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I. OUTLINE OF THE MAIN IDEAS

e

CHAPTER II

Continuous viscosity solutions
of Hamilton-Jacobi equations

This chapter is devoted to the basic theory of continuous viscosity solutions of the
Hamilton-Jacobi equation

(HY) F(z,u(z),Du(z)) =0 =ze€qQ,

where (2 is an open domain of RY and the Hamiltonian F' = F(z,r,p) is a conti-
nuous real valued function on  x R x RY.

Special attention will be dedicated in §4,5 to the case where p — F(z,r,p) is
convex and, more particularly, of the form

01 Flonp)=r+H@p) =r+sup(~f(n0) p-Hza)}.

Hamiltonian functions of this form arise naturally in connection with optimal con-
trol problems as indicated in Chapter I.

1. Definitions and basic properties

In this section we recall the two equivalent definitions of viscosity solutions of (HJ)
introduced in Chapter I and discuss their relations with a comparison principle as
well as some connections with classical notions of solutions of (HJ).

DEFINITION 1.1. A function u € C(f) is a viscosity subsolution of (HJ) if, for any
p € CY(Q),

(1.1) F(z0,u(zo), Dp(z0)) <0

at any local maximum point zg € Q of u — . Similarly, u € C(2) is a viscosity
supersolution of (HJ) if, for any ¢ € C*(9),

(1'2) F(Il,u($1),Dtp(.’1}1)) 20

at any local minimum point z; € Q of u — . Finally, u is a viscosity solution
of (HJ) if it is simultaneously a viscosity sub- and supersolution. <
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26 II. CONTINUOUS VISCOSITY SOLUTIONS OF H-J EQUATIONS

Let us mention explicitly that the definition applies to evolutionary Hamilton-
Jacobi equation of the form

ue(t,y) + F(t,y,u(t,y), Dyu(t,y)) =0,

Indeed, the equation above is reduced to the form (HJ) by the positions

(t,y) €10, T[x D .

z=(ty)€eQ=]0,T[x DCRN*,  F(z,r,q) =qnt1 + F(z,m,q1,...,qn)

with
q= (q17"')qN)QN+1) GRN+1 .

REMARK 1.2. In the definition of subsolution we can always assume that zg is a
local strict maximum point for u — ¢ (otherwise, replace ¢(z) by @(z) + |z — zo|?).
Moreover, since (1.1) depends only on the value of Dy at zo, it is not restrictive
to assume that u(zo) = ¢(zo). Similar remarks apply of course to the definition
of supersolution. Geometrically, this means that the validity of the subsolution
condition (1.1) for u is tested on smooth functions “touching from above” the
graph of u at zp.

We note also that the space C1(f2) of test functions in Definition 1.1 can be
replaced by C™(f2), see Exercise 2.1. <

The following proposition explains the local character of the notion of viscosity
solution and its consistency with the classical pointwise definition.

PrROPOSITION 1.3. (a) Ifu € C() is a viscosity solution of (HJ) in Q, then u is
a viscosity solution of (HIJ) in Q, for any open set Q' C Q;

(b) if u € C() is a classical solution of (HJ), that is, u is differentiable at any
z €Q and

(1.3) F(z,u(z), Du(z)) =0 VzeQ,

then u is a viscosity solution of (HJ);
(c) if u € CYHQ) is a wviscosity solution of (HJ), then u is a classical solution
of (HJ).

PROOF. (a) If zo is a local maximum (on Q') for u — ¢, v € C1(R), then z is a
local maximum (on Q) for u — &, for any @ € C1(f2) such that & = ¢ on B(zo,r)
for some 7 > 0. By (1.1)

0 > F(zo,u(z0), D@(x0)) = F(z0, u(z0), Dep(z0))

showing that u is a viscosity subsolution of (HJ) on ©'. The same argument applies
to prove that u is also a supersolution on V.

(b) Take any @ € C!(Q). By the differentiability of u, at any local maximum or
minimum z € Q of u — ¢ we have Du(z) = Dy(z). Hence (1.3) yields

0 = F(zo, u(z0), Dp(z0)) <0
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if zp is a local maximum for u — ¢ and
0 = F(z1,u(z1), Dp(z1)) > 0

if 21 is a local minimum for u — ¢.

(c) If u € C1(Q), then ¢ = u is a feasible choice in the definition of viscosity
solution. With this choice, any = € £ is simultaneously a local maximum and
minimum for u — ¢. Hence, by (1.1) and (1.2),

F(z,u(z),Du(z)) =0 Vze. <«

Statement (a) says that the notion of viscosity solution is a local one. Conse-
quently, one can take the test functions in (1.1) and (1.2) in C}(RV) or in any
sufficiently small ball B(z,r) centered at = € .

The definition of viscosity solution is closely related to two properties that are
typical in the theory of elliptic and parabolic equations, namely the mazimum prin-
ciple (MP) and the comparison principle (CP). For equation (HJ) these properties
can be respectively formulated as follows.

DEFINITION 1.4. A function u € C(Q) satisfies the comparison principle with
smooth strict supersolutions, briefly (CP), if for any ¢ € C*(2) and O open sub-
set of 0,

F(z,p(z),Dp(z)) >0 in O, u< @ ond0

implies u < ¢ in O.
We say that u € C(Q) satisfies the maximum principle (MP) if for any ¢ € C*(R)
and O open subset of  the inequality

F(z,¢(z), Dp(z)) >0 in O,
implies that © — ¢ cannot have a nonnegative maximum in O. N

It is quite clear that (MP) implies (CP). The connections with the notion of
viscosity subsolution of (HJ) are expressed by the next result.

