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10.1. INTRODUCTION, VISCOSITY SOLUTIONS

This chapter investigates the existence, uniqueness and other properties of
appropriately defined weak solutions of the initial-value problem for the
Hamilton-Jacobi equation:
(1) u; + H(Du,z) =0 in R™ x (0,00)

u=g onR"x {t=0}.
Here the Hamiltonian H : R™ x R® — R is given, as is the initial function
g : R* — R. The unknown is u : R® x [0,00) — R, u = u(z,?), and
Du = D;u = (ugy,- -, %z,)- We will write H = H(p, z), so that “p” is the
name of the variable for which we substitute the gradient Du in the PDE.

We recall from our study of characteristics in §3.2 that in general there
can be no smooth solution of (1) lasting for all times ¢ > 0. We recall
further that if H depends only on p and is convex, then the Hopf-Lax
formula (expression (21) in §3.3.2) provides us with a type of generalized
solution.

In this chapter we consider the general case that H depends also on z
and, more importantly, is no longer necessarily convex in the variable p. We
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will discover in these new circumstances a different way to define a weak
solution of (1).

Our approach is to consider first this approximate problem:

@ {uf + H(Duf,z) —eAu =0 in R™ x (0, 0)

u=g onR"x {t=0},

for € > 0. The idea is that whereas (1) involves a fully nonlinear first-order
PDE, (2) is an initial-value problem for a quasilinear parabolic PDE, which
turns out to have a smooth solution. The term €A in (2) in effect regularizes
the Hamilton-Jacobi equation. Then of course we hope that as € — 0 the
solutions u¢ of (2) will converge to some sort of weak solution of (1). This
technique is the method of wanishing viscosity.

However, as ¢ — 0 we can expect to lose control over the various esti-
mates of the function ¢ and its derivatives: these estimates depend strongly
on the regularizing effect of €A and blow up as € — 0. However, it turns
out that we can often in practice at least be sure that the family {u} .o
is bounded and equicontinuous on compact subsets of R™ x [0, 0c). Conse-
quently the Arzela-Ascoli compactness criterion, §C.7, ensures that

3) 29 =z locally uniformly in R™ x [0, 00),
for some subsequence {u%}32; and some limit function
(4) u € C(R™ x [0, c)).

Now we can surely expect that « is some kind of solution of our initial-value
problem (1), but as we only know u is continuous, and have absolutely no in-
formation as to whether Du and u, exist in any sense, such an interpretation
is difficult.

Similar probleins have arisen before in Chapters 8 and 9, where we had to
deal with the weak convergence of various would-be approximate solutions to
other nonlinear partial differential equations. Remember in particular that
in §9.1 we solved a divergence structure quasilinear elliptic PDE by passing
to limits using the method of Browder and Minty. Roughly speaking, we
there integrated by parts to throw “hard-to-control” derivatives onto a fixed
test function, and only then tried to go to limits to discover a solution. We
will for the Hamilton-Jacobi equation (1) attempt something similar. We
will fix a smooth test function v and will pass from (2) to (1) as € — 0 by
first “putting the derivatives onto v".

But since (1) is fully nonlinear, and in particular is not of divergence
structure, we cannot just integrate by parts, as we did in §9.1, to switch
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to differentiations on v. Instead we will exploit the maximum principle to
accomplish this transition, at least at certain points.

We will call the solution we build a viscosity solution, in honor of the
vanishing viscosity technique. Our main goal will then be to discover an
intrinsic characterization of such generalized solutions of (1).

10.1.1. Definitions.

Motivation for definition of viscosity solution. We henceforth assume

that H, g are continuous and will as necessary later add further hypotheses.
The technique alluded to above works as follows. Fix any smooth test

function v € C®(R" x (0,00)) and suppose

{ u — v has a strict local maximum at some point

®) (zo, to) € R™ x (0, 00).

