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Some properties of the sub- and superdifferential are collected in Lemma 1.8.
LEMMA 1.8. Letu € C(2) and = € Q. Then,
(a) Dtu(z) and D™u(z) are closed convez (possibly empty) subsets of RY;
(b) if u is differentiable at z, then {Du(z)} = D*u(z) = D~u(z);

(c) if for some z both DYu(z) and D~ u(z) are nonempty, then

DYu(z) = D™ u(z) = {Du(z)};

(d) the sets AT = {z € Q: DY u(z) # 0}, A” = {z € Q: D™u(z) # 0} are dense.

PROOF. The convexity of D¥u(z) and D~ u(z) is a straightforward consequence
of the definition of lim sup and liminf.

To prove that Dtu(z) is closed we take a sequence p, — p such that p, €
Dtu(z) for all n, and assume by contradiction that

=a>0

(14) lim u(yn) - ’U.(I) —P- (yn — I)
W |yn — z|

for a sequence y, — z. For k large enough we have |py — p| < /2. Then, by
adding and subtracting pi - (yn — )/|yn — 7| to (1.4) we get

lim sup uw(yn) — u(z) — P - (Yn — )
n [yn — z|

zg,

a contradiction to px € Dt u(z).
To proceed in the proof observe that for any z,y € 2 and p,q € RY we have

oy y—z _u)-u@)-g-(y—2) uy)-uz)-p (-2
@8 -9 g3l e ~

For any n € N, set y, := z + (1/n)(p — q) and take y = y, in (1.5) to obtain

u(yn) —u(z) —q (Yn—2)  ulyn) —u(®) —p- (yn — )
|?/n‘“I| |yn — | '

lp—q|l =

by definition of limsup and liminf this yields

(1.6)
|p — q| < limsup u(y) —u@) —q-(y-2) _ limiint u(y) —w(z) —p- (y — ) .
y—z, yeQ ly — = y—z, yeQ ly — 2|

If u is differentiable at z, then Dt u(z) N D™u(z) # 0 since it contains Du(z). In
this case Dt u(z) and D~u(z) reduce to singletons as a consequence of (1.6). Con-
versely, if for some z one has Dt u(z) # 0, D~ u(z) # 0, then by (1.6) Dtu(z) =
D~u(z) is a singleton. This means that u is differentiable at z with {Du(z)} =
Dtu(z) = D™ u(z).
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In order to prove (d), let Z € Q and consider the smooth function ¢e(z) =
|z —Z|2/e. For any & > 0, u — . attains its maximum over B = B(Z, R) at some
point z.. From the inequality

(u = @e)(ze) 2 (u— ¢e)(T) = u(T)
we get, for all € > 0,

|ze — |2 < 2e sup |u(z)] -
zeB

Thus z. is not on the boundary of B for £ small enough, and by Lemma 1.7 (a),
Dye(ze) = 2(ze —T)/e belongs to D*u(z.). This proves that A* is dense, and
similar arguments show that A~ is dense too. <

As a direct consequence of Lemma 1.7 the following new definition of viscosity
solution turns out to be equivalent to the initial one: a function v € C(Q) is a
viscosity subsolution of (HJ) in Q if

1 F(z,u(z),p) <0 Vz €, Vpe Dtu(z);

a viscosify supersolution of (HJ) in  if

(1.8) F(z,u(z),p) >0 Vz e, Vpe D u(x) .

Of course, u will be called a viscosity solution of (HJ) in  if (1.7) and (1.8) hold
simultaneously.

The above definition, which is more in the spirit of nonsmooth analysis, is
sometimes easier to handle than the previous one. We employ it in the proofs of
some important properties of viscosity solutions.

As a first example we present a consistency result that improves Proposition 1.3.

PROPOSITION 1.9. (a) Ifu € C(Q) is a viscosity solution of (HJ), then
F(z,u(x), Du(z)) =0

at any point T € Q) where u is differentiable;
(b) if u is locally Lipschitz continuous and it is a viscosity solution of (HJ), then

F(z,u(z), Du(z)) =0 almost everywhere in ) .

