

A large portion of the literature on Nash feedback solutions for differential games is
concerned with n-dimensional games having linear dynamics and quadratic payoff
functions. It is assumed that the state of the system evolves according to

ẋ = A(t)x+B1(t)u1 +B2(t)u2 , (5.22)

while the payoff functions are given by quadratic polynomials w.r.t. the variables
x, u1, u2. To simplify the computations, we consider here a homogeneous case, with

Ji = ψi(x(T )) −
∫ T

0
Li(t, x(t), u1(t), u2(t)) dt , (5.23)

ψi(x) =
1
2
x†M ix , (5.24)

Li(t, x, u1, u2) =
|ui|2

2
+

1
2
x†Pi(t)x+

∑
j=1,2

x†Qij(t)uj , (5.25)

where the superscript † denotes transposition. Here x ∈ IRn, u1 ∈ IRm1 , u2 ∈ IRm2

are column vectors, A is an n× n matrix, M i, Pi are n×n symmetric matrices, Qij

and Bj are n×mj matrices.
In this model, it is important that the controls u1, u2 range over the entire

spaces IRm1 , IRm2 , without being restricted to a compact subset. Notice that in the
present case the assumption (A2) certainly holds. For i = 1, 2, the function u�

i in
(4.5)-(4.6) is explicitly computed as

u�
i(t, x, qi) = arg max

ω∈IRmi

{
qiBi(t)ω − |ω|2

2
− x†Qii(t)ω

}
=
(
qiBi(t) − x†Qii(t)

)†
.

(5.26)
Even if the backward Cauchy problem (5.8)–(5.10) is ill-posed, in the linear-

quadratic case one can always construct a (local) solution within the class of homo-
geneous second order polynomials w.r.t. the variables x = (x1, . . . , xn), namely

Vi(t, x) =
1
2
x†Mi(t)x . (5.27)

In other words, by guessing a priori that the solution has the form (5.27), we can
compute this solution by solving a system of ODEs for the coefficients of the matrices
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M1(t),M2(t). Denoting by un upper dot a differentiation w.r.t. t, one finds

∇Vi(t, x) = x†Mi(t) , Vi,t(t, x) =
1
2
x†Ṁi(t)x , (5.28)

u�
i(t, x,∇Vi(t, x)) =

(
x†Mi(t)Bi(t) − x†Qii(t)

)†
. (5.29)

By (5.28) and (5.29), the functions Vi in (5.27) solve the system

Vi,t = Li −∇Vi · f , i = 1, 2,

if and only if the following relations are satisfied

1
2
x†Ṁix =

[
1
2

(
x†MiBi − x†Qii

)(
x†MiBi − x†Qii

)†
+

1
2
x†Pix

+
∑

j=1,2

x†Qij

(
x†MiBi − x†Qii

)†]

−x†Mi

(
Ax+

∑
j=1,2

Bj

(
x†MjBj − x†Qjj

)†)
.

(5.30)

Notice that both sides of (5.30) are homogeneous quadratic polynomials w.r.t. the
variable x = (x1, . . . , xn). The equality holds for every x ∈ IRn if and only if the
following identity between n× n symmetric matrices is satisfied:

1
2
Ṁi =

1
2
(MiBi −Qii)(MiBi −Qii)† +

1
2
Pi

+
1
2

∑
j=1,2

[
Qij(MiBi −Qii)† + (MiBi −Qii)Q

†
ij

]
− 1

2
(MiA+A†Mi)

−1
2

∑
j=1,2

[
MiBj(MjBj −Qjj)† + (MjBj −Qjj)B

†
jMi

]
.

(5.31)
The equations (5.31) represent a system of ODEs for the coefficients of the symmet-
ric matrices M1(t),M2(t). These ODEs need to be solved backward, with terminal
conditions

M1(T ) = M1 , M2(T ) = M2 . (5.32)

This backward Cauchy problem has a unique local solution, defined for t close to T .
In general, however, a global solution may not exist because the right hand side has
quadratic growth. Hence the solution may blow up in finite time.

If the backward Cauchy problem (5.31)-(5.32) has as solution on the entire
interval [0, T ], then the formulas (5.28)-(5.29) yield the the optimal feedback controls
u∗i (t, x) = u�

i(t, x,∇Vi(t, x)).
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Remark 5.3. The above approach can be applied to a more general class of non-
homogeneous linear-quadratic games, with dynamics

ẋ = A(t)x+B1(t)u1 +B2(t)u2 + c(t) ,

and payoff functions (5.23), where

ψi(x) =
1
2
x†M ix+ āi · x+ ē ,

Li(t, x, u1, u2) =
1
2
u†iRi(t)ui +

1
2
x†Pi(t)x+

∑
j=1,2

x†Qij(t)uj

+
∑

j=1,2

Sij(t)uj + bi(t) · x .

Here one needs to assume that R1, R2 are strictly positive symmetric matrices, for
all t ∈ [0, T ]. In this case, the value functions are sought within the class of (non-
homogeneous) quadratic polynomials:

Vi(t, x) = x†Mi(t)x+ ai(t) · x+ e(t) , i = 1, 2.

6. Time discretizations

Based on the theory of static games, a natural approach to dynamic games is to
discretize time and approximate a dynamic game by a sequence of “one shot” games.
In this section we discuss this approach. We recall that there are several different
concepts of “solution” to a one-shot game:

• Pareto optimum
• Nash non-cooperative equilibrium
• Stackelberg equilibrium
• Co-co (cooperative-competitive) solution, with side payments.

Each concept leads to a different notion of solution, for a dynamic game in continuous
time.

Consider again the differential game with dynamics (3.1) and payoff functionals
(3.4). Given an integer N ≥ 1, we partition the time interval [0, T ] into N equal
subintervals, by setting

h
.=

T

N
, τj = j h =

jT

N
, j = 1, 2, . . . , N . (6.1)

We now consider a sequence of N “one-shot” games, and value functions V1(τj, ·),
V2(τj , ·), defined as follows.

For j = N , set

Vi(τN , x)
.= ψi(x) i = 1, 2 . (6.2)

For any given state x ∈ IRn, consider the one-shot game with payoff functions

Φi(τN , x, ω1, ω2)
.= ψi

(
x+ h f(τN , x, ω1, ω2)

)
− hLi(τN , x, ω1, ω2) . (6.3)
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Here the controls for the two players are

ω1 ∈ U1 , ω2 ∈ U2 . (6.4)

Assume that this game has a unique solution, corresponding to the controls

ω1
.= u1(τN , x) , ω2

.= u2(τN , x) . (6.5)

For i = 1, 2, let

Vi(τN−1, x)
.= Φi

(
τN , x, u1(τN , x), u2(τN , x)

)
be the payoffs achieved by the two players, for this solution.

By backward induction, assume that the value functions V1, V2 have already
been determined, for t = τj, τj+1, . . . , τN = T . We then consider the one-shot game
on the subinterval [τj−1, τj], with payoffs

Φi(τj , x, ω1, ω2))
.= Vi

(
τj , x+ h f(τj , x, ω1, ω2)

)
− hLi(τj, x, ω1, ω2) . (6.6)

Assume that this game has a unique solution, corresponding to controls

ω1
.= u1(τj, x) , ω2

.= u2(τj , x) . (6.7)

For i = 1, 2, let

Vi(τj−1, x)
.= Φi

(
τj, x, u1(τj, x), u2(τj , x)

)
be the payoffs achieved by the two players, for this solution.

Continuing this backward induction procedure, we obtain value functions
V1(τj, x), V2(τj , x) and controls u1(τj , x), u2(τj, x), defined for all j = 0, 1, . . . , N and
x ∈ IRn. For convenience, we extend these functions to the entire domain [0, T ]×IRn,
by setting

V
(N)
i (t, x) = V

(N)
i (τj , x) , u

(N)
i (t, x) = u

(N)
i (τj , x) for all t ∈ [τj, τj+1[ .

Notice that we now inserted the superscript (N), to remind that these functions are
obtained via a partition of [0, T ] into N subintervals.

To study differential games in continuous time, we now take the limit as N →
∞, so that the time step h = T/N → 0. Two natural questions arise.

(Q1) Letting N → ∞, study whether the following limits exist:

V
(N)
i (t, x) → V ∗

i (t, x) , u
(N)
i (t, x) → u∗i (t, x) . (6.8)

(Q2) Assuming that the limits exist, derive a system of PDEs satisfied by the value
functions V ∗

1 , V
∗
2 .

In the following we shall content ourselves with a formal analysis, deriving a
system of Hamilton-Jacobi PDEs for the value functions.

Fix an integer N ≥ 1 and consider the time step h = T/N . Assume that at
a given time t = τj the value functions x �→ V

(N)
i (t, x), i = 1, 2, are continuously
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differentiable. According to (6.6), to compute the values V (N)
i (t − h, x) one has to

solve the one-shot game with payoffs

Φi(t, x, ω1, ω2) = V
(N)
i

(
t , x+ h f(t, x, ω1, ω2)

)
− hLi(t, x, ω1, ω2)

= V
(N)
i (t, x) + h∇V (N)

i (t, x) · f(t, x, ω1, ω2) − hLi(t, x, ω1, ω2) + o(h) .