This means
(u = v)(zo, t0) > (u —v)(z,t)
for all points (z,t) sufficiently close to (zo,%p), with (z,2) # (zo, to)-
Now recall (3). We claim for each sufficiently small €; > 0, there exists
a point (z;,?;) such that

(6) u“ — v has a local maximum at (z;, te;)
and
(7) (Te;ste,) = (z0,80) a8 j — o0

To confirm this, note that for each sufficiently small » > 0,(5) implies
maxgp(u — v) < (¥ — v)(zo,t0), B denoting the closed ball in R"*! with
center (o, %) and radius r. In view of (3), 2% — u uniformly on B, and so
maxgpg(u9 —v) < (v —v)(zo, to) provided ¢; is small enough. Consequently
u¢ — v attains a local maximum at some point in the interior of B. We can
next replace 7 by a sequence of radii tending to zero to obtain (6), (7).

Now owing to (6) we see that the equations

(8) Dyt (:EEJ’V tfj) = Dv(chtg)a

(9) u:J (chytej) = Ut(zcﬂtq):
and the inequality

(10) —Au (z¢;, te;) > —Au(zq,tej)
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hold. We consequently can calculate

vy(Ze;, te;) + H(Dv(ze, b, )s Te;)
= u? (ze; te;) + H(Du" (z;, 1 ),Ze;) by (8),(9)
= Au® (z¢;,t;) by (2)
< gjAv(ze;,te;) by (10).

(11)

Now let €; — 0 and remember (7). Since v is smooth and H is continuous,
we deduce

(12) ve(Zo, to) + H(Dv(zo,t0),T0) < 0.

We have established this inequality assuming (5). Suppose now instead
that

(13) u — v has a local maximum at (zg, ),

but that this maximum is not necessarily strict. Then »—% has a strict local
maximum at (o, ¢o), for ¥(z, t) := v(z, t) +6(|lz—zo|>+ (t—t0)?) (6 > 0). We
thus conclude as above that 9,(zo, o) + H(D(zo,%0),To) < 0; whereupon
(12) again follows.

Consequently (13) implies inequality (12). Similarly, we deduce the re-
verse inequality

(14) v (zo,t0) + H(Dv(zo, o), zo) > 0,
provided
(15) u — v has a local minimum at (zg, o).

The proof is exactly like that above, except that the inequalities in (10),
and thus in (11), are reversed.

In summary, we have discovered for any smooth function v that inequal-
ity (12) follows from (13), and (14) from (15). We have in effect put the
derivatives onto v, at the expense of certain inequalities holding. (m]

Our intention now is to define a weak solution of (1) in terms of (12),
(13) and (14), (15).

DEFINITION. A bounded, uniformly continuous function u is called a
viscosity solution of the initial-value problem (1) for the Hamilton-Jacobi
equation provided:

(i) u=g on R™ x {t =0},
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and
(i) for each v € C=(R™ x (0, x0)),
if u — v has a local mazimum at a point (zo, %) € R™ x (0, 00),
(16) then
ve(zo, to) + H(Du(zo, ), To) < 0,
and
if u — v has a local minimum at a point (zo, %) € R™ x (0, 00),
(17) then
ve(%o, to) + H(Du(zo, o), 7o) 2 0.

Remark. Note carefully that by definition a viscosity solution satisfies (16),
(17), and so all subsequent deductions must be based on these inequalities.
The previous discussion was purely motivational.

For emphasis, we repeat the same point, which has caused some confu-
sion among students. To verify that a given function u is a viscosity solution
of the Hamilton-Jacobi equation u; + H(Du,z) = 0, we must coffirm that
(16), (17) hold for all smooth functions v. Now the argument above shows
that if u is constructed using the vanishing viscosity method, it is indeed a
viscosity solution. But we will also see later in §10.3 that viscosity solutions
can be built in entirely different ways, which have nothing whatsoever to do
with vanishing viscosity.