PROOF. If z is a point of differentiability for u then by Lemma 1.8 (b) {Du(z)} =
Dtu(z) = D~ u(z). Hence, by definitions (1.7), (1.8)

0> F(z, u(z),Du(m)) >0,

which proves (a). Statement (b) follows immediately from (a) and the Radema-
cher’s theorem on the almost everywhere differentiability of Lipschitz continuous
functions (see [EG92)). <
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REMARK 1.10. Part (b) of Proposition 1.9 says that any viscosity solution of (HJ)
is also a generalized solution, i.e., a locally Lipschitz continuous function u such that

F(z,u(z), Du(z)) =0 a.e in Q.

The converse is false in general: there are many generalized solutions which are
not viscosity solutions. As an example, observe that u(z) = |z| satisfies

[(z)|-1=0 in ]-1,1[~ {0},

but it is not a viscosity supersolution of the same equation in ]—1,1[ (see Exam-
ple 1.6 or, alternatively, just observe that p = 0 belongs to D~u(0) and (1.8) is not
satisfied at z = 0). In Remark 2.3 we define infinitely many generalized solutions
of this equation which are not viscosity solutions. We shall come back to this
point in §5. <

Exercises
1.1. Check that
; 0<z<1/2
u(@) =47 =L
-z, 1/2<z<1
is a viscosity solution of |u/(z)] =1 =0, z € (0,1). Is u a viscosity solution of
equation —|u/(z)| +1=01in]0,1(?
1.2, Let
0, <0
u(z) = { S

%bm2+a:c, z>0.

Compute Dt u(0).

1.3. Ifu: RY — Ris convex (i.e., u(Az + (1 — A)y) < du(z) + (1 — A)u(y), for any
z, y in RN, X € [0,1]), then its subdifferential at = in the sense of convex analysis
is the set

dcu(z) :={pe RN :uy) >u(z)+p-(y—z),Yy e RV} .
Show that if u is convex then d.u(z) = D~ u(z) at any =.

1.4. Let u € C(Q). Prove that D~ u(zg) # 0 if zo €  is a local minimum of u and
that Dtu(zg) # 0 if zo is a local maximum.

1.5. Show that Dt (0) = D~u(0) = @ where u is given by
u(z) = |z|Y?sin1/z?,  £#£0, w(0)=0
while Dtv(0) =0, D~v(0) = {0} for
v(z) = |zsinl/z|, z#0, v(0)=0.
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1.6. Let u € C([a,b]). Prove the mean value property: there exists £ € (a,b) such
that

u(b) —u(a) =p(b - a)
for some p € D~ u(§) U DT u(é).
1.7. Check that both ui(t,z) = 0 and ug(t,z) = (¢t — |z|)* are viscosity superso-
lutions of
w — |u'(z)] =0 in [0, +oo[ x R
u(0,z) =0, zeR
Is ug a subsolution? [Hint: look at D%tus(1,0).]
1.8. Consider for z € R the function u(z) := CeEl#| with C, E > 0. Check that

- —Elz| i
D-u(z) = CEe z/|z| ?f z#0
0 ifr=0.

1.9. Let F(z,r,p) := r + H(p) — £(z) with H,¢ such that, for some constants
L’ A" B)

|H@)I < Llpl,  |6()| < Ae”PH,  Vz,peR".

Show that if E < min{ B;1/L} and C = A/(1 — LE), then u given in Exercise 1.8
is a viscosity supersolution of

u(z) + H(Du(z)) — ¢(z) = 0, zeRN.

1.10. Assume that u, € C(Q), up, — u as n — +oo locally unifo.rrnly in Q. Show
that for any zg € €2 the following holds
D% u(zg) C limsup DY up(z)

n—+00
—Io

(ie., for any p € Dt u(zg) there exist z, € Q, pp, € D u,(zn) such that z, — o,

DPn — D as . — +00).

1.11. Show that u € C(Q) is a viscosity subsolution of (HJ) if and only if the
following holds: for all ¢ € C3(R2), ¢ > 0 and k € R, if maxq ¢(u — k) > 0 then
there exists zg € Q satisfying ¢(u — k)(zo) = maxq ¢(u — k) and

De(zo)
p(zo)

Also find the corresponding property of supersolutions.

