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Let h — 0% to compute

r—=z

t

. Du(z,t) + w(z,t) > L (I = "‘) .

Consequently

w(z, t) + H(Du(z, t)) = w(z,t) + ;ré%{q - Du(z,t) — L(q)}

Zut(z,t)+zzz -Du(z,t)—L(I;z)
>0.

This inequality and (31) complete the proof. O

‘We summarize:

THEOREM 6 (Hopf-Lax formula as solution). The function u defined by
the Hopf-Laz formula (21) is Lipschitz continuous, is differentiable a.e. in
R™ x (0,00), end solves the initial-value problem

(32) {ut + H(Du) =0 a.e in R™ x (0,00)

u=g onR"x{t=0}.

3.3.3. Weak solutions, uniqueness.
a. Semiconcavity.

In view of Theorem 6 above it may seem reasonable to define a weak
solution of the initial-value problem (18) to be a Lipschitz function which
agrees with g on R™ x {t = 0}, and solves the PDE a.e. on R" x (0, 00). How-
ever, this turns out to be an inadequate definition, as such weak solutions
would not in general be unigue.

Example. Consider the initial-value problem

(33) {u¢+|ux|2=0 in R x (0, 00)

u=0 onRx {t=0}.
One obvious solution is
uy(z,t) = 0.
However the function
0 if |z| >t
z—t if 0<z <t
—z—-t if —t<z<0

ua(z, t) :
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is Lipschitz continuous and also solves the PDE a.e. (everywhere, in fact,
except on the lines £ = 0,+t). It is easy to see that actually there are
infinitely many Lipschitz functions satisfying (33). [m}

This example shows we must presumably require more of a weak solution
than merely that it satisfy the PDE a.e. We will look to the Hopf-Lax
formula (21) for a further clue as to what is needed to ensure uniqueness.
The following lemma demonstrates that u inherits a kind of “one-sided”
second-derivative estimate from the initial function g.

LEMMA 3 (Semiconcavity). Suppose there ezists a constant C such that
(34) 9(z +2) — 2g(z) + g(z — 2) < Clz?
for all z, z € R™. Define u by the Hopf-Laz formula (21). Then

u(z + z,t) — 2u(z, t) + u(z — 2,t) < Czf?

forallz,z€e R™, ¢t > 0.

Remark. We say g is semiconcave provided (34) holds. It is easy to check
(34) is valid if g is C? and supgs |Dg| < co. Note that g is semiconcave
if and only if the mapping = — g(z) — %|a:|2 is concave for some constant
C. m}

Proof. Choose y € R" so that u(z,t) = tL (£3£) + g(y). Then, putting
y+z and y — 2 in the Hopf-Lax formulas for u(z + z,t) and u(z — z,t), we
find

u(z + z,t) — 2u(z, t) + u(z — z,t)
ST o (52)
+ [tL (#) +9(y— z)]

=g(y+z) —29(y) + 9(y — 2)
< Clz]?, by (34).

0

As a semiconcavity condition for u will turn out to be important, we
pause to identify some other circumstances under which it is valid. We will
no longer assume g to be semiconcave, but will suppose the Hamiltonian H
to be uniformly convex.
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DEFINITION. A C? conver function H : R® — R is called uniformly
convex (with constant 6 > 0) if

(35) > Hyp, (p)6&; 2 8l for all p,€ €R™.
ij=1

We now prove that even if g is not semiconcave, the uniform convexity
of H forces u to become semiconcave for times ¢ > 0: this is a kind of mild
regularizing effect for the Hopf-Lax solution of the initial-value problem
(18).

LEMMA 4 (Semiconcavity again). Suppose that H is uniformly convex
(with constant 0) and u is defined by the Hopf-Laz formula (21). Then

1
u(z +2,8) ~ 2u(a,£) + ulz - 2,6) < 2P
forallz,ze R™, t > 0.

Proof. 1. We note first using Taylor’s formula that (35) implies

+ 1 1 8
(36) H(BI2) < SH@) + 5 H @) - glp - pal’
2 2 2 8
Next we claim that for the Lagrangian L we have the estimate
1 1 Q-+ @ 1 2
= = < gy
@ 1)+ 30 < L(252) + glo - o

for all g1, ¢2 € R™. Verification is left as an exercise.