(6.9)

Since V (N)
i (t, x) does not depend on ω1, ω2, neglecting higher order terms o(h), the

optimal strategies for the two players are the same as in the “instantaneous game”
with payoffs

Ψi(ω1, ω2) = qi · f(t, x, ω1, ω2) − Li(t, x, ω1, ω2) i = 1, 2 , (6.10)

with qi = ∇Vi(t, x).
Assume that, for every (t, x) ∈ [0, T ]×IRn and every couple of vectors (q1, q2) ∈

IRn × IRn, we are given a unique solution to the game (6.10), say

ω1 = u�
1(t, x, q1, q2), ω2 = u�

2(t, x, q1, q2), (6.11)

continuously depending on the parameters t, x, q1, q2. Of course, different concepts
of solution (Pareto, Nash, Stackelberg) will lead to different functions u�

1, u
�
2.

Denoting by o(1) a quantity that approaches zero as h→ 0, we can now write

V
(N)
i (t− h, x) − V

(N)
i (t, x)

h
= ∇V (N)

i (t, x) · f(t, x, u�
1, u

�
2)− Li(t, x, u

�
1, u

�
2) + o(1) .

(6.12)
Letting N → ∞ and assuming the convergence

V
(N)
i (t, x) → V ∗(t, x), ∇V (N)

i (t, x) → ∇V ∗
i (t, x) ,

V
(N)
i (t, x) − V

(N)
i (t− h, x)
h

→ V ∗
i,t(t, x) ,

from (6.12) we conclude⎧⎪⎨⎪⎩
V ∗

1,t(t, x) + ∇V ∗
1 (t, x) · f(t, x, u�

1, u
�
2) = L1(t, x, u

�
1, u

�
2) ,

V ∗
2,t(t, x) + ∇V ∗

2 (t, x) · f(t, x, u�
1, u

�
2) = L2(t, x, u

�
1, u

�
2) ,

(6.13)

where u�
i = u�

i

(
t, x, ∇V1(t, x), ∇V2(t, x)

)
. Notice that (6.13) has exactly the same

form as (5.8). The difference lies in the functions u�
i , which reflect different ways

of solving the “one shot” infinitesimal game (6.10). We examine here various types
of solutions, discussing the well posedness of the corresponding backward Cauchy
problem.

6.1. Nash solutions

Let the assumptions (A2) hold. For any given t, x, q1, q2, the Nash equilibrium solu-
tion of the one-shot game with payoffs (6.10) was considered at (4.5)-(4.6). As shown
in Section 5, the Cauchy problem for the system of Hamilton-Jacobi equations (6.13)
is usually ill-posed, in any space dimension ≥ 2.
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6.2. Stackelberg solutions

For any given t, x, q1, q2, the Stackelberg solution of the one-shot game (6.10), with
Player 1 as the leader and Player 2 as follower, is obtained as follows.

For each u1 ∈ U1, let

u�
2(t, x, q2, u1)

.= arg max
ω2∈U2

{
q2 · f(t, x, u1, ω2) − L2(t, x, u1, ω2)

}
.

Then the pair⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u�
1(t, x, q1, q2)

.= arg max
ω1∈U1

{
q1 · f

(
t, x, ω1, u

�
2(t, x, q2, ω1)

)
−L2

(
t, x, ω1, u

�
2(t, x, q2, ω1)

)}
,

u�
2(t, x, q1, q2)

.= u�
2

(
t, x, q2, u

�
1(t, x, q1, q2)

)
,

(6.14)

provides a Stackelberg solution to the one-shot game (6.10).
We observe that, in the situation considered in (4.9)-(4.10) where the dynamics

and the running payoffs are decoupled, the Nash and the Stackelberg solutions co-
incide. In general, the two definitions yield different functions (u�

1, u
�
2). However, by

the analysis in Chapter 5, the Cauchy problem (5.8)–(5.10) for the value functions
V1, V2 will still be ill posed, in a generic case.

6.3. Pareto optima

Next, we consider the case where the pair of functions (u�
1, u

�
2) provides a Pareto

optimal solution to the one-shot games (6.10). Notice that, for a given (t, x, q1, q2),
the game (6.10) will usually have infinitely many Pareto optimal solutions. In order
to select one such solution, we introduce a function θ = θ(t, x, q1, q2) ∈ ]0, 1[ and
consider the pair (u�

1, u
�
2) which maximizes the combined payoff θΦ1 + (1 − θ)Φ2,

namely

(u�
1, u

�
2)

.= arg max
(ω1,ω2)∈U1×U2

{
θ
(
q1 · f(t, x, ω1, ω2) − L1(t, x, ω1, ω2)

)
+(1 − θ)

(
q2 · f(t, x, ω1, ω2) − L2(t, x, ω1, ω2)

)}
.

(6.15)

Next, assume that the pair of value functions (V1, V2) provide a solution to
the corresponding system of Hamilton-Jaconi equations (6.13). As in Section 5, we
wish to study the hyperbolicity of the linearized system (5.12). Assuming that the
argmax in (6.15) is attained in the interior of the admissible set U1×U2, the necessary
conditions yield

θ

(
∇V1 · ∂f

∂u1
− ∂L1

∂u1

)
+ (1 − θ)

(
∇V2 · ∂f

∂u1
− ∂L2

∂u1

)
= 0 , (6.16)

θ

(
∇V1 · ∂f

∂u2
− ∂L1

∂u2

)
+ (1 − θ)

(
∇V2 · ∂f

∂u2
− ∂L2

∂u2

)
= 0 . (6.17)
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For convenience, introduce the quantities

ajk
.= ∇Vj · ∂f

∂uk
− ∂Lj

∂uk
j, k = 1, 2 .

Observe that the identities (6.16)-(6.17) imply

a11 =
θ − 1
θ

a21 , a12 =
θ − 1
θ

a22 . (6.18)

In matrix notation, the homogeneous linear system (5.12) can be written as(
Z1,t

Z2,t

)
+

n∑
α=1

Aα

(
Z1,xα

Z2,xα

)
=
(

0
0

)
, (6.19)

where the 2 × 2 matrices Aα are now given by

Aα =

⎛⎜⎜⎜⎜⎝
fα + a11

∂u�
1

∂q1α
+ a12

∂u�
2

∂q1α
a11

∂u�
1

∂q2α
+ a12

∂u�
2

∂q2α

a21
∂u�

1

∂q1α
+ a22

∂u�
2

∂q1α
fα + a21

∂u�
1

∂q2α
+ a22

∂u�
2

∂q2α

⎞⎟⎟⎟⎟⎠ . (6.20)

By (6.18) this can be written as

Aα =

⎛⎝ fα 0

0 fα

⎞⎠

+

⎛⎜⎝
θ − 1
θ

1

⎞⎟⎠(a21
∂u�

1

∂q1α
+ a22

∂u�
2

∂q1α
a21

∂u�
1

∂q2α
+ a22

∂u�
2

∂q2α

)
.

Therefore, given ξ = (ξ1, . . . , ξn), we can write

A(ξ) =
n∑

α=1

ξαA
α =

(
n∑

α=1

ξαfα

)
I2 +

(
1 − θ−1

1

)
⊗ w(ξ) , (6.21)

where I2 denotes the 2 × 2 identity matrix and

w(ξ) .=
n∑

α=1

ξα

(
a21

∂u�
1

∂q1α
+ a22

∂u�
2

∂q1α
a21

∂u�
1

∂q2α
+ a22

∂u�
2

∂q2α

)
.

According to (6.21), every 2× 2 matrix A(ξ) can be represented as a multiple of the
identity matrix plus a matrix of rank one. Therefore, both of its eigenvalues are real.

As observed in [14], this does not guarantee that the system (6.19) is hyperbolic,
because for some choices of ξ the two eigenvalues of A(ξ) may coincide and a basis
of eigenvectors may not exist. In any case, solutions to differential games obtained
using Pareto optima should not experience the wild instabilities found with Nash
solutions, where the eigenvalues of the corresponding matrices A(ξ) can be complex.
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6.4. Cooperative-competitive solutions

Finally, we examine the case where at each step the game (6.6) is solved in terms of
the co-co solution.

The sum of the two payoffs

V
(N)
+ (τj, x)

.= V
(N)
1 (τj , x) + V

(N)
2 (τj , x)

is now a scalar function which can be determined by backward induction, solving
the optimization problems

V
(N)
+ (τj−1, x) = max

(ω1,ω2)∈U1×U2

{
V

(N)
+

(
τj , x+ hf(τj , x, ω1, ω2)

)
−h

∑
i=1,2

Li(τj, x, ω1, ω2)
}
.

(6.22)

Letting N → ∞, it is well known [34] that the functions V (N)
+ converge to the value

function V+ = V+(t0, x0) for the optimal control problem

maximize:
∑
i=1,2

(
ψi(x(T )) −

∫ T

t0

Li(t, x(t), u1(t), u2(t)) dt
)
, (6.23)

subject to
x(t0) = x0 , ẋ(t) = f(t, x(t), u1(t), u2(t)) . (6.24)

The maximum combined payoff (6.23) is sought over all couples of controls (u1, u2) :
[t0, T ] �→ U1 × U2.

