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CHAPTER 1

Weighted model counting

Perhaps, before introducing weightd model counting, this is a good time to
summarise the inference tasks on propositional logic that we have described sofa
including the one that we are going to describe in this section. They are listed in

Table [

| Task Name

| Input | Result

Description

Model checking;:

0,1

Z(¢)

Compute the truth value that the
interpretation Z assigns to the
formula ¢, or equivalently check
if ¢ is satisfied or not satisfied by
T.

Satisfiability:

maxz Z(¢)

Search for an assignment Z to the
propositional variables of ¢ that
satisfies ¢. If such an assignment
does not exist ¢ is unsatisfiable
otherwise it is satisfiable.

Maximum
Satisfiability:

b, w

maxz Z(¢) - w(T)

Search for an assignment Z that
satisfies the formula ¢ and max-
imize a weight function (or min-
imize a cost function) defined on
the interpretations of the propo-
sitional variables in ¢.

Model counting:

P

Count how many assignments to
the propositional variables of ¢
are models of (or equivalently

satisfy) ¢,

Weighted

Model counting:

¢, w

21 Z(¢) - w(I)

Compute the weighted sum of
the models of ¢ according to the
weight function w.

1. Introduction

Weighted model counting is a generalisation of model counting where models
have different weight, which is usually a positive numbers. Model counting is a
special case of weighted model counting where each model weight is equal to 1.
The most widespread application of weighted model counting is in probabilistic
inference. Indeed, a recent and effective approach to probabilistic inference can be

5




6 1. WEIGHTED MODEL COUNTING

obtained by reducing the problem to one of weighted model counting Chavira and
Darwiche 2008l

The problem of Weighted model counting can be formulated as follows: Given
a propositional formula ¢ containing propositinal variables in P and a weight func-
tion w that assigns a non-negative weight to every truth assignment to proposi-
tional variables in P, weighted model counting (henceforth wMC) concerns sum-
ming weights of the assignments that satisfy ¢. formula. If every assignment has
weight 1, the corresponding problem boils down to model counting.

DEFINITION 1.1 (Weighted model counting). Foer every set of propositinal vari-
ables P and weight function w : 2P — RT. the weighted model counting of a
propositinal formula ¢ with propositinal variables in P w.r.t, w, is defined as:

(1) wMe(,w) = Y I(¢) - w(Z)

Z:P—{0,1}

Weighted model counting and unweighted model counting (or simply model
counting) share a lot. Indeed as it will be clear in this section, many of the tech-
niques that have been developed for model counting can be equally applied or
generalized for weighed model counting. There are also approaches that reduces
weighted model counting to unweighted model counting Chakraborty et al. [2015]
Concerning the application of weighted model counting to probabilistic reasoning
we will describe them in details in this chapter.

In (unweighted) model counting each model of a formula counts 1; in weighted
model counting some models are more important/probable/preferrable than others.
To measure how much a model is important, it makes sense to associate a positive
weight w(Z) > 0 to each interpretation Z. Why positive? Well this is not strictly
necessary, however this is what happens. Furthermore, positive weights makes more
direct the connection with probability. In weighted model counting each model Z of
a formula counts for its weight w(Z). The eight w(Z) associated to the model Z can
be interpreted in probabilistically; i.e. the weight is proportional to the likelihood
of this model

ExXAMPLE 1.1. Suppose that a supermarked is selling item categories a, b, ... f,
g. From the fidelity cards of the customers we observe the following records:

’ # I ITtemsets ‘
4 a b ¢ d
1 a b e f
7 a b
3 a c d f
2 g
1 d
4 d g

Every row of the above table reports the number of customers that have bought a
set of items that contains at least one item for each category listed in the row, (we
dont count how many items of the category he/she has bought). Notice that there
are 27 = 128 combinations of itemssets, and the table reports only the combinations
which has been observed at least once. Therefore, if a combination is not present
then, it means that no customer has ever bought items of that combination of types.
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FEvery combination of items can be seen as an interpretation on the set of proposi-
tions a, b, ...g, where a means “the customer has bought at least one item of type
a”, similarly for b, dots g. We can consider the number of times we observe a
combination as the weight of the corresponding interpretation. In other words we

will have the follwoing weight function

~—

coor oo ralN

O OO R O O
— O = OO O Ok

g
%HMWQ»—M&@

O OO = ==
[Nl =
O OO~ OO
= O O OO0

We have 27 possible itemsets (interpretations ), and we can assigns to each
a weight equal to w(Z) where w(Z) is the number of times an itemset has been
observed. Given this for every formula in the language of a,...,g the weighted
model counting returns the number of customer that bought items with tipes that
respect the formula. For instance.

wMC(aA(bVe) =4+1+T7+3=15 The number of times that a cus-
tomer buys at least an item of
type a and at least one of type b
orc
wMC(aA—g) =0  No customer buys at the same
time an item of type a and an
item of type g.
#SAT(a = b)=4+14+7+2+1+4=19 It counts the number of times a
customer buys an item of type
b. Notice that in the computa-
tion we also take into account all
the cases in which the customer
does not buy a. This is due to the
“material implication” of proposi-
tional logicm that interprets a —
b as —aVb.

2. From #sat to wmc
Most of the results of model counting can be generalized to weight model count-
ing.
2.1. The partition function.

PROPOSITION 1.1. If ¢ is valid, then WMC(¢p, w) is equal to ZI:P—>{0,1} w(Z)

The quantity 7., o1y w(Z) is the sum of the weights of all the interpreta-
tions w.r.t., the weight function w. When P is clear from the context we use the
notation ) - w(Z). This quantity has an important role in many formalizations
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and algorithms. Therefore it has a special name: i.e., the partition function of w.
It is usually denoted by Z(w), or simply by Z, when w is clear from the context.