F(zo,u(mo), - (u(o) — k)) <0.

1.12. Let u be a Lipschitz continuous function in §2 with Lipschitz constant L.
Prove that D*u(z) and D~u(z) are contained in B(0, L) for all z € Q, and that
u is a (viscosity) subsolution of |Du| — L = 0 and supersolution of —|Du|+ L =0
in Q.
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2. Some calculus and further properties of viscosity solutions

In the first part of this section we collect some important stability properties
of viscosity solutions and basic rules of calculus (change of unknown in (HJ),
chain rule, ... ). In the second part we establish some useful formulas for the
semidifferentials of continuous functions of the form u(z) = infycp g(z,b). This is
an important class of nonsmooth functions, sometimes called marginal functions
which includes the distance function and is closely related to Hamilton-Jacobi
equations.

The first result is on the stability with respect to the lattice operations in C():

(u Vv)(z) = max{u(z),v(z) }
(u Av)(z) = min{u(z),v(z) } .

PROPOSITION 2.1.

(2) Let u,v € C(Q) be viscosity subsolutions of (HJ); then uwV v is a viscosity
subsolution of (HJ).

(b) Let u,v € C(Q) be viscosity supersolutions of (HJ); then u Awv is a viscosity
supersolution of (HJ).

(c) Let u € C(Q) be a viscosity subsolution of (HJ) such that u > v for any
viscosity subsolution v € C(Q) of (HJ); then u is a viscosity supersolution
and therefore a viscosity solution of (HJ).

PROOF. Let zg be a local maximum for u Vv — ¢ with ¢ € C}(Q) and assume
without loss of generality that (uV v)(zo) = u(zo). Then zg is a local maximum
for u — ¢; so

F(zo,u(mo),D(p(:co)_) <0

and (a) is proved. An analogous argument can be used for (b).
In order to prove (c), let us suppose by contradiction that

h := F(zo,u(x0), Dp(xo)) <0
for some ¢ € C}(Q) and 7o € 2 such that

u(zo) — ¢(w0) < u(z) —¢(z)  Vz € B(zo,b0) € N,

for some &y > 0. Consider next the function w € C*(2) defined by

w(a) = p(a) - o - a0l + u(ze) - plao) + 30

for 0 < § < dp. It is immediate to check that

(2.1) (u — w)(z0) < (u — w)(z), Vz such that |z —zo| =6 .
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Let us prove now that, for sufficiently small 4,
(2.2) F(z,w(z), Dw(z)) <0  Vz € B(zo,9) .

For this purpose, a local uniform continuity argument shows that, for 0 < ¢ < do,

(2.3) {Iw(Z) — @(z0)| < w1(d),

|Dp(z) — 2(z — z9) — Dep(zo)| < wa(8) + 26,

for any z € B(zo, §), where w; (i = 1,2) are the moduli of continuity of ¢ and Dep.
Hence

lw(z) — u(zo)| < w1(8) +6*  Vz € B(zo,6) .

Now,

(2.4) F(z,w(z), Dw(z))
= h+ F(z,w(z), Dp(z) — 2(z — zo)) — F(z0,u(zo), Dy(z0o)) -

If w is a modulus of continuity for F’, then
F(z,w(z), Dw(z)) < h + w(8,w; (8) + 6%, wa(8) + 26),

for all z € B(zo,0). Since h < 0, the preceding proves the validity of (2.2) for
small enough § > 0. Fix any such d and set

" uVw on B(zg,9d)
v(z) =
U on O \ B(zo,9) .

It is easy to check that ¥ € C(f2) (see (2.1)) and, by Propositions 1.3 (a) and 2.1 (a),
7 is a subsolution of (HJ) in Q. Since U(zo) > u(zo), the statement is proved. <«

The next result is a stability result in the uniform topology of C(£2).

