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(c) deduce from the above that u is a viscosity subsolution of (0u)/(9z1)(z) < 0,
z € RV if and only if
7'(z1) <0, z1 €ER

in the viscosity sense, for any (z2,...,Zn) € RN-L

2.9. Consider the distance function d from a set .5. Under which conditions does
w := —d solve |Du| =1 in the viscosity sense?

2.10. Prove that v is a (generalized) exterior normal to S at z if and only if there
exists € > 0 such that

B(z+ev,e)nS=0.

2.11. Compute the (generalized) exterior normal vectors to S in the following
cases:

(a) §={0}

(b) S={zeRN:z=txg+ (1 —t)z1, t€[0,1] }
(c) S={zeR":g(zx)<0}n{zeRY: f(z) <0}
(d) S={zeR":g(x)<0}u{zeRY:f(z)<0}.

Here, f and g are C! functions. Finally, let
S ={z = (z1,22) € R?: |z5| < |71|¥?} .

Show that N(0) = @ although the exterior normal at z = 0 exists (namely, n(0) =
(0,1)). Observe that 85 is C* but not C2.

2.12. Define a proximal normal to a closed set S C RN at z € 85 as any vec-
tor p € RY such that d(z + rp,S) = 7|p|, for some r > 0. Prove the following
characterization of generalized exterior normals to S:

N(z) = {v = p/|p| : p proximal normal to S at z} .

3. Some comparison and uniqueness results

In this section we address the problem of comparison and uniqueness of viscosity
solutions. This is a major issue in the theory, also in view of its relevance in
connection with sufficient conditions in optimal control problems. The results
presented here are not the most general; in fact they are selected to show the main
ideas involved in the proofs with as few technicalities as possible. In Chapters III,
IV and V we prove many other comparison theorems especially designed for the
Hamilton-Jacobi-Bellman equations arising in optimal control theory, and we refer
also to the literature quoted in the bibliographical notes for more general results.
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As an introduction to the subject, suppose that uy,us € C(Q) N C(Q), satisfy
the inequalities

uy(z) + H(z, Dui(z)) <0

3.1

@1 us(z) + H(z, Dua(z)) >0
for z € Q and

(3.2) u1 < ug on 6N} .

Suppose 2 bounded and let zo be a maximum point for u; —ug on Q. If zo € €,
then Duy(zo) = Dua(zo) and (3.1) gives by subtraction

v (z) — ua(z) < wi(zo) — ua(zo) <0 Vzell.
If, on the other hand, z¢ € 89, then
uy (z) — ua(z) < uwy(zo) — u2(zo) £0 Vzeq,

as a consequence of (3.2). Hence, u; < ug in Q. Reversing the role of u; and
ug in (3.1), (3.2), we get, of course, the uniqueness of a classical solution of the
Dirichlet problem

u(z) + H(z, Du(z)) =0, z € Q,
u =, on 09 .

The preceding elementary proof fails if u;, uy are continuous functions satisfying
the inequalities (3.1) in the viscosity sense since Du; may not exist at zo. However,
the information contained in the notion of viscosity sub- and supersolution is strong
enough to allow the extension of comparison and uniqueness results to continuous
viscosity solutions of equation (HJ) with rather general F.

In the following we present some comparison theorems between viscosity sub-
and supersolutions in the cases  bounded, = R¥, and for the Cauchy problem.
As a simple corollary, each comparison result produces a uniqueness theorem, as
indicated in the remarks. For simplicity we restrict our attention to the case
F(z,r,p) = r + H(z,p); the results hold, however, for a general F' provided 7 —
F(z,r,p) is strictly increasing (see Exercises 3.6 and 3.7), and for some special F’
independent of r, see Theorem 3.7, §5.3 and Chapter IV, §2.

THEOREM 3.1. Let Q be a bounded open subset of RN. Assume that uy,ug € C(Q)
are, respectively, viscosity sub- and supersolution of

(3.3) u(z) + H(z, Du(z)) =0, z€eN
and
(3.4) uy < ug on 69} .
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Assume also that H satisfies

(H1) |H(z,p) — H(y,p)| < wi(lz — yl(1+ |p])),

forz,y € Q, p € RY, where wi : [0,+o00[ — [0,+00[ is continuous nondecreasing
with w1(0) = 0. Then uy < ug in .

PROOF. Define, for € > 0, a continuous function ®¢ on Q x 2 by setting

2
T —1
Be(z,9) = 11 (a) — waly) - 2520
€
and let (z¢,ye) be a maximum point for & on € x €. Then, for any € >0

(3:5) max(u; — u2)(z) = max P.(z,z) < max _®e(z,y) = Pe(ze, Ye) -
z€S z€Sd (z,y)€82x 82

‘We claim that
ase —0.

(3.6) liminf ®,(ze,ye) <0

This, together with (3.5), proves the theorem.
In order to prove (3.6), let us observe first that the inequality

(I’e(zsy ze) < q’E(-’E:» ye)

amounts to

I:l:s = ys|2

% < up(ze) — ua(ve) -

This implies

|ze — ye| < (Ce)'/?,
where C depends only on the maximum of |up| in Q. Therefore,
as e — 0;

3.7 |Te —ye| — O

and, by continuity of us,

iy 2 1] [ y [N
(3.8) lwe—vel® o e, | HeH{P)+
2e |
Now there are two possible cases:
(D) (zen,Ven) € (0 x Q) for some sequence g, — 07F;

(i) (ze,ye) € N x Q for all € €10, 2.
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In case (i) either z,, € 89, and then, by (3.4),

u1(Te,) — v2(Yen) < ua(Te,) — u2(ven),
Or Ye,, € 02 and then

U1 (Ten) — u2(Yen) < u1(Ten) — v1(Yen) -

Note that the right-hand sides of both these inequalities tend to 0 as n — oo
by (3.7) and the uniform continuity of u; and up. Therefore

(Pen (zErnyEn) S ul(zfn) - uz(yan) =0 as n — 0o,
and the claim (3.6) is proved in this case.
Assume now that (z,,ye) € 2 x  and set
_ |z — gel? _ |ze — yl®
p2(x) = ua(ye) + % e1(y) = ui(ze) e

It is immediate to check that ¢; € C*(Q) (i = 1,2) and z¢ is a local maximum
point for u; — (2, whereas ¥ is a local minimum point for us — ¢1. Moreover,

2o —
Dep1(ve) = = = Da(ze)

By the definition of viscosity sub- and supersolution, then,

Te — s
ui(ze) + H(ze, 2=) <0, —uaye) — H (e, =) <0.
€ €
By (H3), this implies

u1(ze) — u2(ye) < w1 (I:I:E = ygl(l + @))

and, a fortiori

2 —
@e(e,ve) < wn (o — el (14 222D
Taking (3.7) and (3.8) into account, (3.6) follows and the proof is complete. <

REMARK 3.2. If uj,up are both viscosity solutions of (3.3) with u; = ug on 99,
from Theorem 3.1 it follows that u; = ug in Q. <

REMARK 3.3. The statement of Theorem 3.1 is true also for the equation
Mu(z) + H(z,Du(z)) =0 z€Q

with A > 0. On the other hand, for the equation H(z, Du(z)) = 0 non-uniqueness
phenomena may appear. An extreme case is H(z,p) = 0 for all z and p: in this
case any u € C(Q) is a viscosity solution. <