On the other hand, the difference between the two payoffs

V
(N)
− (τj, x)

.= V
(N)
1 (τj , x) − V

(N)
2 (τj , x)

is a scalar function which can also be determined by backward induction. Indeed,
for each j, the value V (N)

− (τj−1, x) is the value of the zero-sum game with payoff

J = V
(N)
−

(
τj , x+ hf(τj, x, u1, u2)

)
− h

[
L1(τj , x, u1, u2) − L2(τj , x, u1, u2)

]
.

(6.25)
Player 1 seeks to maximize this payoff, while Player 2 wants to minimize it. We recall
that this game always has a value, within the family of mixed strategies. Letting
N → ∞, the functions V (N)

− converge to the value function V− = V−(t0, x0) for the
zero-sum differential game with payoff

J = ψ1(x(T ))−ψ2(x(T ))−
∫ T

t0

[
L1(t, x(t), u1(t), u2(t))−L2(t, x(t), u1(t), u2(t))

]
dt ,

subject to: u1(t) ∈ U1 , u2(t) ∈ U2 for t ∈ [t0, T ], and

ẋ = f(t, x, u1, u2) , x(t0) = x0 .

This value function can be determined by solving a backward Cauchy problem for
a scalar H-J equation

Wt +H(t, x,∇W ) = 0 , W (T, x) = ψ1(x) − ψ2(x) .
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Here the hamiltonian function H(t, x, q) is defined as value of the “instantaneous”
zero-sum game with payoff

J (t,x,q)(ω1, ω2)
.=
{
q · f(t, x, ω1, ω2) − L1(t, x, ω1, ω2) + L2(t, x, ω1, ω2)

}
.

This game always has a value, within the family of randomized strategies. In the
case where a saddle point exists, the following min-max coincides with the max-min
and one has the representation

H(t, x, q) .= max
ω1∈U1

min
ω2∈U2

J (t,x,q)(ω1, ω2) = min
ω2∈U2

max
ω1∈U1

J (t,x,q)(ω1, ω2) .

By the previous analysis, the co-co solution to a differential game for two players
can be found by solving two scalar Hamilton-Jacobi equations. This solution (in the
viscosity sense) is unique, and stable w.r.t. perturbations.

7. Nash equilibrium feedbacks with infinite time horizon

As shown in the previous sections, the search for Nash equilibrium solutions to a
differential game on a time interval [0, T ] usually leads to an ill posed problem, which
is mathematically intractable.

As an alternative, in this section we consider games in infinite time horizon:
t ∈ [0,∞[ , with exponentially discounted payoffs. Assume that the state of the
system evolves according to

ẋ = f(x, u1, u2) , u1(t) ∈ U1 , u2(t) ∈ U2 , (7.1)

and that the payoff functions are

Ji =
∫ ∞

0
e−ρt φi

(
x(t), u1(t), u2(t)

)
dt . (7.2)

Here the constant ρ > 0 is a discount rate. Since the dynamics and the payoff
functions do not depend explicitly on time, it is natural to seek a Nash equilibrium
solution consisting of time-independent feedbacks.

A pair of functions x �→ u∗1(x) ∈ U1, x �→ u∗2(x) ∈ U2 will be called a Nash equi-
librium solution in feedback form to the non cooperative game (7.1)–(7.2) provided
that:

(i) The map u∗1(·) is an optimal feedback, in connection with the optimal control
problem for the first player:

maximize
∫ ∞

0
e−ρt φ1

(
x(t), u1(t), u∗2(x(t))

)
dt (7.3)

subject to
ẋ = f(x, u1, u

∗
2(x)) u1(t) ∈ U1 . (7.4)

(ii) The map u∗2(·) is an optimal feedback, in connection with the optimal control
problem for the second player:

maximize
∫ ∞

0
e−ρt φ2

(
x(t), u∗1(x(t)), u2(t)

)
dt (7.5)
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subject to

ẋ = f(x, u∗1(x), u2) u2(t) ∈ U2 . (7.6)

A general procedure to find these equilibrium feedbacks u∗1(·), u∗2(·) relies on
the computation of the value functions. In analogy with (A2), assume:

(A2′) For any x ∈ IRn and every pair of vectors (q1, q2) ∈ IRn × IRn, there exists a
unique pair (u�

1, u
�
2) ∈ U1 × U2 such that

u�
1(x, q1, q2) = argmax

ω∈U1

{
q1 · f(x, ω, u�

2) + φ1(x, ω, u
�
2)
}
, (7.7)

u�
2(x, q1, q2) = argmax

ω∈U2

{
q2 · f(x, u�

1, ω) + φ2(x, u
�
1, ω)

}
. (7.8)

For any x0 ∈ IRn, call V1(x0) the maximum payoff for the optimal control
problem (7.3)-(7.4), given the initial state x(0) = x0. Similarly, let V2(x0) be the
maximum payoff for the optimal control problem (7.5)-(7.6), given the initial state
x(0) = x0.

On an open region where the value functions V1, V2 are continuously differ-
entiable, according to Theorem 10.17 in the Appenxix these functions satisfy the
system of Hamilton-Jacobi equations:{

ρV1 = H(1)(x,∇V1,∇V2) ,
ρV2 = H(2)(x,∇V1,∇V2) ,

(7.9)

where, for i = 1, 2,

H(i)(x, q1, q2)
.= qi · f

(
x, u�

1(x, q1, q2), u
�
2(x, q1, q2)

)
+φi

(
x, u�

1(x, q1, q2), u
�
2(x, q1, q2)

)
.

In turn, if a solution V1, V2 to the system (7.9) is known, the corresponding feedback
controls are obtained as

u∗i (x) = u�
i(x, ∇V1(x), ∇V2(x)) i = 1, 2 .

In general, the system (7.9) is highly nonlinear and difficult to solve. Notice,
however, that in the present case we are not looking at a Cauchy problem (which
can be ill posed), but at a time-independent problem. For applications, it would
already be meaningful to construct solutions to (7.9) on some domain Ω, provided
that this domain is positively invariant for the corresponding dynamics. In other
words, calling t �→ x(t, x0) the solution to

ẋ = f(x, u∗1(x), u
∗
2(x)) x(0) = x0 ,

the forward invariance property means that

x(t, x0) ∈ Ω whenever x0 ∈ Ω , t ≥ 0 . (7.10)
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7.1. A perturbation approach

A general theory for systems of Hamilton-Jacobi equations of the form (7.9) is not yet
available. To make some progress, one can adopt a perturbation approach. Consider
a family of games, depending on a small parameter ε. The dynamics is now

ẋ = f(x, u1, u2; ε) , u1(t) ∈ U1 , u2(t) ∈ U2 , (7.11)

while the payoff functions are

Ji =
∫ ∞

0
e−ρt φi

(
x(t), u1(t), u2(t); ε

)
dt . (7.12)

Assume that, for ε = 0, the corresponding system (7.9) is “degenerate”, in the sense
that can be reduced to a scalar equation. Then one can study what happens in the
more general case where ε is not zero, but sufficiently small.

More precisely, assume that, for ε = 0, we are given a pair of Nash equilibrium
feedbacks solution u∗1(·), u∗2(·), defined for x in an open set Ω ⊂ IRn. Let Ω∗ ⊂ Ω
be a compact subset with smooth boundary, which is positively invariant for the
corresponding dynamics. Namely, assume that

n(x) · f(x, u∗1(x), u
∗
2(x); 0) < 0 for all x ∈ ∂Ω∗. (7.13)

Here n(x) denotes the unit outer normal to the boundary ∂Ω∗ at the point x.
For ε > 0 sufficiently small, a natural question is whether there exist a unique

solution (V ε
1 , V

ε
2 ) (or infinitely many solutions) of the system (7.9), defined on the

same domain Ω∗ and such that

‖V ε
1 − V1‖C0(Ω∗) → 0 , ‖V ε

2 − V2‖C0(Ω∗) → 0 , as ε→ 0. (7.14)

We review here a number of cases where the system (7.9) can be reduced to a
scalar equation.

1 - Uncoupled games. Assume that both the dynamics and the payoff functions are
completely uncoupled. In other words, assume that the state variable can be split
as x = (x1, x2), with

ẋ1 = f1(x1, u1) , ẋ2 = f2(x2, u2) ,

J1 =
∫ ∞

0
e−ρt φ1

(
x1(t), u1(t)

)
dt ,

J2 =
∫ ∞

0
e−ρt φ2

(
x2(t), u2(t)

)
dt .

In this case, each player solves his own optimal control problem, entirely independent
from the actions of the other player. The value functions V1 = V1(x1), V2 = V2(x2)
are found by solving two independent, scalar H-J equations.

In the context of finite time games, small perturbations of this game, introduc-
ing some weak coupling between the players, were studied in [35].
2 - One weak player. Consider a family of games depending on a small parameter ε,
with dynamics

ẋ = f1(x, u1) + εf2(x, u2) (7.15)
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and payoff functionals

Ji =
∫ ∞

0
e−ρt

(
φi1(x, u1) + φi2(x, u2)

)
dt , i = 1, 2 . (7.16)

Here ε is regarded as the strength of the second player. When ε = 0, this player
cannot influence in any way the evolution of the system. His optimal strategy is
thus the myopic one:

u2 = u∗2(x) = argmax
ω∈U2

φ22(x, ω) .