(2) Z(w) =Y w(@)
z
In many cases in which we have to perform weighted model counting and proba-
bilistic reasoning we have to estimate Z(w). This is usually a source of complexity.
Indeed in the most general case computing amounts in computing w(Z) for all
the interpretations 1, wich means that we have to do 2" calculations where n is
the number of propositional variables in P. Notice thta by seeing #SAT as a spe-
cial case of wMC, where w(Z) = 1, computing the partition function Z(w) is not
problematinc since it is equal to 2™.
Let us now see other propoerties of WMC.

PRrROPOSITION 1.2.
(1) If ¢ is unsatisfiable WMC(¢p, w) is equal to 0;
(2) #5T1(~0) = Z(w) — WMC(B, w);
(3) If ¢ E ¢ then wMC(¢, w) < wMmC(¢, w);
(4) if ¢ is equivalent to 1, then WMC(¢, w) = WMC (Y, w);

PROOF. The proof is immediate. However it is worth noticing that property
(3) is tightly connected to the fact tht the weight function is positive for all the
interpretations. O

2.2. wmc and conjunction. Let us see how WMC behaves w.r.t, conjunction
and dijunction. The property that allow to factorize model counting of a conjunc-
tion ¢ A ¢ where ¢ and ¥ do not share propositional variables can be reformulated
as follows: Let ¢ A 1) be a formula on a set of propositional variables P such that
P(p)NP(¢p) = 0, and let w be a weight function on P. Let us consider the propoerty
(3) WMC(¢ A ¥, w) = WMC(¢, wp(g)) - WMC(Y, wp(y))
where wg is way to restrict w to a given subset of propositions @ C P. In the
general case property does not hold. Consider the following example.

EXAMPLE 1.2. Let P = {p, q}. Consider the following two weight functions:
wi(Z) =2-I(p) + 3 - I(q)
ws(Z) = 2F@ . 37(@)

In the following two tables we show the weight funcitons on the left, and the weights
of the formulas on the right.

p q|wi(Z) wy(Z))
00| 1 1 Y
0 1] 2 3 w |7 6 4
10| 3 2 w2 |8 9 6
1 1| 4 6

Let us now see how we can generalize the property of decomposition for model
counting to weighted model counting:



2. FROM #sat TO wMmcC 9

PROPOSITION 1.3. Let w be a weight function defined on a set of propositional
variables P = {p1,...,pn}. For every Q C P let wg be a weight function defined
on the set Q, such that wp = w. If, for every pair of formulas ¢ and i that do not
share propositionla variables, it is true that:

(4) WMC(p A ), w) = WMC(@, wp(g)) - WMC(Y, wp(y))
if and only if w can be specified in the following form:
- (D) = {exp (S0 (v 20+ - Z(p)) FTEo

0 Otherwise
+ —
for some formula ¢ and v;",v; € R

PROOF. Let I be the set of interpretations such that w(Z) # 0, then let ¢ be
be a propositional formula that is true if and only if Z € 1. For every Z € Z, let
PT the set of proposiitional variables true in Z and P~ those that are false. Let
¢z = NPT A A\—P~. Since Z is the ontly interpretation that satisfies ¢z we have
that w(Z) = w(¢z). From (4) we have that

w@) = [] wey®) - [] wey(-p)
peEP+ peEP—

If we define v} = log(wp,}(p;) and v; = log(wy,,}(—p;), the previous expression
can be rewritten as

exp (Z (vi" - Z(pi) + v -I(ﬂpz)))

i=1

The proof of the opposite direction is left by exercise. (Il

Not all the weight function can be expressed in the exponential form . Con-
sider for instance the weight function w; of Example [I.I] If w; were expressible
in exponential form there should exists four values v;r y Up s v;, and v, which are
solutions of the following syste of equations:
v, +v, =0
v, + v =log2
vf +v; =log3

vf +vf =log4

(6)

However, the system does not have a solution. Indeed, by summing the first and the
fourth equation and subtracting the other two we obtain that log4 = —log 3 —log 2
which is false.

2.3. wmc and disjunction. Let us now see how weighted model counting
behaves with disjunction. The key property for decomposing model counting of
disjunction is determinism. By this property if ¢ A v is unsatisfiable we have that
#SAT(¢p V o)) = #SAT(¢) - 2™ + #SAT()) - 2" where m (resp. n) isthe number of
propositional variables that occours in ¥ but not in ¢ (resp, occour in ¢ but not in
). When n = m = 0, i.e., ¢ and ¥ contains the same set of propositional variables,
then we have that #SAT(¢ V ¢)) = #SAT(¢p) + #SAT(1p). This property is also true
in weighted model counting

A disjunctive formula ¢ V @ is called smooth if ¢ and v contains the same
set of propositional variables. A formula ¢ is in sd-DNNF (smooth deterministic
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decomposable negated normal form) if it is in d-DNNF and every disjunction is
smooth.

PRrROPOSITION 1.4. If ¢ V ¢ is deterministic and smooth then

(7) WMC(¢ V b, w) = WMC(¢, wp(g)) + WMC(9), wp(y))
PROOF.
WMC(p VY, w) = Y w(T)
T=¢vy
= Z w(T) + Z w(T) By determinism
To T4

= WMC(¢, w) + WMC(¢), w)
= WMC(@, wp(g)) + WMC(1), Wp(y)) By smoothness
([l

To transform a d-DNNF formula into an sd-NNF formula we can apply the
following rule:

e Smoothing left: For subformula ¢ V ¢ with p € P(¢) \ P(¢) apply this
transformation

A (pV-p) VY

e Smoothing right: For subformula ¢ V v with p € P(¢) \ P () apply this
transformation

¢VYA(pV-p)

This results in:

on N @v-p)|viean A (gv-o)
pEP(Y)\P($) g€P($)\P(¥)

EXAMPLE 1.3. Smoothing (a Ab) V (¢ A —a) results in

(aNbA(cV—e))V ((eA—a)A(bV —b))

Notice that the conjunctions that are introduced by the smoothing rule are
decomposable. Furthermore the disjunctions introduced by the smoothing rules
are deterministic. Therefore by smooting an d-DNNF formula we will not loos the
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fact the d-DNNF’ness. However, if we want to transform a generic formula in sd-
NNF it is better to first transform it into d-DNNF and then apply smoothing in
order to obtain an sd-DNNF formula.

