Teoria quantistica

Sistemi semplici risolvibili

esattamente
 ticella su una era
 ROTAZIONE in 3D
 Chimica Fisica 2
 Laurea Tri. Chim. Industriale 2022-23

Prof. Antonio Toffoletti

Particella su una sfera

Riassunto
Le energie di una particella costretta a muoversi in una regione finita di spazio sono quantizzate.

1. La funzione d'onda di una particella su una sfera deve soddisfare contemporaneamente a due condizioni cicliche al contorno, quindi due numeri quantici: l ed m_{l};
2. L'Energia e il momento angolare della particella sulla sfera sono quantizzati;
3. La quantizzazione spaziale e' la restrizione della componente z del momento angolare a certi valori;
4. Il modello vettoriale del momento angolare usa dei diagrammi (rappresentazioni grafiche) per rappresentare lo stato del momento angolare di una particella rotante nello spazio.

Particella su una sfera
 Introduzione

We now consider a particle of mass m that is free to move anywhere on the surface of a sphere of radius r. We shall need the results of this calculation when we come to describe rotating molecules and the states of electrons in atoms. The requirement that the wavefunction should match as a path is traced over the poles as well as around the equator of the sphere surrounding the central point, introduces a second cyclic boundary condition and therefore a second quantum number.

Rotation in 3 dimensions: the particle on a sphere

The Schrödinger equation

The hamiltonian for motion in three dimensions is
$\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V \quad \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
The symbol ∇^{2} is a convenient abbreviation for the sum of the three second derivatives; it is called the laplacian, and read either 'del squared' or 'nabla squared'. For the particle confined to a spherical surface, $V=$ 0 wherever it is free to travel, and the radius r is a constant. The wavefunction is therefore a function of the colatitude, θ, and the azimuth, ϕ (see the Figure), and so we write it as $\psi(\theta, \phi)$.

Spherical polar coordinates. For a particle confined to the surface of a sphere, only the colatitude, θ and the azimuth, ϕ, can change.

Rotation in 3 dimensions: the particle on a sphere

The wavefunctions

The Schrödinger equation
The Schrödinger equation is

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=E \psi
$$

As shown in the following paragraph, this partial differential equation can be simplified by the separation of variables procedure by expressing the wavefunction (for constant r) as the product

$$
\psi(\theta, \phi)=\Theta(\theta) \Phi(\phi) \quad \psi(\theta, \phi)=\Theta(\theta) \Phi(\phi)
$$

Separation of variables
where Θ is a function only of θ and Φ is a function only of ϕ.

Rotation in 3 dimensions: the particle on a sphere

The separation of variables

The laplacian in spherical polar coordinates is

$$
\begin{aligned}
& \nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Lambda^{2} \text { rè costante laplacian } \\
& \text { the legendrian, } \Lambda^{2} \text {, is }
\end{aligned}
$$

$$
\Lambda^{2}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}
$$

legendrian

Because r is constant, we can discard the part of the laplacian that involves differentiation with respect to r, and so write the Schrödinger equation as

$$
\frac{1}{r^{2}} \Lambda^{2} \psi=-\frac{2 m E}{\hbar^{2}} \psi
$$

or, because $I=m r^{2}$, as

$$
\begin{aligned}
& \begin{array}{l}
\text { Questa era l'equa- } \\
\text { zione di partenza }
\end{array}-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=E \psi \\
& \Lambda^{2} \psi=-\varepsilon \psi \quad \varepsilon=\frac{2 I E}{\hbar^{2}}
\end{aligned}
$$

Rotation in 3 dimensions: the particle on a sphere

The separation of variables

To verify that this expression is separable, we substitute $\psi=\Theta Ф$:

$$
\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}(\Theta \Phi)}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial(\Theta \Phi)}{\partial \theta}=-\varepsilon \Theta \Phi
$$

We now use the fact that Θ and Φ are each functions of one variable, so the partial derivatives become complete derivatives:

$$
\frac{\Theta}{\sin ^{2} \theta} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}+\frac{\Phi}{\sin \theta} \frac{\mathrm{d}}{\mathrm{~d} \theta} \sin \theta \frac{\mathrm{~d} \Theta}{\mathrm{~d} \theta}=-\varepsilon \Theta \Phi
$$

Division through by $\Theta \Phi$, multiplication by $\sin ^{2} \theta$, and minor rearrangement gives

$$
\frac{1}{\Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}+\frac{\sin \theta}{\Theta} \frac{\mathrm{d}}{\mathrm{~d} \theta} \sin \theta \frac{\mathrm{~d} \Theta}{\mathrm{~d} \theta}+\varepsilon \sin ^{2} \theta=0
$$

The first term on the left depends only on ϕ and the remaining two terms depend only on θ.