In this case, the non-cooperative game reduces to an optimal control problem for
the first player:

maximize
∫ ∞

0
e−ρt

(
φ11(x, u1) + φ12(x, u∗2(x))

)
dt , (7.17)

for a system with dynamics
ẋ = f1(x, u1). (7.18)

As soon as the optimal feedback control u∗1(x) for the first player is found, this
determines in turn the trajectories of the system, and hence the value function for
the second player.

In one space dimension, the existence and uniqueness of Nash feedback solu-
tions, for ε > 0 small, was investigated in [10].
3 - Symmetric games. We say that the game (7.1)-(7.2) is symmetric if the two
players have an identical role, in the sense that

f(x, u1, u2) = f(x, u2, u1), U1 = U2 = U ,

φ1(x, u1, u2) = φ2(x, u2, u1) .
In this situation, it is natural to seek a symmetric solution, with u∗1(x) = u∗2(x),
V1(x) = V2(x) = V (x). The function V can be found by solving the scalar H-J
equation

ρV = ∇V · f
(
x, u�(x,∇V ), u�(x,∇V )

)
+ φi

(
x, u�(x,∇V ), u�(x,∇V )

)
(choosing here i = 1 or i = 2 does not make a difference). In analogy with (A2), we
assume here the existence of a function u� such that

u�(x, q) .= argmax
ω∈U

{
q · f(x, ω, u�(x, q)) + φ1

(
x, ω, u�(x, q)

)}

= argmax
ω∈U

{
q · f(x, u�(x, q), ω) + φ2

(
x, u�(x, q), ω

)}
.

For example, assume

ẋ = g(x, u1) + g(x, u2), u1(t), u2(t) ∈ U ,

J1 =
∫ ∞

0
e−ρt

[
φ(x, u1) + ψ(x, u2)

]
dt ,

J2 =
∫ ∞

0
e−ρt

[
φ(x, u2) + ψ(x, u1)

]
dt .
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Then
u�(x, q) = argmax

ω∈U

{
q · g(x, ω) + φ(x, ω)

}
.

Assuming that, for ε = 0 the game (7.11)-(7.12) is symmetric, an interesting
problem is to investigate the existence of Nash equilibrium feedback solutions for
ε > 0 small.

4 - Fully cooperative games. Assume that, for ε = 0, the payoffs (7.12) for the two
players coincide, i.e.: φ1 = φ2 = φ(x, u1, u2). In connection with the dynamics (7.11),
we can then consider the optimal control problem

maximize: J(u1, u2) =
∫ ∞

0
e−ρtφ(x, u1, u2) dt ,

for a controller who can simultaneously choose both controls u1(·) and u2(·). A
feedback solution (u∗1(x), u∗2(x)) to this optimal control problem yields a Nash equi-
librium solution to the original differential game, for ε = 0. Solutions for ε > 0 can
be studied by a perturbation approach.

5 - Zero sum games. Assume that, for ε = 0, the game (7.11)-(7.12) is zero-sum, i.e.:
φ1 = −φ2 = φ(x, u1, u2). If

max
u1∈U1

min
u2∈U2

{
q · f(x, u1, u2) + φ(x, u1, u2)

}
= min

u2∈U2

max
u1∈U1

{
q · f(x, u1, u2) + φ(x, u1, u2)

} (7.19)

for every q ∈ IRn, then the value functions V1(x) = −V2(x) = V (x) are well defined.
They can be determined by solving the scalar Hamilton-Jacobi equation

ρV = H(x,∇V ),

where H(x, q) is the common value of the quantities in (7.19). Note that, if the
identity (7.19) fails, one can still define H(x, q) as the unique value of the zero-sum
game with payoff

q · f(x, u1, u2) + φ(x, u1, u2) u1 ∈ U1 , u2 ∈ U2 .

By Corollary 2 in Section 2, this value is always well defined, within the family of
randomized strategies.

Starting with the feedbacks u∗1(·), u∗2(·), known in the case ε = 0, one may study
solutions for ε > 0 by a perturbation approach.

8. A game with infinitely many players

In a differential game with a small number of players, each player has the power to
modify the state of the system. For example, in an oligopolistic market with a small
number of producers, each company can affect the market price by changing its own
production level.
In the search for Nash solutions in feedback form, this situation determines severe
instabilities, often leading to intractable mathematical problems.
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On the other hand, when the number of players is very large, the state of the
system is determined by the average behavior: no single player has the power to
change the overall evolution of the system. This fact greatly simplifies the mathe-
matical model, and contributes to the stability of Nash solutions to the differential
game.

In recent years, a theory of mean field games has emerged, motivated by models
in economy and finance, with a large number of agents. As an elementary introduc-
tion, we discuss below a specific example, leading to a differential game with infinitely
many players. For a comprehensive presentation of mean field games we refer to the
original papers [25, 29].

Consider a game for N competing oil producers, who adjust their production
levels as functions of time, in order to maximize their total profits. To model this
situation, let us introduce the variables

p(t) = [market price of the oil at time t],

ui(t) = [rate at which the i-th producer extracts the oil, at time t],

ci(u) = [cost incurred by the i-th producer, for extracting the oil at rate u],

Ri = [initial amount of oil in the reserves of the i-th player].

The optimization problem for the i-th player is

maximize:
∫ ∞

0
e−ρt

[
p(t)ui(t) − ci(ui(t))

]
dt , (8.1)

subject to ∫ ∞

0
ui(t) dt = Ri . (8.2)

To fix the ideas, assume that the costs ci are quadratic functions of the pro-
duction rates, say

ci(u) = aiu+
bi
2
u2 . (8.3)

Moreover, assume that at each time t the price p(t) is determined by the market, in
terms of a demand function. The demand for oil at time t will be modeled as

D(t, p) = Weγtp−α

Here Weγt represents the total size of the economy, growing at a constant rate γ.
The exponent −α < 0 accounts for the elasticity of the demand, which shrinks as
the price increases. The price function

p = p

(
t,

N∑
i=1

ui

)
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is now implicitly determined by the equality between supply and demand:

D(t, p(t)) =
N∑

i=1

ui(t) .

To derive the optimal strategy for the i-th player, a key observation is that, if

ui <<

N∑
j=1

uj ,

then the contribution of the i-th player to the determination of the market price is
very small. If this holds, then the i-th player can regard the price p(t) as a given
function of time, determined by the collective behavior of all other players.

The constraint (8.2) can be taken into account by introducing a Lagrange multi-
plier. For a given constant λi (to be determined later), we thus consider the problem

maximize:
∫ ∞

0

{
e−ρt

[
p(t)ui(t) − ci(ui(t))

]
− λiui(t)

}
dt . (8.4)

The pointwise optimality conditions are

ui(t) = argmax
ω≥0

{
e−ρt

(
p(t)ω − ci(ω)

)
− λiω

}

= argmax
ω≥0

{
e−ρt

(
p(t)ω − aiω − bi

2
ω2
)
− λiω

}

=
1
bi

[
p(t) − ai − eρtλi

]
+
.

(8.5)

Here [s]+
.= max{s, 0} denotes the positive part of a number s. If∫ ∞

0

1
bi

[
p(t) − ai

]
+
dt ≤ Ri ,

we set λi = 0. Otherwise, we determine the constant λi ≥ 0 so that∫ ∞

0

1
bi

[
p(t) − ai − eρtλi

]
+
dt = Ri . (8.6)

Up to here, this has been a classical derivation of the optimal strategy for one
of the producers, provided that he knows in advance the oil price p(t) at all future
times. We now discuss how this market price can be predicted.

Assume that at the initial time t = 0 there is a large number of producers, of
different types. For our purposes, the “type” of a producer is described by a vector
y = (a, b,R). This determines his production cost c(u) = au+ bu2/2 and his initial
oil reserves, measured by R. From the previous derivation, it is clear that, for a
given price function t �→ p(t), the optimal production strategy u(·) in (8.5) depends
only on the type of the producer. We can thus write u = u(t; y, p(·)). Similarly, the
Lagrange multiplier λ = λ(y, p(·)) in (8.6) depends only on the type y = (a, b,R) of
the producer.
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To describe how many producers of a given type are present, we think of a
continuum of producers, with density function m(y). In other words, given any open
set Ω ⊂ IR3, the number of producers of type y = (a, b,R) ∈ Ω is∫

Ω
m(y) dy .

For a given price function p(·), the total oil production at time t is

U(t) .=
∫

IR3

u(t; y)m(y) dy . (8.7)

At each time t, the market price provides a balance between production and demand,
namely

U(t) = D(t, p(t)) .

More explicitly, this yields the pointwise identities∫
IR3

1
b

[
p(t) − a− eρtλ(y)

]
+
m(y) dy = W eγtp(t)−α for all t ≥ 0 . (8.8)

According to (8.6), for all y = (a, b,R) in the support of the measure m, the
Lagrange multiplier λ = λ(y) ≥ 0 is determined by the constraint∫ ∞

0

1
b

[
p(t) − a− eρtλ(y)

]
+
dt = R , (8.9)

or else λ(y) = 0 if ∫ ∞

0

1
b

[
p(t) − a

]
+
dt ≤ R .