Proceeding in the opposite direction would not be optimal. Consider the fol-
lowing example

EXAMPLE 1.4. consider the formula (a Ab)V ¢, This formula is neither smooth
nor deterministic. Should we try to first smooth it and then make it deterministic
by applying Shannon’s expansion? or should we proceed in the opposite direction?
Let’s analize the two cases:

Smooth then determinism

(andb)Ve Smoothing

((anD)A(cV =)V (cA(aV—a)A(bV b)) Shannon’s expansion

(eA((anb)V(aV—-a)A(bV-b)))V(—cA (aAb)) the red disjunction is not
deterministic. So we

should apply again Shan-
non’s expansion.

Instead if we apply first Shannon’s expansion for determinism and then smoothing
we proveed as follows:

(aNb) Ve Shannon’s exp. on a
(bVve)Aa)V(eA—a)  Shannon’s exp. on b
(bV (eAN=D)ANa)V (cAN—a)  Smoothing
(bV(eAn=b)ANa)V(cA—aA(bV—=b)  Smoothing
(A (cV=e))V(eA=b))Aa)V (cA—-a N (bV —d))

2.4. Weighted model counting by knowledge compilation. When weight
function has the exponential form, i.e., the weights are associated with literals
weighted model counting can be performed on sd-DNNF formulas by transforming
into a sum-product circuit. In particular, an sd-DNNF formula can be transformed
a sum-product circuit as follows:

e Every leaf (literal) is associated with its weight;
e at every A-node we perform the product of the child nodes;
e at every V-node we perform the sum of the child nodes.

EXAMPLE 1.5. Consider the following weighted literals: w(a) = 2, w(—a) =1,
w(b) =5, w(=b) =3, w(c) =7 and w(—c) = 1.
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136

3. Weights and probabilities

In this section we recall the formal relationship between weighted model coungint
in propositional logic and probability. Let us first introduce the basic definition of
probability measure.

3.1. Basic probability. A probability[] space or event space is a set  to-
gether with a probability measure P on it. 2 is called the sample space and every
element of w is the otucome of some esperiment. Any subset of the sample space
is called event.

EXAMPLE 1.6.

(1) Tossing a coin. The sample space is Q@ = {H, T}, = {H} is an event.

(2) Tossing a die. The sample space is Q = {1,2,...,6}, A= {2,4,6} is an
event, which can be described in words as “the result of the draw is an
even number”.

(3) Tossing a coin twice. The sample space is Q ={HH,HT,TH,TT}. A=
{HH,HT} is an event, which can be described in words as “the frst toss
results in a Head”.

(4) Tossing a die twice. The sample space is Q = {(1,1),(1,2),...,(6,6)},
which contains 36 elements. “The sum of the results of the two toss is
equal to 107 is an event A = {(i,j) | i + j = 10}.

EXAMPLE 1.7. The set 1 = {Z | T : P — {0,1}} of assignments of a set
of propositional variable P is a sample space, and the set of interpretations that
satisfies a formula ¢ is an event.

P associates a number in [0, 1] to every subset of Q. A subset A of ) is also
called an event. This means that Pr associates the probability to each event A C Q)

Pr(A) = probability of A
with
(8) 0<Pr(d) <1

1This is not the most general definition of probability space, but it is sufficiend for our
purposes.
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The probability of the whole space 2 is normalized to be Pr(2) = 1 and the
probability of the empty set is 0 i.e, Pr(f)) = 0. For an element w € ) we may call
{w} an atomic event, and write Pr(w) instead of the more precise notation Pr({w})
to denote it’s probability.

For two disjoint subsets A and B of )

(9) Pr(AU B) = Pr(A) + Pr(B)

In this case we say that A and B are disjoint events.

When 2 is finite, every event A is equal to the union of the atomic events that
are contained in A. More precisely, if A = {w1,...,wk}, then A can be expressed
the union of the atomic events,

A={w1}U{wa} U U{ws}

Notice that every pair {w;} and {w;} with i # j {w;} N{w;} = 0. This implies,
that we can apply property @, obtaining:

Pr(A) = Pr(w1) + Pr(ws) + - - - + Pr(wy)

In conclusion, if € is finite, the probability of every event can be obtained by
summing the probability the atomic events that belong to the event A. In other
words, if we know Pr(w) for every w € Q then we can compute the probability of
every event A by

Pr(A) = Pr(w)

weA

The requirment that Pr(£2) = 1 imposes also the restution that

Z Pr(w)=1

weN

i.e, that Pr is normalized to 1.

An important notion in probability theory is that of conditional probability.
Given two event A and B in 2 the probability of A conditioned by B, denoted by
Pr(A | B) is defined as:

Pr(AN B)

(10) Pr(A| B) = =5

EXAMPLE 1.8. Suppose that you draw a dice and you know that the result is
larger than 3, what is the probability that it is an odd number? Conditional proba-
bility P(A | B) provide the answer to this question. In this case, the conditioning
event is “the result of the toss is > 3 (B in the formula) and the conditioned event
18 “the result of the toss is odd”, A in the formula. If we are in presence of a fair
dice, we have that

P(ANB) 1
PrAlB) = —p 5 =3

3.2. From weights to probabilities. As shown in Example[I.7] one can see
the set of all interpretations I of a set of propositional variables P as a sample space,
where each interpretation is a single outcome of an experiment. This sample space
contains 2/ elements, and therefore it is finite. The weight function w maps every
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interpretation of P into a positive integer, we could therefore define the probability
of an interpretation as the normalized weight:
w(Z)
(11) Pr(Z) = =———=
o1 €l w(Z)
Notice that if w(Z) > 0 for every Z then Pr is a probability measure. Indeed we
have that The probability of the set of all interpretations is equal to 1:

Pr(l) = ZPr(I) — Z w(T) - D raw@)