2. Now choose y so that u(z,t) = tL (%) + g(y). Then using the
same value of y in the Hopf-Lax formulas for u(z + z,t) and u(z — z,t), we
calculate

u(z + z,t) — 2u(z, t) + u(z — z,t)

<[ (2 ][ (52) )
[ (=52) 0
-l (22572 o (5570) 4 ()

2

1|2z 1
<2a— = < =22
89|t | ot Il
the next-to-last inequality following from (37). O
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b. Weak solutions, uniqueness.

In this section we show that semiconcavity conditions of the sorts dis-
covered for the Hopf-Lax solution u in Lemmas 3 and 4 can be utilized as
uniqueness criteria.

DEFINITION. We say that a Lipschitz continuous function u : R™ x
[0,00) — R is a weak solution of the initial-value problem:

(38) {ut + H(Du)=0 inR"™ x (0,00)

u=g onR"x{t=0}

provided

(a) u(z,0) =g(z) (z€R"),

(b) u(z,t) + H(Du(z,t)) =0 for a.e. (z,t) € R™ x (0, 00),
and

(c) u(z+2,1) —2u(z,t) +u(z — z,t) <C (1+ 1) |22

for some constant C > 0 aend all z,z € R", t > 0.

Next we prove that a weak solution of (38) is unique, the key point being
that this uniqueness assertion follows from the inequality condition (c).

THEOREM 7 (Uniqueness of weak solutions). Assume H is C? and sat-
isfies (19), and g satisfies (20). Then there eTists at most one weak solution
of the initial-value problem (38).

Proof*. 1. Suppose that u and @ are two weak solutions of (38) and write
wi=u—1i.

Observe now at any point (y,s) where both u and @ are differentiable
and solve our PDE, we have

wt(y, S) = Ut(y, S) - it(yv S)
= _H(Du(y1 5)) + H(Dﬁ(yx S))

1
=- / %H(rDu(y.s) + (1 = r)Dify, s)) dr
0

=- /1 DH(rDu(y, s) + (1 — r)Du(y, s)) dr - (Du(y, s) — Du(y, s))
0
=: —b(y, s) - Dw(y, s)-
Consequently
(39) w;+b-Dw=0 ae

“Omit on first reading.
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2. Write v := ¢(w) > 0, where ¢ : R — [0, 00) is a smooth function to
be selected later. We multiply (39) by ¢'(w) to discover

(40) vu+b-Dv=0 ae.

3. Now choose € > 0 and define u® := 7 * u, &€ := 1) * &z, where 7); is the
standard mollifier in the z and ¢ variables. Then according to §C.4

(41) |Dwf| < Lip(w), |D#| < Lip(a),
and
(42) Duf — Du, D@ - Du ae.,as e = 0.

Furthermore inequality (c) in the definition of weak solution implies
1
(43) D%, D*if < C (1 + ;) I

for an appropriate constant C and all € > 0, y € R?, s > 2¢. Verification is
left as an exercise.

4. Write
1

(44) be(y, s) = / DH(rDu®(y, s) + (1 — r)D&(y, s)) dr-.

0
Then (40) becomes

v +b.-Dv=(b:.—b)-Dv ae,;

hence
(45) v, + div(vb) = (divb.)v + (b —b) - Dv a.e.

5. Now

1 n
o= / 3" Hpup(rDu* + (1 = )DE) (i, + (1~ 1) 0,) dr
0 k=1
1
46 <cC (1 + —)
S

for some constant C, in view of (41), (43). Here we note that H convex

implies D2H > 0.
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6. Fix 7o € R", tp > 0, and set
(47) R :=max{|DH(p)| | |p| < max(Lip(u), Lip(a))}.
Define also the cone
C:={(z,t) | 0 < t < to,|z — zo| < R(to — t)}.