In the end, to solve the optimization problem we need to find two functions: λ(y)
and p(t), satisfying (8.8)-(8.9). A numerical algorithm computing an approximate
solution to these equations goes as follows. Construct a family of functions depending
on an additional parameter θ ∈ [0,∞[ , such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂θ
p(t, θ) = W eγtp(t)−α −

∫
IR3

1
b

[
p(t) − a− eρtλ(y)

]
+
m(y) dy ,

∂

∂θ
λ(y, θ) =

∫ ∞

0

1
b

[
p(t) − a− eρtλ(y)

]
+
dt −R .

(8.10)

By guessing a suitable initial data

p(t, 0) = p0(t) , λ(y, 0) = λ0(y) , (8.11)

we expect that as θ → ∞ the solution to (8.10) will converge to a steady state. In
other words,

p̄(t) .= lim
θ→∞

p(t, θ) , λ̄(y) .= lim
θ→∞

λ(y, θ) ,

should yield the solution to the problem.
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Remark 8.1. In the previous model, as time progresses the players do change type,
but only because their reserves shrink. Indeed, the reserve of the i-th player at time
t is

Ri(t) = Ri −
∫ t

0
ui(s) ds .

One could consider other ways for the players to change type:
• A player can buy more oil reserves.
• A player can invest in better technology, and reduce his production costs. In

this case, the coefficients a, b in his cost function will decrease.
In addition, one may wish to incorporate stochastic effects.

• Since each player does not know precisely the size of his own oil reserve, his
assessment of this reserve may randomly change.

• The market demand for oil may be subject to random fluctuations, due to
external factors.

All these aspects can be taken into account, in more realistic (but more complex)
models.

9. Research directions

The mathematical theory of games studies situations where two or more agents
make decisions, within the same environment, but with possibly conflicting goals.
The aims of this theory are two-folds:

• From the point of view of one of the players, one seeks to determine “optimal”
or “rational” strategies, to be implemented during actual play.

• From the point of view of an external observer, one would like to predict players’
behavior and the outcome of the game. It also has interest to understand how,
by modifying the rules of the game, the eventual outcome can be improved,
from a higher collective standpoint.

Both of these aspects find applications to economics, and more generally in situations
involving the interaction of individuals with different goals. For example, the first
point of view is of interest to companies, who need to plan investment, production
and advertising strategies in a competitive marketplace. The second point of view can
be of relevance to a government, who wishes to regulate the market (determining
lending and tax rates, ruling out cartels, etc. . .) in order to maximize economic
growth. As seen in many examples, the outcome determined by a Nash equilibrium
can be much inferior to a Pareto optimum, from a global perspective. An outstanding
task for game theory is to design additional penalties or incentives, so that the
behavior of individual players (determined by a Nash equilibrium) approaches a
Pareto optimum.

In the mathematical theory of optimal control there is one standard model,
which has been studied in a large body of literature. On the other hand, differential
games come in a variety of models, depending on the information available to the
agents, their ability to communicate and to agree on a common course of action,
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the possibility of side payments, the presence of random external factors, etc. . . The
development of appropriate mathematical models remains a major issue of current
research.

Among the features that a good mathematical model should have, a key one is
robustness. Namely, the strategies adopted by the players and the outcome of the
game should not exhibit sensitive dependence on the data of the problem. If a small
change in the data can determine a large change in the outcome, the model loses
its predictive power, and hence most of its interest. In addition, the computation of
the strategies adopted by the various players should not be exceedingly complex. If
a model requires a solution algorithm which can be mastered only by a handful of
theoreticians, it can hardly explain actual behavior [3].

At present, various models are known, which yield tractable mathematical prob-
lems:

• Nash, or Stackelberg equilibria in the class of open loop controls.
• Feedback solutions to zero-sum games.
• Nash solutions for linear-quadratic problems, where the feedback controls are

(somewhat artificially) restricted to the class of functions depending linearly on
the state.

• Co-co (cooperative-competitive) solutions [27].

Specific applications motivate further research, studying cases with state constraints,
external perturbations, asymmetric information, etc. . . For an extensive survey of
references we refer to [9, 20].

In a situation where the players have information on the current state of the
system but do not cooperate with each other, the concept of Nash feedback equilib-
rium generally leads to an ill posed problem, as seen in Section 5. This motivates
the search for alternative models, where some mechanism for partial cooperation, or
the presence of stochastic components, renders the solution more stable w.r.t. per-
turbations in the data. The following comments briefly address this issue.

According the analysis in Section 5, the ill posedness stems from the fast ampli-
fication of high-frequency oscillations in the value functions. In a realistic situation,
however, players are not able nor willing to measure such small scale effects, and
to exploit them. Ideas related to the regularization of ill posed problems [6] may
thus be of use here. In an alternative model, partial cooperation may be achieved
based on repeated games, reaching a more stable situation where players develop
mutual trust. For a deeper discussion of modeling issues we refer to Aumann’s papers
[3, 4, 5].

Another way to achieve a robust model is to consider Nash feedback equilibria
for stochastic differential games [24], where the state evolves according to

dx = f(t, x, u1, u2) dt + σ(t, x) dw .

Here w denotes a Brownian motion. In this case the value functions are found by
solving a Cauchy problem for a system of parabolic equations, which is well posed
as soon as the diffusion matrix σ has full rank.
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An interesting class of models, whose investigation has started only recently,
deals with games with infinitely many players. In this case, no single player can affect
the state of the system. As in the example presented in Section 8, each player thus
faces an optimal control problem where the state of the system can be considered
as a given function of time, determined by the average behavior of all other players.
This accounts for the robustness of the mathematical model. See [25, 29] for a survey
of recent work in this direction.

10. Appendix

For readers’ convenience, this last section collects various definitions and results in
mathematical analysis and control theory, which were used as background material.

10.1. Multifunctions

In the following, X denotes a metric space with distance d(·, ·). The distance between
a point x ∈ X and a set A ⊆ X is

d(x,A) .= inf
a∈A

d(x, a).

The open ε-neighborhood around the set A is denoted by

B(A, ε) .= {x ∈ X : d(x,A) < ε}.
The Hausdorff distance between two (nonempty) compact sets A,A′ ⊂ X is defined
as

dH(A,A′) .= inf
{
ρ > 0 ; A ⊂ B(A′, ρ) and A′ ⊂ B(A, ρ)

}
.

If X,Y are metric spaces, a multifunction F from X to Y is a map that asso-
ciates to each point x ∈ X a set F (x) ⊆ Y . We say that F is compact valued if every
F (x) is a non-empty compact subset of Y . The multifunction F is bounded if all its
values are contained inside a fixed ball B ⊂ Y . We recall here the main continuity
concepts for multivalued maps.

Definition 10.1. Let X,Y be metric spaces. A multifunction F : X �→ Y with
compact values is said to be Hausdorff continuous if, for every x ∈ X,

lim
x′→x

dH(F (x′), F (x)) = 0.

We say that F is Hausdorff upper semicontinuous if, for every x ∈ X and ε > 0
there exists δ > 0 such that

F (x′) ⊆ B(F (x), ε) whenever d(x′, x) < δ . (10.1)

We say that F is Hausdorff lower semicontinuous if, for every x ∈ X and ε > 0
there exists δ > 0 such that

F (x) ⊆ B(F (x′), ε) whenever d(x′, x) < δ . (10.2)
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Figure 11. Left: the graph of an upper semicontinuous function.
Here F (x0) contains an entire segment, while F (x) is single-valued
for x 
= x0 . Right: the graph of a lower semicontinuous function. Here
F (x0) consists of just one point, while F (x) is multivalued for x < x0 .

Intuitively, when F is upper semicontinuous, one should think that each set
F (x) is “large”, compared with the sets F (x′) with x′ close to x. Indeed, the ε-
enlargement B(F (x), ε) contains all the nearby sets F (x′).

On the other hand, when F is lower semicontinuous, the set F (x) is “small”
compared with all nearby sets F (x′) with x′ close to x. Indeed, for all x′ in a neigh-
borhood of x, the ε-enlargement B(F (x′), ε) contains F (x).

Theorem 10.2. A bounded multifunction F : X �→ IRN with compact values is upper
semicontinuous if and only if its graph

Graph(F ) =
{
(x, y) ; y ∈ F (x)

}
is closed.

The closure of the graph means that, if lim
k→∞

xk = x, and lim
k→∞

yk = y and

yk ∈ F (xk) for every k ≥ 1, then y ∈ F (x). A proof of Theorem 10.2 can be found
in [2].

Given a multifunction x �→ F (x), by a selection of F we mean a single-valued
function x �→ f(x) such that f(x) ∈ F (x) for every x. In general, even if F is
Hausdorff continuous, there may not exist any continuous selection. For convex-
valued multifunctions, the main selection theorems are as follows.

Theorem 10.3 (Michel). Let X be a metric space, and let F : X �→ IRN be a lower
semicontinuous multifunction with compact convex values. Then there exists a con-
tinuous selection x �→ f(x) ∈ F (x).

Theorem 10.4 (Cellina). Let X be a compact metric space, and let F : X �→ IRN be
an upper semicontinuous multifunction with compact convex values. Then for every
ε > 0 there exists a continuous map f : X �→ IRN such that

graph(f) ⊂ B
(
graph(F ), ε

)
. (10.3)

Moreover, f takes values in the convex hull of the image F (X) .=
⋃

x∈X

F (x).
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x

fF

Figure 12. An upper semicontinuous multifunction F with convex val-
ues, the ε-neighborhood of its graph, and a continuous ε-approximate se-
lection f .