DD ST B SR B

Every formula ¢ defines a set I, = {Z € I | T |= ¢} of interpretations, which
contains all the interpretations that satisfies ¢. This means that every ¢ corresponds
to the event Iy C I. Given this corrispondence, we can identify the event I with
a formula ¢, which allows us to talk about a “probability of a formula ¢” denoted
by Pr(¢), and defined by the following equation:

(12) Pr(¢) = Y Pr(T)
I=¢
if we plug in the definition of Pr(Z) given in we obtain

w(Z) _ >z w(I)
Yz w(Z) Zth w(Z)

Pr(¢) =
Ik

which is equal to

1
1 P =—_—
(13) (6| w) = Zroswe(s, )
Weighted model counting allows also to define conditional probability. WHich is
Pr(¢ | ¥). Let us apply the definition:

Pr(s ] ¥) = Tpo

What is the event ¢ N7, In our convention ¢ denotes the event Iy of the proposi-
tional assignments that satisfies ¢ and similarly L,. Therefore ¢ N1 denotes I4NLy,

which is the set of propositional interpretations that satisfy both ¢ and . This
coincides with the event Iy, also written as ¢ A 1. We therefore have that

Pi(o] ¥) = et

If we replace the definition of probability of a formula in terms of weighted model
counting provided in we obtain

WMC(pAY)
_ Twuo(D) | _ WMC(@AY)
(14) Pr¢19) = <~ = “wac()

wMmc(T)
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4. wmc for inference in Bayesian Networks

Bayesian networks (BNs) are graphical models (graphical in the sense that they
are based on a graph) for probabilistic reasoning. The basic structure of a Bayesian
networks is a directed acyclic graph where the nodes represent variables (discrete
or continuous) and edges represent direct probabilistic connections between them.
These direct connections are often causal connections. In addition, BNs model
the quantitative strength of the connections between variables, allowing probabilis-
tic beliefs about them to be updated automatically as new information becomes
available.

4.1. Boolean Bayesian networks. In this chapter we consider only bayesian
network which are based only on boolean random variables, though bayesian net-
works are defined on any type of random variables.

A directed acyclic graph C' = (V, E) is a graph on the set of vertices V' and
with directed edges ¥ C V x V that does not contains cycles. A cycle is a sequence
(v, v1), (v1,v2), ..., (Up_1,v,) Where vy = v, and for all 0 < i < n (v;,v;+1) € E.
Given a directed graph G = (V, E) for every vertex v € V, we define par(v) = {v' |
(v',v) € E}.

DEFINITION 1.2 (Bayesian Network). A Bayesian network on a set of random
variables X = {Xy,...,X,} is a pair B = (G, Pr) is a pair composed of a directed
acyclic graph G = ([n], E) (where [n] = {1,...,n}) and Pr specifies the conditional
probababilities

PT(XZ =T; | Xpar(i) = wpar(i))
for every X; € X. B uniquely define the join distribution on X

(15) PT(X = $) = HPT(Xz = X | Xpar(i) = $pa7"(i))
i=1

ExXAMPLE 1.9. The following simple Bayesian Netsork

Pr(A) =1 a|Pr(B=1|A=a)
— 03 0 0.4
’ 1 0.9

specifies the joint probability distribution P(A, B) = P(A) - P(B | A) shown in the
following table

a b|PA=a,B=0b)
0 0 0.42
0 1 0.28
1 0 0.03
1 1 0.27

ExXAMPLE 1.10. As a second example consider the Bayesian network shown in
this picture taken from Sang, Beame, and Kautz|2009
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P(D=1)
0.5

d|P(F=1|D = d)
0.6

D[ P(G=1D=d)
1 0.7
0 0.2

~

[ g | P(H=1F=fG=g)
1 1 1.0
10 0.5
0 1 0.4
0 0 0.0

The above Bayesian Network specifies a probability distribution on four boolean
random wvariables, D, F, G, and H. Since they are boolean, they can take two
values 0 and 1. As in propositional logic, boolean variables are used to express
propositions, In this example we have that the propositional/random variables D,
E, F and G stand for the following propositions:

John is Doing some work
John has Finished his work
John is Getting tired

John Has a rest

SN e

Every node of the graph is associated with a table that expresses the probability
of the variables conditioned to the values of the parents. Theset tables are called
conditional probabuility table (CPT). For instance the table associated to the node
F states that:

The table specifies only the conditional probability for one of the two values of the
boolean variable, since the value of the other can be obtained by difference.

Pr(F=0|D=1)=1-Pr(F=1|D=1)=05
Pr(F=0|D=1)=1-Pr(F=1|D=0)=09



4. wmc FOR INFERENCE IN BAYESIAN NETWORKS 17

The above Bayesian Network specifies the following joint distribution on D, F, G, H

d f g h|Pr(D,F,GH=d,f,qg,h)
0 0 0 0] 05-09-0.8-1.0=0.360
0 0 0 1] 05-0.9-0.8-0.0=0.000
0 01 0] 05:09-0.2-0.6=0.054
0 01 1] 05-09-0.2-0.4=0.036
01 0 0] 05-01-0.8-0.6=0.024
01 0 1] 05-01-0.8-0.4=0.016
01 1 0] 05-0.1-0.2-0.0=0.000
0 1 1 1| 05-01-0.2-1.0=0.010
1 0 0 0| 05-04-0.3-1.0=0.060
1 0 0 1| 05-04-0.3-0.0=0.000
1 01 0| 05-04-0.7-0.6=0.084
1 0 1 1| 05-04-0.7-0.4=0.056
1 1 0 0] 05-06-0.3-0.5=0.045
1 1 0 1] 05:06-0.3-0.5=0.045
1 1 1 0| 05-0.6-0.7-0.0=0.000
1 1 1 1| 05-06-0.7-1.0=0.210

1.000

From the previous example it should be clear that a Bayesian Network B with
boolean variables expresses a probility distribution on a set of inbterpretations on
the propositional variables corresponding to the random variables of B. Therefore,
An assignment to the random variables corresponds to a propositional interpre-
tation. To highlight this fact from now on we use P to denot the set of random
boolean variables (propositional variables) and Z to denote an assignment to them.