PROPOSITION 1.5. If u € C(2) satisfies (CP), then u is a viscosity subsolution
of (HJ). Conversely, if u is a viscosity subsolution of (HJ) and r — F(z,r,p) is
nondecreasing for all z,p, then u satisfies (MP) and (CP).

PROOF. Assume that u € C(Q) satisfies (CP). If, by contradiction, u is not a sub-
solution of (HJ) there exist zg € 2, ¢ € C(Q), such that zg is a strict maximum
point for u — ¢, (u — ¢)(z0) =0, and

F(zo,u(zo), Dp(zo)) >0 .
For n large enough we have

an:= sup (u—¢)<0.
8B(z0,1/n)
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Observe also that
u—(p+an) <0
u(zo) — w(zo) —an > 0.

on 8B(zo,1/n),

By (CP) for any n there exists £, € Oy := B(zo, 1/n) such that
F(zn, p(zn) + an, Dp(zn)) <0 .
Since a, — 0 and z,;, — o we obtain the contradiction
F(zo,u(z0), Dyp(z0)) <0.

Conversely, let u be a viscosity subsolution of (HJ) and take any ¢ € C*(2) such
that

F(z,¢(z), Dp(z)) >0 forallz € O.

If u — @ attains a local maximum at some zg € O with u(zg) — ¢(zo) > 0, then
the monotonicity assumption on F' implies the contradiction

0 < F(zo, (z0), De(z0)) < F(zo,u(z0), Dip(z0)) < 0 .
Therefore, u satisfies (MP) and, a fortiori, (CP). <

A similar result holds for viscosity supersolutions, provided all inequalities are
reversed in (CP), (MP) and nonnegative maximum is replaced by nonpositive
minimum.

A perhaps striking fact to be stressed here is that viscosity solutions are not
preserved by change of sign in the equation. Indeed, since any local maximum of
u — ¢ is a local minimum of —u — (—¢), u is a viscosity subsolution of (HJ) if
and only if v = —u is a viscosity supersolution of —F(z, —v(z), —Dv(z)) = 0 in Q;
similarly, u is a viscosity supersolution of (HJ) if and only v = —u is a viscosity
subsolution of —F(z, —v(z), —Dv(z)) = 0. An explicit example is as follows.

ExXAMPLE 1.6. The function u(z) = |z]| is a viscosity solution of the 1-dimensional
equation

—|W(z)|+1=0 =ze]-1,1].

To check this, notice first that if z # 0 is a local extremum for u — ¢, then
u/(z) = ¢/(z). Therefore, at those points both the supersolution and the sub-
solution conditions are trivially satisfied. Also, if 0 is a local minimum for u — ¢,
a simple calculation shows that |¢’(0)| < 1 and the supersolution condition holds.
To conclude it is enough to observe that 0 cannot be a local maximum for u — ¢
with ¢ € C1(]—1,1[) (this would imply —1 > ¢'(0) > 1).
On the other hand, u(z) = |z| is not a viscosity solution of
W(z) -1=0, =ze]-1,1[.

Actually, the supersolution condition is not fulfilled at zg = 0 which is a local
minimum for |z| — (—z2). <
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We describe now an alternative way of defining viscosity solutions of equa-
tion (HJ) and prove the equivalence of the new definition with the one given
previously (see Exercise 1.11 for another equivalent definition). Let us associate
with a function © € C(Q) and z € Q the sets

Dtu(z) :={pe RY : limsup uy) ~ulz) —p-(y ~2) <0}
y—z, yeQ |z -yl

D u(z):={peRY : liminf uy) —uz) —p -2 0}.
y—z, yeQ |z — 1yl

These sets are called, respectively, the super- and the subdifferential (or semidif-
ferentials) of u at z.

The next lemma provides a description of Dtu(z), D~u(z) in terms of test
functions.

LEMMA 1.7. Let u € C(Q). Then,

(2) p € DYu(z) if and only if there exists ¢ € C*(Q) such that Dyp(z) = p and
u — ¢ has a local mazimum at z;

(b) p € D~u(z) if and only if there exists p € C1(Q) such that Dp(z) = p and
u — @ has a local minimum at z.
PROOF. Let p € D*ru(z). Then, for some § > 0,
wy) Su@) +p-(y—2)+o(ly—al)ly-z| Vye B(z,9),

where o is a continuous increasing function on [0, +oco[ such that ¢(0) = 0. Now
define a C! function g by

,
o(r) =/ o(t)dt.
0
The following properties of g

0(0) =£'(0) =0,

imply, as it is easy to check, that the function ¢ defined by

o(2r) > o(r)r

p(y) = u(z) +p- (v —z) + o2y — =)
belongs to C1(RY) and Dyp(z) = p. Moreover, for y € B(z, ),
(w=9)(¥) < olly —z)ly —z| — o2y — z|) <0 = (u—)(z) .
For the opposite implication it is enough to observe that
u(y) — u(z) — Dp(z) - (y — z) < p(y) — () — Dp() - (y — )

for y € B(z,d) and the proof of (a) is complete.
Since D™u(z) = —(D*(—u)(z)), the proof of (b) follows from the above argu-
ment when applied to —u. <