Proofs of the above theorems can be found in [2].

10.2. Fixed point theorems

We review here the fixed point theorem of Brouwer, and its multivalued extension
due to Kakutani.

Theorem 10.5 (Brouwer). Let f be a continuous map from a compact, convex set
K ⊂ IRn into itself. Then there exists a point x̄ ∈ K such that

x̄ = f(x̄) . (10.4)

An elementary proof (originally proposed by Milnor) of this classical result can
be found in the Appendix of [11].

Corollary 10.6 (Kakutani). Let K be any compact convex subset of IRn. Let F :
K �→ IRn be an upper semicontinuous multifunction with compact, convex values,
such that F (x) ⊆ K for every x ∈ K. Then there exists a point x̄ ∈ K such that

x̄ ∈ F (x̄) . (10.5)

Proof. For every ε > 0, by Cellina’s approximate selection theorem there exists a
continuous map fε : K �→ K such that

graph(fε) ⊂ B(graph(F ), ε).

By Brouwer’s fixed point theorem, there exists xε ∈ K such that

f(xε) = xε .

Since K is compact, we can extract a convergent sequence, say

xεk
→ x̄ .

We claim that (10.5) holds. Indeed, by construction

d
(
(xεk

, f(xεk
)) , graph(F )

)
≤ εk
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Letting εk → 0 we have

(xεk
, f(xεk

)) = (xεk
, xεk

) → (x̄, x̄) .

Therefore

d
(
(x̄, x̄) , graph(F )

)
= 0.

Hence (x̄, x̄) ∈ graph(F ), because by assumption the graph of F is closed. This
implies (10.5).

10.3. Optimal Control Problems

Here and in the following sections we review some basic definitions and results in
the theory of optimal control.

Consider a control system described by

ẋ = f(t, x, u), u(t) ∈ U . (10.6)

Here t is time, x ∈ IRn is the state variable, and the upper dot denotes derivative
w.r.t. time. The control function u(·) is assumed to be measurable, taking values in
a compact domain U ⊂ IRm. Throughout the following we assume

(H1) The function f is continuous w.r.t. all variables and continuously differ-
entiable w.r.t. x. Moreover there exists a constant C such that

|f(t, x, u)| ≤ C(1 + |x|) for all (t, x, u) ∈ [0, T ] × IRn × U. (10.7)

The above linear growth condition guarantees that solutions of (10.6) cannot
become unbounded in finite time. Given an initial condition

x(t0) = x0 , (10.8)

let

t �→ x(t) = x(t ; t0, x0, u) (10.9)

be the corresponding trajectory of (10.6), and consider the optimization problem

maximize: J(u; t0, x0)
.= ψ

(
x(T )

)− ∫ T

t0

L(t, x(t), u(t)) dt . (10.10)

Here ψ describes a terminal payoff, while L(·) is a running cost. For a given initial
data (t0, x0), the payoff J should be maximized over all measurable control functions
u : [t0, T ] �→ U .

10.4. Necessary Conditions for Optimality

Let t �→ u∗(t) be an optimal control function, and let t �→ x∗(t) = x(t; t0, x0, u
∗) be

the corresponding optimal trajectory. A set of necessary conditions satisfied by the
functions u∗(·), x∗(·) is provided by the Pontryagin Maximum Principle (PMP). We
first consider the basic case where the initial point is given, and the terminal point
is free.
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x (t)

f(t, x (t), u)*

p(t)
ψ*

Δ

p(T)=       

x0

x (T)*

Figure 13. An illustration of the Pontryagin maximum principle, in the
case where L(t, x, u) ≡ 0. At each time t ∈ [0, T ], among all possible veloc-
ities ẋ = f(t, x∗(t), u), u ∈ U (shaded set), the optimal choice is the one
that maximizes the inner product with the adjoint vector p(t).

Theorem 10.7 (PMP, free terminal point). Let t �→ u∗(t) be an optimal control
and t �→ x∗(t) be the corresponding optimal trajectory for the maximization problem
(10.6)–(10.10). Define the vector t �→ p(t) as the solution to the linear adjoint system

ṗ(t) = −p(t) ∂f
∂x

(
t, x∗(t), u∗(t)

)
+
∂L

∂x

(
t, x∗(t), u∗(t)

)
, (10.11)

with terminal condition
p(T ) = ∇ψ(x∗(T )

)
. (10.12)

Then, for almost every t ∈ [t0, T ] the following maximality condition holds:

p(t)·f(t, x∗(t), u∗(t))−L(t, x∗(t), u∗(t)) = max
u∈U

{
p(t)·f(t, x∗(t), u)−L(t, x∗(t), u)

}
.

(10.13)

In the above theorem, x, f, v represent column vectors, while p is a row vector.
In coordinates, the equations (10.11)–(10.13) can be written as

ṗi(t) = −
n∑

j=1

pj(t)
∂fj

∂xi
(t, x∗(t), u∗(t)) +

∂L

∂xi
(t, x∗(t), u∗(t)), (10.14)

pi(T ) =
∂ψ

∂xi
(x∗(T )), (10.15)

n∑
i=1

pi(t) · fi(t, x∗(t), u∗(t)) − L(t, x∗(t), u∗(t))

= max
u∈U

{
n∑

i=1

pi(t) · fi(t, x∗(t), u) − L(t, x∗(t), u)

}
.

(10.16)

Relying on the PMP, the computation of the optimal control can be achieved
in two steps:
STEP 1: solve the pointwise maximization problem (10.13), expressing the optimal
control u� as a function of t, x, p :

u�(t, x, p) = argmax
u∈U

{
p · f(t, x, u) − L(t, x, u)

}
. (10.17)
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STEP 2: solve a two-point boundary value problem on the interval [t0, T ].⎧⎪⎨⎪⎩
ẋ = f(t, x, u�(t, x, p)) ,

ṗ = −p(t) ∂f
∂x

(
t, x, u�(t, x, p)

)
+
∂L

∂x

(
t, x, u�(t, x, p)

)
,

(10.18)

⎧⎨⎩
x(t0) = x0 ,

p(T ) = ∇ψ(x(T )
)
.

(10.19)

Remark 10.8. There are two main difficulties associated with the above procedure:

• In general, the function u� = u�(t, p, x) in (10.17) is highly nonlinear. It can be
multivalued or discontinuous.

• The set of equations (10.18) is not a Cauchy problem, where all components
of the solution are explicitly given at the initial time t = t0. On the contrary,
the value of x is prescribed at the initial time t = t0, but the value of p is
determined by an equation valid at the terminal time t = T .

Numerically, the two-point boundary value problem (10.18)-(10.19) can be
solved by a shooting method. One needs to guess an initial value p̄ and solve the
corresponding Cauchy problem, consisting of the system of ODEs in (10.18) with
initial data

x(t0) = x0 , p(t0) = p̄ .

This yields a map from IRn into IRn:

p̄ �→ Λ(p̄) .= p(T ) −∇ψ(x(T )) .

By an iterative procedure, we then adjust the value of p̄ and try to find a zero of
the map Λ. This will provide a solution to the boundary value problem.

Remark 10.9. Recalling (10.17), consider the Hamiltonian function

H(t, x, p) .= sup
u∈U

{
p · f(t, x, u) − L(t, x, u)

}
= p · f(t, x, u�(t, x, p)) − L(t, x, u�(t, x, p)).

(10.20)

Assume that the functions f, L are continuously differentiable w.r.t. x, u, and assume
that the maximum u� in (10.17) is always attained at an interior point of U . Then
the system of differential equations in (10.18) can be written in Hamiltonian form⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ =
∂H

∂p
(t, x, p) ,

ṗ = −∂H
∂x

(t, x, p) .

(10.21)

Indeed, the maximality condition (10.17) implies

p · ∂f
∂u

− ∂L

∂u
= 0.
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Next, consider the more general optimization problem

maximize: J
.= ϕ(x(0)) + ψ

(
x(T )

) − ∫ T

0
L(t, x(t), u(t)) dt , (10.22)

assuming that both the initial and the terminal point can vary. Here ϕ is an initial
payoff, ψ is a terminal payoff, while L(·) accounts for a running cost. The payoff J
has to be maximized among all measurable control functions u : [0, T ] �→ U and all
choices of an initial and terminal data, satisfying the constraints

x(0) ∈ S0 , x(T ) ∈ ST . (10.23)

In the following, we assume that the functions f, L, ϕ, ψ are continuously differ-
entiable, while S0, ST ⊂ IRn are two C1 embedded manifolds. A set of necessary
conditions for optimality is provided by the following more general version of the
Pontryagin Maximum Principle.

Theorem 10.10 (PMP, constrained initial and terminal points). Let t �→ u∗(t) be
a bounded, optimal control function and let t �→ x∗(t) be the corresponding optimal
trajectory for the problem (10.22), with dynamics (10.6) and initial and terminal
constraints (10.23). Then the following holds.