There are many possible tasks that can be done with a given Bayesian network
B = (G, Pr) on a set of propositional variables P. The task we consider here is
Conditional Probability Queries.

DEFINITION 1.3 (Conditional Probability Queries). Given a Bayesian Network
B on a set of propositional variables P a conditional probability queries is an ex-
pression of the form Prg(¢ | v), where @ is called the evidence, and ¢ the query.
The anwer to this query is
(16) Pr(¢ ANy) ZI\:¢A¢ Prs(7)

Prs(0) gy Prs(d)

In the previous example, If we want to know the probability that the work is
finished (F) given the fact that we see John at the sun having a rest (H), we have
to evaluate Pr(F | H); in this case F' is the query and H is the evidence.

4.2. Answering Conditional Probability Queries via wmec. Weighted
model counting can be used to compute the value Prg ¢ | 0. To this purpose we
exploit the relation between weighted model counting and probability, i.e., that

_ WMC(p A Y, w)
Pr(¢ly) = W

Therefore, the problem become to define a proper weight function w corresponding
to a given Bayesian Network. The method is based on the following steps
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(1) Extend the set of propositional variables P of the Bayesian Network, which
are called state variables with the following new variables called chance
variables For every state variable p that has parents k > 0 parent variables
introduce 2¥ new propositional variables py, for every b € {0,1}*. In the
previous example we introduce G and G1, Fy and Fy, and Hyg, Ho1, Hio,
and Hll-

(2) To each of the introduced variables associate the weight specified in the
corresponding line of the CPT. Le., w(pp) = Pr(p =1 | par(p) = b). In
the above example we have the following weights:

w(D) =0.5
w(Fy) =0.1 w(Fy) =05
w(Gp) = 0.2 w(Gy) =0.7
w(Hoo) = 0.0 w(Hyp) = 0.4
w(Hyg) = 0.5 w(Hi1) = 1.0
The weight of —pp is set to 1 — w(ps), and the weights of all the other

literals are set to 1.

(3) The intuition of the choice variable py is that it will be true of the parent
variables of p will take the values b. So for instance Fj it means that the
only parent of F', which is D will be false. The third step is to connect
the new variables to the variables in the graph; For every change variable
pp correspinding to a line Pr(p = 1 | par(p) = b), we add the following
formula, where par(p) = {p1,...,pr}

k k
Do < pA /\ Pi A /\ i
i=1

i=1
bi=1 b; =0

In our example we add the following formulas:
Fy < FAN-D Fy < FAD Go <~ GAN-D G+ GAND
Hy <~ HN-FAN-G Hy < HAN-FANG Higo< HANFA-G Hy1< HANFAG

(4) A further obtimization consistes in replacing literals with weight equal to
0 with formulas. In particular, if w(l) = 0 add the unweighted formula —I.
and remove the weight of [. In the above example for instance we remove
the weights for Hop and add —Hyp.
Let ®5 and wg be the conjunction of the formulas and the weight function obtained
by applying the previous steps to Bayesian network B, We then define the weight
function

wB(I) _ HI\:pb w(pb) . HIb&pb w(—\pb) if T ): g
0 Otherwise

Notice that w is more than a weight function. Indeed it is a probability distri-
bution on the models of ®g, since the partition function Z(wg) = Y ;w(Z) =
>z, W(Z) =1, ie, the weight of all the models of ®5 sum up to 1. Indeed we
have the following proposition:

PRrROPOSITION 1.5. Let B be a Bayesian networks on the boolean random vari-
ables X1,...,X,, that defines the joint probability distribution Pr(Xq,...,X,).
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o for every assignment © = (x1,...,%,) to the variables X1, ..., X,. there
is a unique interpretaiton I, that satisfies ®p and such that T(X;) = x;
e For every I that satisfies g

wg(Z) = Pr(X; =Z(X4),..., Xn = Z(X,))
The answer to the conditional probability query Pr(¢ | 1) w.r.t, the Bayesian
network B can be computed via weighted model counting.
WMC(Ps A ¢ A, wp)
WMC(®5 A Y, wg)

(17)

To this purpose we can use for instance knowledge compilation of ®z in an sd-
DNNF formula in order to compute the circuit. Notice that if the evidence 1) is
a conjunction of literals we can set the weights of the opposite literal to 0 in the
circuit of @5 and we immediately obtain a circuit for ® A4 Similarly, if the query ¢
is a conjunction of literals. THerefore in case of conjunctive conditional probability
queryies (i.e., queries in which the evidence and the query are conjunctions of
literals) once we have computed the circuit for @5 we can easily computeall the
answers of conditional probability conjunctive queries.

EXAMPLE 1.11. The sd-DNNF of the ®g for the previous example is

DANFANFLANGANGAN(HANHy1V-HA=-H1))V
(=G AN=Gy A (HANHyoV—HA=-Hy)))V
("FANFLAN(GANGyLA(HANHyp V—-HA—Hp))

("G A =Gy A (H ANHypV-HA ﬂHoo)))
-DA(FANFy N(GANGoA(HANHy1 V—HA=Hi))
(—'G A =Gy A (H ANHigV—-HA —‘Hlo)))

(_'F AN E) AN (G A GO AN (H AN H(]1 V _|H A _‘H(]l))
(ﬁG A =Gy A (H A HpoV—-H A ﬁHQo)))

V
V
V
V
V

Formula can be converted in a sum-product circuit. Cg that cam be used to
compute the probability of any conjunctive formula. For instance to compute the
probability of H A =G, it is sufficient to set the weights of the literals —H and G
to 0. and compute the circuit. Therefore if we want to answer the conditional
conjunctive query Pr(D | H A —~G) we use the circuit to compute Pr(D A H A -Q)
and Pr(H N —Q). The anwer will be the fraction of the two results i.e.,

Pr(DAHA-G)
Pr(H A—G)

5. Learning weights

Until now, we have assumed that the weights associated to literals are given.
In this last section, we describe a basic method to automatically learn the weights
from a set of observations.