Rotation in 3 dimensions: the particle on a sphere

The separation of variables

We met a similar situation when discussing a particle on a rectangular surface, and by the same argument, the complete equation can be separated. Thus, if we set the first term equal to the numerical constant $-m_{l}^{2}$ (using a notation chosen with an eye to the future), the separated equations are

The first of these two equations is the same that we have seen studying the particle on a ring, so it has the same solutions

$$
\psi_{m_{l}}(\phi)=\frac{\mathrm{e}^{\mathrm{i} m_{l} \phi}}{(2 \pi)^{1 / 2}} \quad m_{l}= \pm \frac{(2 I E)^{1 / 2}}{\hbar}
$$

The second is much more complicated to solve, but the solutions are tabulated as the associated Legendre functions.

Rotation in 3 dimensions: the particle on a sphere

The separation of variables

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} \phi^{2}}=-\frac{2 I E}{\hbar^{2}} \psi
$$

eq. di
Schroedinger
da: Particella su circonferenza

The first of these two equations is the same that we have seen studying the particle on a ring, so it has the same solutions

$$
\psi_{m_{1}}(\phi)=\frac{\mathrm{c}^{\mathrm{im} m_{1} \phi}}{(2 \pi)^{1 / 2}} \quad m_{l}= \pm \frac{(2 I E)^{1 / 2}}{\hbar}
$$

1° NUMERO QUANTICO: m_{ℓ}
The second is much more complicated to solve, but the solutions are tabulated as the associated Legendre functions.

Rotation in 3 dimensions: the particle on a sphere

The separation of variables

For reasons related to the behaviour of these functions, the cyclic boundary conditions on Θ arising from the need for the wavefunctions to match at $\theta=0$ and 2π (the North Pole) result in the introduction of a second quantum number, l, which identifies the acceptable solutions.

2° NUMERO QUANTICO: ℓ

$$
\frac{1}{\Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}=-m_{l}^{2} \quad \frac{\sin \theta}{\theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta} \sin \theta \frac{\mathrm{~d} \theta}{\mathrm{~d} \theta}+\varepsilon \sin ^{2} \theta=m_{l}^{2}
$$

The presence of the quantum number m_{l} in the second equation implies, as we see below, that the range of acceptable values of m_{l} is restricted by the value of l.

$$
l=0,1,2, \ldots \quad m_{l}=l, l-1, \ldots,-l
$$

Rotation in 3 dimensions: the particle on a sphere

The separation of variables

$$
\psi(\theta, \phi)=\Theta(\theta) \Phi(\phi)
$$

As indicated in the previous paragraph, solution of the Schrödinger equation shows that the acceptable wavefunctions are specified by two quantum numbers / and m, which are restricted to the values

$$
l=0,1,2, \ldots \quad m_{l}=l, l-1, \ldots,-l
$$

Note that the orbital angular momentum quantum number $/$ is non-negative and that, for a given value of I, there are $2 l+1$ permitted values of the magnetic quantum number, m_{l}.

The normalized wavefunctions are usually denoted $Y_{l, m_{l}}^{-}(\theta, \phi)$ and are called the spherical harmonics (see the Table).