(i) There exists an absolutely continuous adjoint vector t �→ p(t) =
(p0, p1, . . . , pn)(t) which never vanishes on [0, T ], with p0 ≥ 0 constant, sat-
isfying

ṗi(t) = −
n∑

j=1

pj(t)
∂fj

∂xi

(
t, x∗(t), u∗(t)

)
+ p0

∂L

∂xi

(
t, x∗(t), u∗(t)

)
(10.24)

for each i = 1, . . . , n .
(ii) The initial and terminal values of p satisfy{

(p1, . . . , pn)(0) = p0 ∇ϕ(x∗(0)) + n0 ,

(p1, . . . , pn)(T ) = p0 ∇ψ(x∗(T )) + nT .
(10.25)

for some vector n0 orthogonal to manifold S0 at the initial point x∗(0)
and some vector nT orthogonal to manifold ST at the terminal point x∗(T ).

(iii) The maximality condition

n∑
i=1

pi(t) · fi(t, x∗(t), u∗(t)) − p0 L(t, x∗(t), u∗(t))

= max
u∈U

{
n∑

i=1

pi(t) · fi(t, x∗(t), u) − p0 L(t, x∗(t), u)

} (10.26)

holds for a.e. t ∈ [0, T ].

For a proof, see Chapter 5 in [17].
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Remark 10.11. In a standard situation, the sets S0, ST are described in terms of a
finite number of smooth scalar functions. For example

S0
.=
{
x ∈ IRn ; α1(x) = 0, . . . , αk(x) = 0

}
.

Assuming that the gradients of the functions αi are linearly independent at the point
x∗(0) ∈ S0, any normal vector to S0 can be represented as

n0 =
k∑

i=1

λi ∇αi(x∗(0))

for some numbers λ1, . . . , λk ∈ IR. The first condition in (10.25) can thus be written
as

(p1, . . . , pn)(0) = p0∇ϕ(x∗(0)) +
k∑

i=1

λi ∇αi(x∗(0))

for some scalar multipliers λ1, . . . , λk.

Remark 10.12. In the special case where the initial point is fixed and the terminal
point is free, we have S0 = {x0} while ST = IRn. Therefore, n0 ∈ IRn can be
arbitrary while nT = 0. The boundary conditions for p become

(p1, . . . , pn)(0) arbitrary, (p1, . . . pn)(T ) = p0 ∇ψ(x∗(T )).

The condition that (p0, p1, . . . , pn)(T ) should be non-zero implies p0 > 0. Since p is
determined up to a positive constant, it is thus not restrictive to assume p0 = 1. The
necessary conditions in Theorem 10.10 thus reduce to those stated in Theorem 10.7.

10.5. Sufficient Conditions for Optimality

In general, the conditions stated by PMP are necessary but not sufficient for a
control u∗(·) to be optimal. However, under a suitable concavity condition, it turns
out that every control u∗(·) satisfying the PMP is optimal.

Consider the Hamiltonian function

H(t, x, u, p) .= p · f(t, x, u) − L(t, x, u) (10.27)

and the reduced Hamiltonian

H(t, x, p) .= max
ω∈U

{
p(t) · f(t, x, ω) − L(t, x, ω)

}
. (10.28)

Theorem 10.13 (PMP + concavity =⇒ optimality). In the setting of Theorem 10.7,
consider a measurable function t �→ u∗(t) ∈ U and two absolutely continuous func-
tions x∗(·), p(·) satisfying the boundary value problem⎧⎪⎨⎪⎩

ẋ = f(t, x, u∗(t)) ,

ṗ = −p(t) ∂f
∂x

(
t, x, u∗(t)

)
+
∂L

∂x

(
t, x, u∗(t)

)
,

⎧⎨⎩
x(t0) = x0 ,

p(T ) = ∇ψ(x(T )
)
,

(10.29)
together with the maximality condition (10.13). Assume that the set U is convex and
that the functions

x �→ H(t, x, p(t)) , x �→ ψ(x)
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are concave. Then u∗(·) is an optimal control, and x∗(·) is the corresponding optimal
trajectory.

For a proof, see [20], p. 49.

10.6. Dynamic Programming

The concavity assumptions used in Theorem 10.13 are very restrictive. An alter-
native approach to the derivation of sufficient optimality conditions relies on the
analysis of the value function.

In the optimal control problem (10.6)–(10.10) we regarded the initial data
(t0, x0) as fixed. However, one can consider a whole family of optimization prob-
lems, with variable initial data. Recalling the notations at (10.9)-(10.10), for each
(t0, x0) ∈ [0, T ] × IRN , let

V (t0, x0)
.= sup

u:[t0,T ] �→U
J(u; t0, x0) (10.30)

be the maximum payoff that can be achieved starting from the state x0 at time t0.
The function V in (10.30) is called the value function for the optimization problem
(10.6), (10.10). By (10.8), when t = T one has

V (T, x) = ψ(x) . (10.31)

A basic property of this value function is:

Theorem 10.14 (Dynamic Programming principle). For any initial data x0 ∈ IR and
0 ≤ t0 < t1 < T , one has

V (t0, x0) = sup
u:[t0,t1] �→U

{
V
(
t1, x(t1; t0, x0, u)

)
−
∫ t1

t0

L
(
t, x(t; t0, x0, u), u(t)

)
dt

}
.

(10.32)

t t
0 1

x
0

0

V = V(t  , x)1 V = ψ

x
1

x(t)

T

Figure 14. An illustration of the dynamic programming principle.

In other words (see fig. 14), the optimization problem on the time interval [t0, T ]
can be split into two separate problems:
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• As a first step, we solve the optimization problem on the sub-interval [t1, T ],
with running cost L and terminal payoff ψ. In this way, we determine the value
function V (t1, ·), at time t1.

• As a second step, we solve the optimization problem on the sub-interval [t0, t1],
with running cost L and terminal payoff V (t1, ·), determined by the first step.

At the initial time t0, according to (10.32) the value function V (t0, ·) obtained in
step 2 is the same as the value function corresponding to the global optimization
problem over the whole interval [t0, T ].

Based on the above property, one can derive a first order PDE satisfied by the
value function V , in regions where it is differentiable.

Theorem 10.15 (Hamilton-Jacobi-Bellman equation of dynamic programming).

Consider the optimal control problem (10.6), (10.10), assuming that f, L are contin-
uous functions and that the set U of admissible control values is compact. Then, on
any open domain Ω ⊂ [0, T ] × IRn where the function V = V (t, x) is continuously
differentiable, the following equation is satisfied:

Vt +H(t, x,∇V ) = 0, (10.33)

where
H(t, x, p) .= max

ω∈U

{
p · f(t, x, ω) − L(t, x, ω)

}
. (10.34)

In cases where the value function V is not C1, one can still show that the equa-
tion (10.33) is satisfied, in a suitable viscosity sense. For a comprehensive account
of the theory of viscosity solutions we refer to [7].

The PDE of dynamic programming provides sufficient conditions for optimality,
in a far more general setting than in Theorem 10.13.

Theorem 10.16 (Sufficient conditions for optimality). Let W : [0, T ] × IRn �→ IR be
a C1 solution of the terminal value problem

Wt +H(t, x,∇W ) = 0, W (T, x) = ψ(x) . (10.35)

Then W coincides with the value function. In particular, for any given initial data
(t0, x0), a control u∗(·) that achieves the payoff J(u∗, t0, x0) = W (t0, x0) is optimal.

All the above results are now classical. Proofs of these and more general results
can be found in [7, 11, 17, 22].

10.7. Infinite horizon problems

This section deals with the time-independent control system

ẋ = f(x, u) u(t) ∈ U , t ∈ [0,∞[ . (10.36)

For a given initial data x(0) = x0 ∈ IRn and any admissible control u : [0,∞[ �→ U ,
let t �→ x(t) = x(t; x0, u) be the corresponding trajectory. To ensure that this
solution is well defined for all times, and does not become unbounded in finite time,
we assume that f is Lipschitz continuous w.r.t. x and satisfies the bound

|f(x, u)| ≤ C(1 + |x|) for all x ∈ IRn, u ∈ U . (10.37)
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Consider the exponentially discounted payoff

J(x0, u) =
∫ ∞

0
e−ρt Φ(x(t), u(t)) dt , (10.38)

where x(t) = x(t ;x0, u) and ρ > 0 is a fixed discount rate. Moreover, define the
value function

V (x0)
.= inf

u(·)
J(x0, u) . (10.39)

A result similar to Theorem 10.15, valid for infinite horizon problems, is:

Theorem 10.17. Assume that the functions f,Φ are continuous and that U ⊂ IRm

is a compact set. Let the value function V be continuously differentiable on an open
domain Ω ⊆ IRn. Then

ρV (x) = H(x,∇V (x)) for all x ∈ Ω , (10.40)

where the hamiltonian function is

H(x, p) .= max
ω∈U

{
p · f(x, ω) + Φ(x, ω)

}
. (10.41)

Remark 10.18. If W (·) is a smooth function, the assumption

ρW (x) = H(x, ∇W (x)) for all x ∈ IRn (10.42)

does not necessarily imply that W coincides with the value function V at (10.39).
To understand the reason, let

u = u∗(x) = argmax
u∈U

{
∇W (x) · f(x, ω) + Φ(x, ω)

}
be the corresponding optimal feedback control. For a given initial data x(0) = x0,
let t �→ x(t) = x(t, x0) be the solution to

ẋ = f(x, u∗(x)) , x(0) = x0 .