Next write

e(t) =/ v(z,t)dz
B(zo,R(to—t))

and compute for a.e. t > 0:

é(t):/ vwdz—R vdS
B(zo,R(to—t)) 8B(zo,R(to—t))
= / —div(vb,) + (divb;)v + (b — b) - Dvdz
B(zo,R(to—t))
— R/ vdS by (45)
8B(xo,R(to—t))
=_/ v(be -v+ R)dS
9B(z0,R(to—1))
+ / (divb.)v + (b —b)- Dvdz
B(zo,R(to—t))

< / (divbe)v+ (b —b)- Dudz by (41), (44)
B(zo,R(to—t))

1
SC(1+—>e(t)+/ (be —b) - Dvdx
t B(z0,R(to—1))

by (46). The last term on the right hand side goes to zero as € — 0, for a.e.
to > 0, according to (41), (42) and the Dominated Convergence Theorem.
Thus

. il
(48) et)y<cC (1 + —t—> e(t) forae 0<t<tp.
7. Fix 0 < € < r < t and choose the function ¢(z) to equal zero if
|z| < e[Lip(w) + Lip(&)]
and to be positive otherwise. Since u = % on R™ x {t = 0},

v=¢(w)=¢(u—a) =0 at {t=c¢}.
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Thus e(¢) = 0. Consequently Gronwall’s inequality (see §B.2) and (48)
imply
e(r) < e(e)e’s C(1+3)ds =,

Hence
{u — a| < e[Lip(u) + Lip()] on B(zo, R(to — 1))

This inequality is valid for all € > 0, and so u = @ in B(zq, R(to — 7)).
Therefore, in particular, u(zo, o) = @(zo, to)- ]
In light of Lemmas 3, 4 and Theorem 7, we have

THEOREM 8 (Hopf-Lax formula as weak solution). Suppose H is C?
and satisfies (19), and g satisfies (20). If either g is semiconcave or H is
uniformly convez, then

u(z,t) = min {tL (5§—y> + g(y)}

is the unique weak solution of the initial-value problem (38) for the Hamilton—
Jacobi equation.

Examples. (i) Consider the initial-value problem:

b 2 _ % n
(49) {u[ + 3[Dul* =0  in R™ x (0,00)

u=|z|] onR"x {t=0}.

Here H(p) = %|p|? and so L(q) = %|g|>. The Hopf-Lax formula for the
unique, weak solution of (49) is

. [ lz—yf?
(50) et = mip { B2 ).

Assume |z| > t. Then

— |2 =
o, (E5+n) =152+ L w0

and this expression equals zero if z = y + r‘yi[t, y = (jz| — t)ﬁ[ # 0. Thus
u(z,t) = |z| — & if |z| > ¢. If |z| < ¢, the minimum in (50) is attained at

y = 0. Consequently

flal-t/2 if|z >t
U b= 2 itz <t

2t
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Observe that the solution becomes semiconcave at times ¢ > 0, even though
the initial function g(z) = |z| is not semiconcave. This accords with Lemma
4.

(ii) We next examine the problem with reversed initial conditions:

(51) w + %|Du|2 =0 in R™ x (0, 00)
u=—|r] onR™x {t=0}.
Then
u(z,t) = min |I—_3£ ~- |yl
! y€ERn 2t ’
Now

z —y[? -z
o, (B -w) =2525- & w0,

and this equals zero if z = y — ﬁ[t, y = (lz] + t) - Thus
t
u(z,t) = —|z| — g (z €eR", t>0).

The initial function g(z) = —|z| is semiconcave, and the solution remains so
for times t > 0. O

In Chapter 10 we will again study Hamilton-Jacobi PDE and discover
another notion of weak solution, which is applicable even if H is not convex.

3.4. INTRODUCTION TO CONSERVATION LAWS

In this section we investigate the initial-value problem for scalar conservation
laws in one space dimension:

a {ut + F(u); =0 inR x (0,00)

u=g onRx {t=0}.
Here F : R - Rand g : R — R are given and u : R x [0,00) — R is
the unknown, u = u(z,t). As noted in §3.2, the method of characteristics
demonstrates that there does not in general exist a smooth solution of (1),
existing for all times ¢ > 0. By analogy with the developments in §3.3.5, we
therefore look for some sort of weak or generalized solution.