PROPOSITION 2.2. Let u, € C(Q) (n € N) be a viscosity solution of
(HI)n Fo(z,un(z), Dun(z)) =0 in Q.
Assume that

Up — U locally uniformly in Q

F,— F locally uniformly in  x R x RV,

Then u 1s a viscosity solution of (HJ) in Q.
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PROOF. Let v € C}(Q) and z¢ be a local maximum point of u — ¢. As observed
before, it is not restrictive to assume that

w(zo) — ¢(z0) > u(z) — ¢(2)

for T # zo in a neighborhood of zg. By uniform convergence, u, — ¢ attains, for
large n, a local maximum at a point z, close to zg (see Lemma 2.4). Then,

Eo (T, un(zn), Do(z,)) < 0.
Since z, — zg, passing to the limit as n — 400 in the above yields
F(zo0,u(zo), Dp(z0)) <0.
A similar argument proves that u is also a viscosity supersolution. <

REMARK 2.3. Proposition 2.2 does not hold for generalized solutions of (HJ),. As
an example, consider the saw-tooth like functions u, defined by u1(z) =1 —z and
for n > 2 by

o
z— Q—i z €)2§/27, (25 + 1)/27
un(z) = % 4.9 j=0,1,...,201 -1
j . .
s~ TE](2+1)/2% (25 +2)/27

for z €]0,1[. It is evident that |u/(z)| — 1 = O almost everywhere in 0, 1[, but
although u; is a classical (and therefore a viscosity) solution, u, is not a viscosity
solution for n > 2. The uniform limit of the sequence {u,} is identically zero and
does not satisfy the equation at any point. <

In the proof of Proposition 2.2 we used the following elementary fact which is
useful in many situations.

LEMMA 2.4. Letv € C(R?) and suppose that zo € Q1 is a strict mazimum point for
v in B(zo,6) C Q. Ifv, € C(Q) converges locally uniformly to v in Q, then there

ezists a sequence {zn} such that
(2.5) T, — T, Vn(Tn) > vn(z) Vz € B(z0,0) .

PROOF. Let z, be a maximum point for v, on B(zg,d) and let {zn, }, k € N, be
any converging subsequence of {z,}, n € N. By uniform convergence,

Un (Zn,) — v(T) as k — +o0,
where T = limz,, as k — +oco. The choice of {z,} yields
v(Z) > v(z) Vz € B(zo,6),
so that, in partiéular,
v(T) > v(zo) -

This implies T = z and the convergence of the whole sequence. |
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The next result is on the change of unknown in (HJ).

PROPOSITION 2.5. Let u € C() be a viscosity solution of (HJ) and ® € C}(R)
be such that ®'(t) > 0. Then v = ®(u) is a viscosity solution of

(2.6) F(z,¥(v(z)), ¥ (v(z))Du(z)) =0 z€Q,
where ¥ = &1,

PRrROOF. Since G(z,r,p) := F(z,¥(r), ¥'(r)p) is defined only for 7 € &(R), here
by viscosity solution of (2.6) we mean a function taking its values in ®(R) and
satisfying the properties of Definition 1.1.

Let z € Q and p € D v(z). Then

v(y) Sv(@)+p-(y-2)+o(ly—z]) asy—z.
Since ¥ is increasing,

U(v(y)) < Y(v(z) +p- (y —z) +o(ly — z|))
= U(v(z)) + ¥'(v(z))p- (v — z) +o(ly — =) -

By definition of v, this amounts to saying that
' (v(z))p € DTu(z) .
Therefore,
F(z,u(z), ¥'(v(z))p) <0,

showing that v is a viscosity subsolution of (2.6).
In a completely similar way one can prove that v is also a viscosity supersolution
of (2.6). <

A slight generalization which is useful when dealing with evolution equations
(see Exercise 2.3) is as follows.

PROPOSITION 2.6. Let u € C(£2) be a viscosity solution of (HJ) and ®: QxR —
R a C! function such that

&, (z,7r) >0 V(z,r) € xR.

Then the function v € C(Q) defined implicitly by
B(z,v()) = u(z),

is a viscosity solution of

(2.7) F(z,v(z),Dv(z)) =0 inQ,

where

F(z,r,p) = F(z,®(z,r), D;®(z,7) + ®,(z,7)p) -