First, we have to define what is an observation. Since we want to learn a
weight function (or a probability distribution) on the set of interpretations of a
set of propositional variables P then the observations must be instances of such
assugnments. Suppose we have a set of observations which are represented as a
multi-set (i.e., a set with repeated objects) of interpretations I = (1), 7(2) . ()
where d the the size of the observations. The criteria used to learn the weights
is that of the maximum likelihood that requires to maximize the probability of
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observing the data. Formally, we want to find a set of parameters (weights) w such
that

(19) Likelihood(I | w) = Pr(I | w)

is maximal. We make the following simplifying hypothesis .The first one is that the
observations are i.i.d. (independent and identically distributed). This hypothesis
allows us to factorize the probability of all the observations as a product of the
probability of each single observation.

Likelihood(I | w) H Pr(Z | w

The second hypothesis concerns the form of Pr(- | w). We assume that this prob-
ability is specified via weighted model counting, i.e., that

1
Pr(Z|w)= mw(l’ | w)
The third and final hypothesis is that w(Z | w) is specified by an exponential form
w.r.t a given set of formulas ¢1, ..., ¢,. This means that

w(Z | w) = exp (Z wiz((bi))
=1

The problem consists in finding a tuple of weights w = (w1, ..., w,) that best fits
the observed data. Putting everything toghether we are interested in the vector of
real number w = (w1, ..., w,) that meximizes

1
Likelihood(I | w) = Z(w)? - exp ZZU}JI“ ()

i=1 j=1

Z(w) = 3 exp | S wiZ(6)

It is convenient to pass to the logarithmic space. Indeed due to the monotonicity of
the logarithmic function, we have that maximinzing a function f(z) is equivalent to
maximizing the logarithm of the function i.e. maximizing log(f(z)). We therefore
want to maximize the logarithm of the likelihood, also known as loglikelihood

LogLik(I | w) = log(Likelihood(H | w))

(20) —ZZwJ IO (¢;) — d - log(Z(w))

=1 j=1
n d
=30 w706, — d-log(Z(w))
(21) = ij‘ -y —dlog(z(w))

where n; is the number of observations Z( for which the fornula ¢; is true. We
can try to maximize with gradient ascent approach, by putting to zeros the
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partial derivatives of the log likelihood w.r.t. the parameters w;.

OlogLik(T | w)

311),’ =0
0 (2?21 wj-n; —d- log(Z(w)))
8wj =0
4 Xo20) e (S0 T5)
e Z(w) -

requires exponential amount of time. We can use an approximation by learning the
weight of each formulas separately. I.e., we assume that it is the only formula that
we use to cmpute the weight function. We therefore consider the case where we
have a unique formula ¢, and compute the derivative w.r.t. the only parameter w;.

ny — d-> 7 Z(¢1) - exp(wi - Z(¢1))

Z(w) "
n d- Zz|:¢1 ~exp(w1) B
1 Z(w)
i d - #SAT(¢1) - exp(wr) _ 0
' Z(w)
_— d - #SAT(¢1) - exp(wy) —0
L s, o0(wh) + Xgpg, exp(0)

d - #SAT(¢p1) - exp(wy) .

#SAT(¢1) - exp(wi) + #SAT(¢1)

ny - exp(wy) - #SAT(P1) + 1 - #SAT(—¢p1) = d - exp(wy) - #SAT(d1)
ny - #SAT(=¢1)

(d — n1)#sAT(¢1)

= exp(w1)

B ny - #SAT(~¢1)
v =los ((d ) #SATE¢1)>

IN the following we summarize how weighted model counting can be used to
perform probabilistic prediction starting from a set of observations. Suppose that
you are interested in doing some predictions which are expressible with a proposi-
tional formula @ starting from a set of evidences which are expressed in terms of
a propositional formula E. In synthesis you want learn a set of parameters w that
allows you to answer the query Pr(Q | E, w).

(1) collect a set of d observations, i.e., 7M., ZW@ from which you want to
extract knowledge that can be used to answer your query.

(2) select a set set of propositional formulae ¢4, ..., ¢, that you want to use
to describe the properties of your data. How to choose this formula is a
matter of design. A possible criteria is to conisder formulas such that their
truth value has some impact on the answer to the query Pr(Q | E, w).

(3) learn the weights wy, ..., wy, separately using formula:

n; - #SAT(_\Qﬁj) )
—n;) - #SAT(;)

(22) w; = log ((d
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(4) apply inference i.e., compute Pr(Q | E,w) via weighted model counting.

ie.
WMC(Q A E, w)
Pr@ [ Byw) = wMc(E, w)
EXAMPLE 1.12. Suppose that we have I = M) ..., T2 are summarized in the
following table:
’ # I Itemsets ‘
41a b ¢ d
1la b e f
7Tla b c
3 la c d f
2 g
1 d
4 d g

Suppose that we are interested in answering query of the form Pr(xz | y A —z) for
every ©,y,z € {a,b,c,d,e, f,g}. We can learn the weights of a set of formulas. See
for instance the following (randomly choosen)

15-26
726
1-26
e w 10g<21'26>~ 3.04
g (2220 ~ 304
—e w=log | 755 | =3
12 (27 — 25)
alb w =lo 1095 ~ 8.21
7-(27—2%)
1-(27—25)
19 (27 — 3. 25)
11 N
aNbA=cA-dNeAfA-g w = log(21 - (27 — 1)) ~ 7.89

And then estimate for instance Pr(a | b, —c) via weighted model counting.

6. Exercises
Exercise 1:
Given a set of propositional variable P, let w(Z) = |[{p € P | Z = p}|, i-e., w(T)

is the number of propositional variables that are true in Z. Compute WMC(T).

Exercise 2:
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Given a set of propositional variable P, let w(Z) = z!{PEPITEP}H for some x # 0.
Compute WMC(T).

Exercise 3:

Let P = {p,q} be a set of propositional variables. Check if the following two
weight functions on the interpretations of P can be expressed in terms of a weight
function on the literals of P.