The point is that the inequalities (16), (17) provide an intrinsic charac-
terization, and indeed the very definition, of our generalized solutions.

m}

We devote the rest of this chapter to demonstrating that viscosity so-
lutions provide an appropriate and useful notion of weak solutions for our
Hamilton-Jacobi PDE.

10.1.2. Consistency.

Let us begin by checking that the notion of viscosity solution is consistent
with that of a classical solution. First of all, note that if u € C?(R™ x [0, 00))
solves (1) and if u is bounded and uniformly continuous, then u is a viscosity
solution. That is, we assert that any classical solution of us + H(Du,z) =0
is also a viscosity solution. The proof is easy. If v is smooth and u — v
obtains a local maximum at (zo, %), then

{ Du(zp, to) = Dv(zo, to)

ut(zo, to) = ve(zo, 2o)-
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Consequently

‘Ut<.‘£0, to) + H(DU(I(), to), Io)
= ug(zo, t0) + H(Du(xo,%0),z0) =0,

since u solves (1). A similar equality holds at any point (zo,%o) where u —v
has a local minimum.

Next we assert that any sufficiently smooth viscosity solution is a clas-
sical solution, and, even more, that if a viscosity solution is differentiable at
some point, then it solves the Hamilton-Jacobi PDE there. We will need
the following calculus fact:

LEMMA (Touching by a C! function). Assume u:R™ — R is continuous
and is also differentiable at some point zo. Then there exists a function
v € CY(R") such that

(18) u(zo) = v(zo)
and
(19) u — v has a strict local mazimum at zo.

Proof. 1. We may as well assume
(20) zo = 0, u(0) = Du(0) = 0;

for otherwise we could consider @(z) := u(z + o) — u(zo) — Du(zo) - T in
place of .

2. In view of (20) and our hypothesis, we have

(21) u(z) = |z]p1(2),

where

(22) p1:R® — R is continuous, p;(0) =0.
Set

(23) pa(r) = xgllg(f){lpl(r)l} (r=0).

Then

(24) p2 : [0,00) — [0, 00) is continuous, p2(0) =0,
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and

(25) p2 is nondecreasing.

3. Now write
2|z) "
v(z) == / p2(r)dr + |z|° (z € R™).
&l

Since |u(z)| < |z|p2(2]z|) + |z|?, we observe

(26) v(0) = Dv(0) = 0.
Furthermore if z # 0, we have
2z T
Do(z) = mm@’zn - |z—|p2(lzl) +2z,

and so v € C*(R™).
4. Finally note that if z # 0,

2|z|
w(z) - v(z) = |zlp1(z) - /| )i = ol

2]z|
< lzlpa(lzl) - 3 pa(r) dr — |z?
< —[z[* by (25)
<0 =u(0) — v(0).

Thus u — v has a strict local maximum at 0, as required. ]

THEOREM 1 (Consistency of viscosity solutions). Let u be a viscosity
solution of (1), and suppose u is differentiable at some point (xo,t9) € R x
(0,00). Then

uy(To, o) + H(Du(zo, 20), zo) = 0.

Proof. 1. Applying the lemma above to u, with R™*! replacing R™ and
(z0, to) replacing zg, we deduce there exists a C! function v such that
(27) u — v has a strict maximum at (zo, o).
2. Now set v¢ := 7 x v, 7 denoting the usual mollifier in the n + 1
variables (z,t). Then
=
(28) Dv® — Dv  uniformly near (zo,%o)

Uf — Vg5
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and so (27) implies

(29) u — v has a maximum at some point (z,te),
with
(30) (Te, te) — (zo,t9) ase— 0.