Rotation in 3 dimensions: the particle on a sphere

The separation of variables

The normalized wavefunctions are usually denoted $Y_{l, m m_{I}}(\theta, \phi)$ and are called the
spherical harmonics (see the Table).
le funzioni the Table). Armoniche sferiche

$1 \quad m_{l} \quad Y_{L, m_{l}}(\theta, \varphi)$
$0 \quad 0 \quad\left(\frac{1}{4 \pi}\right)^{1 / 2}$
$10\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta$
$\pm 1 \quad \mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta \mathrm{e}^{ \pm i \phi}$
$20\left(\frac{5}{16 \pi}\right)^{1 / 2}\left(3 \cos ^{2} \theta-1\right)$
$\pm 1 \quad \mp\left(\frac{15}{8 \pi}\right)^{1 / 2} \cos \theta \sin \theta \mathrm{e}^{ \pm i \phi}$
$\pm 2 \quad\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \mathrm{e}^{ \pm 2 i \phi}$
$30 \quad\left(\frac{7}{16 \pi}\right)^{1 / 2}\left(5 \cos ^{3} \theta-3 \cos \theta\right)$
$\pm 1 \quad \mp\left(\frac{21}{64 \pi}\right)^{1 / 2}\left(5 \cos ^{2} \theta-1\right) \sin \theta e^{ \pm i \phi}$
$\pm 2 \quad\left(\frac{105}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \cos \theta e^{+22 \omega}$
$\pm 3 \quad \mp\left(\frac{35}{64 \pi}\right)^{1 / 2} \sin ^{3} \theta \mathrm{e}^{ \pm 3 i \varphi}$

Rotational motion 3 dimensions

A representation of the wavefunctions of a particle on the surface of a sphere which emphasizes the location of angular nodes: dark and light shading correspond to different signs of the wavefunction. Note that the number of nodes increases as the value of I increases. All these wavefunctions correspond to $\mathrm{ml}=0$; a path around the vertical z-axis of the sphere does not cut through any nodes.

Rotational motion 3 dimensions

|me 6

1
2
3
A more complete representation of the wavefunctions for $l=0,1,2$, and 3 . The distance of a point on the surface from the origin is proportional to the square modulus of the amplitude of the wavefunction at that point.

Rotational motion
 3 dimensions

$$
\begin{gathered}
\frac{1}{\Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}=-m_{l}^{2} \quad \frac{\sin \theta}{\Theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta} \sin \theta \frac{\mathrm{~d} \Theta}{\mathrm{~d} \theta}+\varepsilon \sin ^{2} \theta=m_{l}^{2} \\
\psi_{m_{l}(\phi)=}^{\text {soluzioni }} \\
m_{m_{l}= \pm}^{(2 \pi)^{1 / 2}} \frac{(2 I E)^{1 / 2}}{\hbar} \\
\quad \text { associated Legendre functions } \\
E=l(l+1) \frac{\mathrm{e}^{\mathrm{i} m_{l} \phi}}{2} \\
l=0,1,2, \ldots \quad m_{l}=l, l-1, \ldots,-l \\
2 I
\end{gathered}
$$

L'ENERGIA non dipende dal numero quantico $\boldsymbol{m}_{\boldsymbol{l}}$ Degenerazione $=2 l+1$

Rotational motion
 3 dimensions
 Collegamento con la struttura atomica

$$
E=l(l+1) \frac{\hbar^{2}}{2 I} \quad l=0,1,2, \ldots
$$

L'ENERGIA non dipende dal numero quantico \boldsymbol{m}_{l} Degenerazione $=2 l+1$

Per questo motivo
gli orbitali p sono 3 e sono degeneri ($l=1 ; 2 l+l=3$) gli orbitali d sono 5 e sono degeneri $(l=2 ; 2 l+l=5)$ gli orbitali f sono 7 e sono degeneri ($l=3 ; 2 l+l=7$)

Rotational motion
 3 dimensions

$$
E=l(l+1) \frac{\hbar^{2}}{\partial I} \quad l=0,1,2, \ldots
$$

$$
E=J^{2} / 2 I
$$

Nella rotazione a 2 dimensioni $\mathrm{E}=J_{z}{ }^{2} / 2 I$

$$
\begin{aligned}
& |\vec{J}|=\text { Magnitude of angular momentum }=\{l(l+1)\}^{1 / 2} \hbar \quad l=0,1,2 \ldots \\
& J_{z}=z \text {-Component of angular momentum }=m_{l} \hbar \quad m_{l}=l, l-1, \ldots,-l
\end{aligned}
$$

Rotational motion
 3 dimensions

The permitted orientations of angular momentum when I = 2. We shall see soon that this representation is too specific because the azimuthal orientation of the vector (its angle around z) is indeterminate.

QUANTIZZAZIONE SPAZIALE della ROTAZIONE di un corpo microscopico