T |p q|w@)
Z,/0 0] 0
(23) |0 1] 1
;|1 0] 2
Zol1 1] 3

Solution A weight funciton on the interpretation can be expressed in terms of a
weight function on the literals, if the weight of the interpretation is equal to the
product of the weight of the literals that are true in the interpretation, i.e., if

w(Z) = [ wp)* @ w(=p)*»
peEP

Therefore, to be expressed in term of a weight funciton on literals the weight func-
tion should be such that

w(=p) - w(—q)
w(=p) - w(q)
w(p) - w(—q) =2
w(p) - w(q) =3
THe first equation implies that either w(—p) = 0 or w(—g) = 0; but the second
equation implies that w(—p) # 0 and the third equation implies that w(# ¢) # 0,

which is impossible. Therefore the weight function cnanot be expressed in
terms of weight funciton on literals. [J

0
1

Exercise 4:

Suppose you have three coins: the faces of the first coin are black and white,
the faces of the second coin are yellow and green, and the faces of the third coin
are red and green. In an experiment you toss the first coin; if you obtain a black
you toss the second coin otherwise you toss the third coin.

(1) Model this experiment in propositional logic and

(2) use model counting to determine what are the number of possible out-
comes?

(3) Let p, ¢ and r be the probability of obtaining a black, yellow, and red
faces when tossing the first, second and third coin respectively. Compute
the probability of obtaining an outcome which is either red or green.

Solution We can use the language B, W, R, G,Y to state that in the outcome there
is a coin with a black, white, red, green, and yellow faces respectively. Notice that
this is possible since there is no possibility to have outcomes with two coins with
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the same color face. We can now formalize the constraints of the game in terms of
the following formulas:

B+ W =1 The toss of the first coin can have only one result among

black and white
R+Y +G=1 The toss of the second or third coin can have only one

result since only one coin among the two is tossed

B —=Y VG If you have a black then you can have only one among
yellow and green since you toss the second coin

W — RV G If you have a white then you can have only one among red
and green since you toss the third coin

The models that satisfies all the formulas are 4
(B.Y} {B.G) [W,R} ae)
If we associate the following weights:
wB)=p wW)=1-p w(l¥)=q¢ w(@=1-¢ wR)=r w(@=1-r
In this wey however we assign two weights to the same atom G. Indeed we have to

distinguish when G is obtained by the second or by the third coin. To this purpose
we introduce two new atoms

Gy« BNG Gy WAG

Adding these new propositions does not change the number of models since they
are fully defined in terms of the previous propositions. We still have 4 models by
they are:

{va} {BvGa GQ} {W,R} {I/V? GvGS}
and update the weights for G to
w(Gz)=1—¢q w(Gs)=1—r

w({B,Y}) =pg w({B,G,G2})=p(l—q) w({W,R})=(1-p)r w{W,G Gs})=(1-p))(1—-r)
Notice that the weight of all the models sum up to 1, and therefore they can be

considered to be probabilities of the outcomes. Finally, the probability of in the

result we have either red or green, is equal to the probability of the formula RV G

which can be computed by the sum of the probabilities of the models that satisfies
RVGie,pl—q¢)+(1—-pr+(1—p)(1—r)=p(l—q)+1—p=1—pq. O

Exercise 5:
Consider the set P = {p, ¢} of propositional variables and the following weight
functions:

Zl|p ql|wl(Z) Z|p q|wT)
7,0 0] 1 7,10 0] 4
o 1| 2 Lo 1| 3
I3 |1 0 3 I3 |1 0 8
Iy |1 1 4 w1 1 6

Check if they can be expressed in terms of a weight function w : P — R™.

Solution A weight function maps every interpretation of the propositional variables
into a positive real number. This mapping can be specified explicilty, by providing
the explicit weight for every interpretation (we have to specify 2™ numbers, where
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n is the number of propositional variables) This is how we have specified the two
weight functions wy and ws of the exercise. Alternatively, and more compactly, the
weight function can be specified indirectly, by associating a weight to every literal,
and then define the weight of an assignment as the product of the weight of the
literals that are satisfied by the assignment. i.e.,

w(Z) = H w(l)

L€ Literals
Tl=t

With this method instead of specifying 2" numbers we have to provide at most 2n
parameters (corresponding to the number of literals). However, this is not always
possible, i.e., there are weight functions that cannot be specified in terms of a weight
function on the literals. The exercise asks if the weight functions w; and ws can or
cannot be specified by a weight function defined on literals.

Let’s start with wy. If w; can be specified with the weight of the literals, then
we have that

wi(Zh) =1 = w(-p) - w(—gq)
wi(Zz) = 2 = w(-p) - w(q)
wi(Z3) = 3 = w(p) - w(~q)
wi(Zy) =4 =w(p) - w(q)

To find the weight function for the literals, we have therefore to solve the following
system of equations, where we have replaced w(—p), w(—q), w(q), and w(p), with
a,b,c and d.

a-b=1 a:%
a-c=2 c=2b
=
d-b=3 dz%
d-c=4 d—%

which does not have a solution. This implies that the weight funciton w; cannot
be expressed in terms of weight function on literals. Let us now consider wo. We
proceed in the same way:

a-b=14 4
a-c= b=%4
=qc=3
d-b=28 @
d=2a

d-c=6

which has infinite solution for a # 0, for instance:

Exercise 6:
Consider the following weighted formulas

literal | A -A B -B C -=C
weight | 1 2 1 2 1 2
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Compute the weight and the probabilities of the formulas

(AV B) = (BVC)

Solution Let us compute the weights of all the interpretations.

