Teoria quantistica Sistemi semplici risolvibili esattamente Momento Angolare

Chimica Fisica 2

Laurea Tri. Chim. Industriale 2022-23

Prof. Antonio Toffoletti

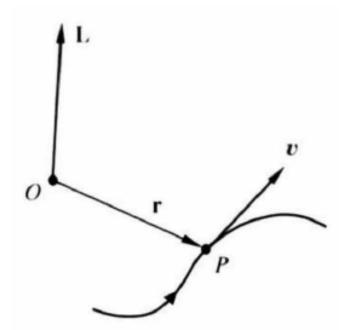
Momento angolare in Fisica Classica

- P = punto di massa m
- O = polo rispetto a cui viene calcolato \vec{L} = \vec{L}
- Definizione:

$$L = r \times p = r \times mv$$

 \boldsymbol{L} è un vettore con componenti \boldsymbol{L}_x , \boldsymbol{L}_y , \boldsymbol{L}_z

Come costruiamo l'operatore quantomeccanico corrispondente a L ?



Nota bene :

$$\mathbf{L} = \mathbf{r} \times m \, \mathbf{v} = \mathbf{r} \times m \, (\mathbf{v}_r + \mathbf{v}_\theta) = \mathbf{r} \times m \, \mathbf{v}_\theta$$

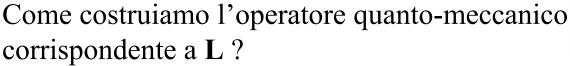
Solo la componente \mathbf{v}_{θ} perpendicolare a \mathbf{r} conta nel calcolo di \mathbf{L} , e quella parallela dà $\mathbf{0}$.

Momento angolare in Fisica Classica

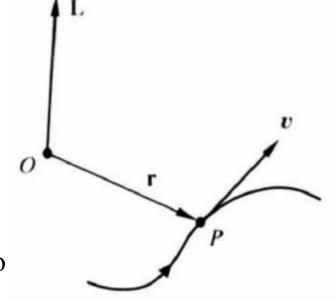
- P = punto di massa m
- O = polo rispetto a cui viene calcolato \vec{L} L
- Definizione:

$$L = r \times p = r \times mv$$

 ${\bf L}$ è un vettore con componenti ${\bf L_x}$, ${\bf L_v}$, ${\bf L_z}$



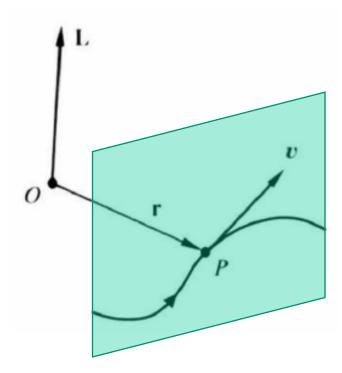
Dobbiamo sviluppare il prodotto vettoriale $r \times p$



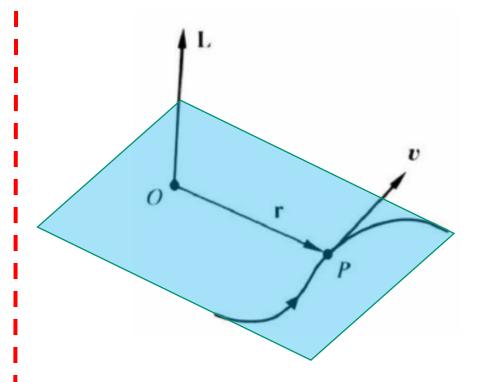
$$\boldsymbol{L} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \boldsymbol{x} & \boldsymbol{y} & \boldsymbol{z} \\ \boldsymbol{p_x} & \boldsymbol{p_y} & \boldsymbol{p_z} \end{vmatrix} \qquad \boldsymbol{x,y,z} \text{ sono le componenti di } \boldsymbol{r}$$

i, j, k sono I versori degli assi cartesiani

Momento angolare in Fisica Classica



Moto in un piano che **non contiene** *O*



Moto in un piano che

contiene O

L risulta ortogonale al piano azzurro ed il modulo di L vale

$$L = m r v_{\theta} = m r^2 \frac{d\theta}{dt}$$