Applying then the definition of viscosity solution, we see
U (Te, te) + H(DV(Ze, te), Te) < 0.
Let € — 0 and use (28), (30) to deduce
(31) ve(zo, to) + H(Dv(zg, o), o) < 0.
But in view of (27), we see that since u is differentiable at (zo, to),
Du(zg, to) = Dv(zo,t0), ue(zo,t0) = vi(zo,%0)-
Substitute above, to conclude from (31) that
(32) ug(zo, to) + H(Du(zg, o), z0) <0.
3. Now apply the lemma above to —u in R™*!, to find a C? function v

such that u — v has a strict minimum at (xo,%p). Then, arguing as above,
we likewise deduce

ui(To, to) + H(Du(zo, to), Zo) = 0.
This inequality and (32) complete the proof. [}

10.2. UNIQUENESS

Our goal now is to establish the uniqueness of a viscosity solution of our
initial-value problem for Hamilton-Jacobi PDE. To be slightly more general,
let us fix a time 7 > 0 and consider the problem
) u + H(Du,z) =0 in R™ x (0,7

u=g onR"x {t=0}.
We say that a bounded, uniformly continuous function u is a viscosity
solution of (1) provided u = g on R" x {t = 0}, and the inequalities in (16)
(or (17)) from §10.1.1 hold if u — v has a local maximum (or minimum) at
a point (zq,%0) € R™ x (0,T).

LEMMA (Extrema at a terminal time). Assume u is a viscosity solution
of (1) and u — v has a local mazimum (minimum) at a point (zo,t0) €
R"™ x (0,T). Then

(2) vy (o, to) + H(Dv(zo,20), Z0) <0 (> 0).

The point is that we are now allowing for to = T.
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Proof. Assume z — v has a local maximum at the point (o, T); as before
we may assume that this is a strict local maximum. Write

W(z,t) = v(z,t) + T—E_—t (xeR* 0<t<T).

Then for € > 0 small enough, u — % has a local maximum at a point (Ze, ),
where 0 < ¢, < T and (e, %) — (0, T). Consequently

Te(Te, 2e) + H(D"_’(Ie’te)‘ze) <0,

and so
€
ve(Te, te) + T=t7 + H(Dv(ze, te), ze) < 0.
€

Letting € — 0, we find
v(20, T) + H(Dv(z0,T), o) < 0.

This proves (2) if «—v has a maximum at (o, T). A similar proof gives the
reverse inequality should u — v have a minimum at (zo, T). O

To go further, let us hereafter suppose the Hamiltonian H to satisfy
these conditions of Lipschitz continuity:

- { o) B z)| < Clp—4l

|H(p,z) — H(p,y)| < Clz —y|(1 +Ipl)
for z,y,p,q € R™ and some constant C' > 0.

We come next to the central fact concerning viscosity solutions of the
initial-value problem (1), namely uniqueness. This important assertion jus-
tifies our taking the inequalities (16) and (17) from §10.1.1 as the foundation
of our theory.

THEOREM 1 (Uniqueness of viscosity solution). Under assumption 3)
there exists at most one viscosity solution of (1).

Remark. The following proof is based upon an unusual idea of “doubling
the number of variables”. See the proof of Theorem 3 in §11.4.3 for a related
technique. O
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Proof=. 1. Assume u and @ are both viscosity solutions with the same
initial conditions, but

(4) sup (u—1u)=:0>0.
R*x[0,T)

Choose 0 < €, A < 1 and set
O(z,y,t,3) =u(z,t) — @y, s) — Mt +s)

(5) _ 612 Iz — 92 + (¢ — 8)%) — e(|z)? + lyP?),

for z,y € R", t,5 > 0. Then there exists a point (zo, %o, to, s0) € R?"x [0, T]?
such that

6 @ y ,t, = @ 1 |t1 ¢
(6) (20, Yo, o, 50) s (z,9.t,8)

2. We may fix 0 < ¢, A < 1 so small that (4) implies

(7) (o, Yo, to, S0) > sup o(z,z,t,8) > 2.
R x(0,T] 2

In addition, ®(zg, yo, to, s0) = ®(0,0,0,0); and therefore

ko +50) + 25120 = ol? + (8o = 50)®) + ezl + o)
< ’LL(CE(), to) - ﬂ(y()y SO) = u’(ol 0) + ’L_L(O, 0)

(8)

Since z and % are bounded, we deduce
(9) |zo — yol, |to — 0| = O(e) as e— 0.
Furthermore (8) implies €(|zo|? + |yo{?) = O(1), and consequently

€(|zol + lyol) = €/*€¥4(|zol + lvol)
< €24+ ¥ (|zo? + [yol*)
< Cel/?,

Thus
(10) €(lzol + luo]) = O(e/?).