A B C|w(@)
7,0 0 0] 8
Z,|0 0 1| 4
;|0 1 ol 4
.0 1 1| 2
Zs |1 0 0| 4
Zs|1 0 1| 2
|1 1 0| 2
s |1 1 1| 1

Notice that the models of ¢ = (AV B) — (BV C) are all but Z5. therefore the
weight of the fomrula is the total weight (i.e., the weight of T) minus the weight of
Ts. IN summary

w(@) = w(T) - w(Ts) = 23
Prie) = 2% = 2

Exercise T:
Consider the following weighted formulas

weight : literal

1 . A
2 -A
1 B
2 -B
1 C
2 -C

Compute the weight and the probabilities of the formulas
(AVvB)—= (BVC(C)

Remember that in weighted model counting you multiply the weights of the literal
that are true. Solution
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A B C w AvVB—BvVvVC

0 0 0][2°5=38 1

0 0 1/22=4 1

0 1 0/22=4 1

0 1 1|2t=2 1

1 0 01]22=4 0

1 0 1]2t=2 1

1 1 0/[2t=2 1

1 1 1]2°=1 1
the weighted model counting of the AV B — BV (' is equal to 23, and the probability
is % ~ 0.85. J

Exercise 8:

Provide a weight function W : P — R™, that is equivalent to weight function
defined in the previous exercise. Explain why such a weight function does not exist
for the weight defined in Exercise [0}

Exercise 9:

Given the following observations on the items bought by people.

’ +# I Itemsets ‘
4 la b c d
1 b e f g
7|la b c
3 la c e f
2 g
1 b e
4 |a c d g

Learn the weights of the following formulas:

(1) anb—c
(2) bAc—dV f

Exercise 10:

Explain the relation between weight function and probability distribution on

the set of interpretation.

Exercise 11:

Compute the weight for the following formula: (b — —¢) V (d <> f) from the

following itemset:

’ # I Itemsets ‘
4 b ¢ d
2 la e f
6 |a b c
1|a c d f
3 |a c e g
5 d
9 b d e g
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Solution We have to apply the formula for computing the weight given a set of

observations, i.e.,

(- #8AT(-0)
w= ((dn)#SAT<¢>>>

where n is the number of observations for which the fornula ¢ is true and d is the
total number of observations. Let us first compute #SAT((b — —¢) V (d < f)). We
do it by truth table

bedf|l(b—o—c)Vv(def)
1111] 1001 1 111
1110/ 1001 0 100
1101 1001 0 00 1
1100/ 1001 1 010
1011 1110 1 111
1010/ 1110 1 100
1001 1110 1 001
1000/ 1110 1 010
0111/ 0101 1 111
0110/ 0101 1 1200
0101/ 0101 1 001
0100/ 0101 1 010
0011 01 10 1 1 11
0010/ 0110 1 100
0001 0110 1 001
0000 0110 1 010
14

Since we have to take into consideration also other three propositional variables not
appearing in the formula we have that we have that

#SAT((b = —¢)V (d > f)) =14
#SAT(=((b—= =) V (d > f))) =27 — #8aT((b = —c) V (d ¢ f)) = 16 — 14 = 2
d=4+24+64+14+34+5+9=30
n = 26

By replacing this values in the formula we obtain

26 -2
w=1In (4) ~ In(0.9286) ~ —0.74

Exercise 12:
Prove that the formulas

Vy(P(y) A JzQ(x)) VyP(y) A 3xQ(z)

are equivalent. (Suggestion: you have to show that every interpretation satisfies
the first formula if and only if it satisfies the second one).
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Solution
T EVy(P(y) AJzQ(z)) <= foralld € AT, T |= P(z) A JyP(y)[ared]
— foralld € AT, T |= P(z)[azea) and T = FyP(y)[ared]
« foralld € AT, T |= P(x)[azeq] and T = FyP(y)
<= I EVzP(x) and T |= JyP(y)
< I E=VaP(z) AJyP(y)

Exercise 13:

Let P = {p1,...,pn} be aset of propositional variables and < be a total ordelﬂ
on the set I of interpretations of P. Consider the problem of ginding a weight
function w : £ — R, where £ is the set of literals on P, such that

I<J ifandonlyif w(Z)<w(J)

(1) make a simple exempla with |P| = 2,
(2) discusso on the fact if the problem has always a positive solution or not.
(3) Outline a method to find the solution.

Solution

(1) Let us consider the following two orders of the interpretations of {p,q},
where ij represents the interpretation Z(p) =1 and Z(q) = j.

(24) 00<01<10<11
(25) 00<11<10=<01

In the order we can define w(—p) = w(—~q) = 1 and w(p) = 3, and
w(q) = 2, we obtain that

w(00) =1 < w(01) =2 < w(10) = 3 < w(11) =6

In the order instead we can write the following system of inequalities:

which can be rewritten as

{w(w)w(w) <w(plu(-q) {wbp) < w(p)
w(p)w(q) < w(=p)w(q)

which does not have any solution.
(2) From the previous example one can see that the problem does not always
have a solution.

2A total order < on a set S is a binary relation on S such that (a) s 4 s, (b) if s # ¢ then
s<tort=<s,and (c) s <t < uimplies s < u. An example of total order is the usual order < on
integers.
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(3) A method for solving this problem is to writhe explicitly the system of
inequalities for every Z < J

n

Hw(pz’)z(’”) w(—py) PP < Hw(pi):](pi) -w(—py) T P
i=1 i=1
and try to solve it.

Exercise 14:
Compute the weighted model counting of the formula

(A— B)AN(B— (CV D))
via knowledge compilation with the following weight function:
lit |A -A B -B C -C D -D
w(lit)[3 1 1 3 3 05 4 2

You can check your result by computing WMC using truth table (this is not strictly
necessary for the exercize).

Solution We compute the WMC of the formula ® by compiling it in the sd-DNNF
form and then transform it in a computational circuit

(A= B)A(B— (CV D)) to NNF

(mAV B)A(-BVCVD) to DNNF with shannon expansion on B
(BA(CV D))V (=BA-A) to d-DNNF
(BA(CV (=CAD)))V (~BA-A) to sd-DNNF

(BA(CAN(DV-D)V(=CAD))A(AV-A)) V
(-BA=AN(CV-C)N(DV-D)) To circuit
(1-(3-(4+2)+(05-4))-(3+1)) +
(3-1-(3+05) (4+2) =
80+ 63 =143
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