The identity (10.42) implies

d

dt

[
e−ρtW (x(t)) +

∫ t

0
e−ρsΦ

(
x(s), u∗(x(s))

)
ds

]

= −ρW (x(t)) + e−ρt∇W (x(t)) · f(x(t), u∗(x(t))) + e−ρtΦ
(
x(t), u∗(x(t))

)
= 0 .

Hence for every T > 0 we have

W (x0) = e−ρTW (x(T )) +
∫ T

0
e−ρtΦ

(
x(t), u∗(x(t))

)
dt . (10.43)

If one can show that
lim

T→∞
e−ρTW (x(T )) = 0, (10.44)

then by taking the limit of (10.43) as T → +∞ we conclude

W (x0) =
∫ ∞

0
e−ρtΦ

(
x(t), u∗(x(t))

)
dt ≤ V (x0) .
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Notice that (10.44) certainly holds if the trajectory x(·) remains bounded. However,
one can construct examples where, as T → +∞,

|x(T )| → +∞, e−ρTW (x(T )) → +∞ ,∫ T

0
e−ρtΦ

(
x(t), u∗(x(t))

)
dt → −∞ .

In this case, one may well have W (x0) > V (x0).

10.8. Well posedness for linear PDEs

Consider the Cauchy problem determined by a system of first order PDEs

vt = G(t, x, v,Dxv) , (10.45)

together with initial conditions

v(0, x) = φ(x) . (10.46)

Here t is time, x = (x1, . . . , xn) is the spatial variable, while v = (v1, . . . , vm) is
the dependent variable. By Dx we denote the m × n Jacobian matrix of partial
derivatives vi,xα

.= ∂vi/∂xα .
A key issue in the theory of PDEs is whether this Cauchy problem is well posed.

By this we mean that the problem has a unique solution, continuously depending on
the initial data φ. If m = 1, then (10.45) reduces to a scalar equation which can be
studied by the classical method of characteristics. On the other hand, if m > 1, the
well-posedness of the system (10.45) is a difficult question, especially if the function
G is highly non-linear.

x

V
~

V

0

t

Figure 15. An ill-posed Cauchy problem. Here v is a reference solution,
while ṽ is a perturbed solution. A small change in the initial data at t = 0
produces a large change in the solution at a later time t > 0.

We describe here the method of local linearization, which often provides some
useful information.

Let v = v(t, x) be a smooth solution of (10.45), and let

vε(t, x) = v(t, x) + εZ(t, x) + o(ε) (10.47)
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describe a small perturbation. Assuming that vε is also a solution, we can insert
(10.47) in the equation (10.45) and compute a system of linearized equations satisfied
by Z, namely

(Zj)t =
n∑

α=1

m∑
k=1

∂Gj

∂vk,xα

Zk,xα +
m∑

k=1

∂Gj

∂vk
Zk j = 1, . . . ,m . (10.48)

Freezing the coefficients of (10.48) at a given point

(t̄, x̄, v̄, Q̄) =
(
t̄, x̄, v(t̄, x̄), Dxv(t̄, x̄)

)
∈ IR× IRn × IRm × IRm×n,

we obtain a linear system with constant coefficients, namely

Zj,t =
n∑

α=1

m∑
k=1

Aα
jk Zk,xα +

m∑
k=1

BjkZj j = 1, . . . ,m . (10.49)

with

Aα
jk =

∂Gj

∂vk,xα

(t̄, x̄, v̄, Q̄) , Bjk =
∂Gj

∂vk
(t̄, x̄, v̄, Q̄) .

Notice that each Aα = (Aα
jk) is a constant m×m matrix.

Definition 10.19. We say that the Cauchy problem for the linear homogeneous system
of PDEs (10.49) is well posed in the space L2(IRn; IRm) if the following holds.

For every initial data Z(0, ·) ∈ L2, the equation (10.49) has a unique solution
t �→ Z(t, ·). Moreover, for every fixed t ∈ IR, the map Z(0, ·) �→ Z(t, ·) is a continuous
linear operator from L2 into itself.

The issue of well-posedness can be studied by means of the Fourier transform.
Let Z = Z(t, x) be a solution of (10.49) and let

Ẑ(t, ξ) =
1

(2π)n/2

∫
IRn

e−iξ·xZ(t, x) dx (10.50)

be the Fourier transform of Z w.r.t. the spatial variable x. Under suitable regularity
and integrability assumptions, taking the Fourier transform of both sides of (10.49)
we derive a family of ODEs satisfied by Ẑ(·, ξ), namely

Ẑj,t(t, ξ) =
n∑

α=1

m∑
k=1

iξαA
α
jk Ẑk(t, ξ)+

m∑
k=1

Bjk Ẑk(t, ξ) j = 1, . . . ,m . (10.51)

Adopting a more concise vector notation, this can be written as

Ẑt(t, ξ) = (iA(ξ) +B)Ẑ(t, ξ) (10.52)

where, for every ξ = (ξ1, . . . , ξn) we set

A(ξ) .=
n∑

α=1

ξαA
α .

The general solution of (10.52) is given by

Ẑ(t, ξ) = et(iA(ξ)+B) Ẑ(0, ξ) . (10.53)
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As usual, the exponential of an m×m matrix M is defined as

eM
.=

∞∑
k=0

Mk

k!
.

Definition 10.20. The system (10.49) is hyperbolic if

mA
.= sup

ξ∈IRn
‖eiA(ξ)‖ < ∞ . (10.54)

Notice that the hyperbolicity of the system depends only on the matrices Aα,
not on B. This definition is motivated by

Theorem 10.21. The Cauchy problem for the linear homogeneous system with con-
stant coefficients (10.49) is well posed if and only if the system is hyperbolic.

For a detailed proof we refer to Chapter 1 in [8]. To understand the underlying
idea, assume B = 0 and fix any t 
= 0. Since the Fourier transform is an isometry on
L2, observing that tA(ξ) = A(tξ), we compute∥∥Z(t, ·)∥∥

L2 =
∥∥Ẑ(t, ·)∥∥

L2 ≤ ∥∥Ẑ(0, ·)∥∥
L2 · sup

ξ∈IRn
‖eiA(tξ)‖

=
∥∥Ẑ(0, ·)∥∥

L2 · sup
ξ∈IRn

‖eiA(ξ)‖ = mA · ∥∥Z(0, ·)∥∥
L2 .

On the other hand, if the supremum on the left hand side of (10.54) is un-
bounded, then for every t > 0 and any k > 0 one can find ξ∗ ∈ IRn such that

‖eiA(tξ∗)‖ > k .

By continuity, there exists δ > 0 such that one still has

‖eiA(tξ)‖ > k whenever |ξ − ξ∗| < δ .

We now consider an initial data Z(0, x) whose Fourier transform satisfies

Ẑ(0, ξ)
{

= 1 if |ξ − ξ∗| < δ ,

= 0 if |ξ − ξ∗| ≥ δ .

This construction yields

|Ẑ(t, ξ)|
{
> k if |ξ − ξ∗| < δ ,
= 0 if |ξ − ξ∗| ≥ δ .

Therefore

‖Z(t, ·)‖L2 =
∥∥Ẑ(t, ·)∥∥

L2 ≥ k · ‖Ẑ(0, ·)‖L2 = k · ‖Z(0, ·)‖L2 .

Since k can be chosen arbitrarily large, the Cauchy problem is not well posed.
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In practice, computing the complex exponential matrix and taking the supre-
mum in (10.54) may be a difficult task. The next theorems provide necessary condi-
tions and sufficient conditions for hyperbolicity, which can be more easily checked.

Theorem 10.22 (Necessary condition for hyperbolicity). If the system (10.49) is hy-
perbolic, then for every ξ ∈ IRm the matrix A(ξ) has a basis of eigenvectors r1, . . . , rn,
with real eigenvalues λ1, . . . , λn (not necessarily distinct).

Theorem 10.23 (Sufficient condition for hyperbolicity). Assume that, for |ξ| = 1,
the matrices A(ξ) can be diagonalized in terms of a real, invertible matrix R(ξ)
continuously depending on ξ. Then the system (10.49) is hyperbolic.

For the proofs, we refer to [8].

Example 12. The Cauchy-Riemann equations yield the first order, linear system in
one space dimension {

u1,t = −u2,x ,
u2,t = u1,x .

Since the matrix
(

0 −1
1 0

)
has complex eigenvalues, for this system the Cauchy

problem is ill posed.

10.9. Probability measures

Let X be a compact metric space and let C(X) denote the Banach space of all
continuous functions f : X �→ IR, with the standard norm

‖f‖ .= max
x∈X

|f(x)| .
Let Σ be the σ-algebra of all Borel subsets of X. A probability measure on X is a
non-negative measure μ : Σ �→ [0, 1] such that μ(X) = 1.

We say that a sequence of probability measures (μk)k≥1 converges weakly to a
probability measure μ, and write μk ⇀ μ, if for every f ∈ C(X) one has

lim
k→∞

∫
X
fk dμ =

∫
X
f dμ for all f ∈ C(X) .

Theorem 10.24 (Weak compactness of the space of probability measures). Let
(μj)j≥1 be a sequence of probability measures on a compact metric space X. Then
there exists a subsequence that converges weakly to some probability measure μ.

For a proof, see [33].
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