*“Omit on first reading.
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3. Since ®(zo, Yo, to, s0) > ®(zo, Zo, t0, 20), We also have

_ 1
u(zo, 20) — ©(yo, S0) — Mto + o) — (kw0 = ol + (to — 50)?)

— e(|zol* + |wo[?) > u(zo, o) — #(zo, to) — 2Ato — 2e|zo[*.
Hence
eig(lro — wof? + (to — 50)?) < &(zo, ta) — Wy, S0) + A(to — o)
+ €(zo + o) - (zo — v0)-
In view of (9), (10) and the uniform continuity of &, we deduce
(11) [zo — %o, lto — sol = ofe).
4. Now write w(-) to denote the modulus of contimuity of u; that is,
[u(z,¢) — u(y, s)| S w(lz—yl+ [t~ s])

forall z,y e R*, 0<t, s < T, and w(r) — 0 as r — 0. Similarly, @(-) will
denote the modulus of continuity of .

Then (7) implies

o - =,
55 u(zo, to) — &(yo, s0) = u(zv, to) — u(zo, 0) + u(zo, 0) — &(zo,0)
+ @(zo,0) — ©&(zo, to) + &(zo,%0) — &0, S0)
< w(to) + @(to) +w(o(e)),
by (9),(11) and the initial condition. We can now take ¢ > 0 to be so

small that the foregoing implies § < w(to) + @(to); and this in turn implies
to > p> 0 for some constant g > 0. Similarly we have s > p > 0.

5. Now observe in light of (6) that the mapping (z,t) — ®(z, yo,¢, so)
has a maximum at the point (zo,%p). In view of (5) then,
u — v has a maximum at (zo, o)

for

- 1
v(z, 1) == @(yo, 50) + At + 50) + 5 (jx — vol® + (¢ = 0)%) + e(lz]* + lwol*)-
Since u is a viscosity solution of (1) we conclude, using the lemma if neces-
sary, that
(2o, o) + H(Dzv(zo, to), z0) < 0.
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Therefore
(12) A+ 2(t0—€;so_) +H (;2(1:0 —v) + 26130,230) <0.
We further observe that since the mapping (y, s) — —®(zo, ¥, to, s) has

a minimum at the point (yo, o),

@ — 9 has a minimum at (yo, So)
for

9(y, s) := u(zo, o) — A(to + ) — 6—12(|:c — 9ol® + (20 — 5)?) — e(jzol® + W[?).
As 1 is a viscosity solution of (1), we know then that
Bs(yo, s0) + H(Dyb(yo, $0), %0) = 0.

Consequently
2(20 — si 2
(13) A+ (071) +H (;5(10 — Yo) — 2evo, yo) >0.
6. Next, subtract (13) from (12):
2 2
(14) 20<H 6—2(10 —%0) —2ey0,%0 | — H 6—2(10 — Yo) + 2ez0, 20 | -

In view of hypothesis (3) therefore,

|zo — ol
52

(15) A< Ce(lzol + luol) + Clao — 3ol (1 + +eljzo] + ]yol)) -

We employ estimates (10), (11) in (15), and then let € — 0, to discover
0 < A < 0. This contradiction completes the proof. [m]

10.3. CONTROL THEORY, DYNAMIC
PROGRAMMING

It remains for us to establish the existence of a viscosity solution to our
initial-value problem for the Hamilton-Jacobi partial differential equation.
One method would be now to prove the existence of a smooth solution u* of
the regularized equation (2) in §10.1 and then to make good enough uniform



