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in U = R" x (0, 00), subject to the initial condition
(57) u=g onI=R"x{t=0}

Here F : R — R*, F = (F!,...,F"), and, as usual, we have set t =
Tny1- Also, “div” denotes the divergence with respect to the spatial variables
(z1,---1Zn), and Du = Dyu = (ugy,..., Uz, )-

Since the direction t = x,,,; plays a special role, we appropriately modify
our notation. Writing now g = (p, pn+1) and y = (z,t), we have

G(g,2,y) =pnp1 + F'(2) - p,
and consequently
DG = (F'(z),1), D,G=0, D.G =F"(z) - p.

Clearly the noncharacteristic condition (35) is satisfied at each point y° =
(z°,0) € T. Furthermore equation (21)(a) becomes

{ #i(s) = Fi'(2(s)) (i=1,...,n)

(58) :i:"+1(s) = 1.

Hence z™+1(s) = s, in agreement with our having written z,,; = t above.
In other words, we can identify the parameter s with the time ¢t.

Equation (21)(b) reads z(s) = 0. Consequently

(59) 2(s) = 2° = g(z°);
and (58) implies
(60) x(s) = F'(g(z%))s + z°.

Thus the projected characteristic y(s) = (x(s),s) = (F'(g(z))s + 2, s)
(s > 0) is a straight line, along which u is constant.

Crossing characteristics. But suppose now we apply the same reasoning
to a different initial point z0 € I', where g(z°) # g(2°). The projected char-
acteristics may possibly then intersect at some time t > 0. Since Theorem 1
tells us u = g(z°) on the projected characteristic through 0 and u = g(z°)
on the projected characteristic through z°, an apparent contradiction arises.
The resolution is that the initial-value problem (56), (57) does not in general
have o smooth solution, ezisting for all times ¢t > 0. O

We will discuss in §3.4 the interesting possibility of extending the local
solution (guaranteed to exist for short times by Theorem 2) to all times
t > 0, as a kind of “weak” or “generalized” solution.
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Remark. Let us also note we can eliminate s from equations (59), (60) to
obtain an implicit formula for u. Indeed given z € R™ and t > 0, we see
that since s = ¢,

u(x(),t) = 2(t) = g(x(t) — tF'(2%)
= g(x(t) — tF'(u(x(t),1))).
Hence
(61) u=g(z — tF'(u)).

This implicit formula for u as a function of £ and ¢ is a nonlinear analogue
of equation (3) in §2.1. It is easy to check (61) does indeed give a solution,
provided

1+ tDg(z — tF'(u)) - F"(u) # 0.

In particular if n = 1, we require
1+ tg'(z — tF'(u))F"(u) # 0.

Note that if F”/ > 0, but ¢’ < 0, then this will definitely be false at some
time ¢ > 0. This failure of the implicit formula (61) reflects also the failure
of the characteristic method. O

c. F fully nonlinear.

The form of the full characteristic equations can be quite complicated for
fully nonlinear first-order PDE, but sometimes a remarkable mathematical
structure emerges.

Example 6 (Characteristics for the Hamilton-Jacobi equation). We look
now at the general Hamilton-Jacobi PDE

(62) G(Du,us,u,z,t) = us + H(Du,z) =0,

where Du = D;u = (uz,,-..,uz,). Then writing ¢ = (p, pn+1), ¥ = (z,1),
we have
G(¢,2,y) = Pny1 + H(p, z);

and so
D,G = (DpH(p,2),1), DyG = (D H(p,z),0), D.G =0.
Thus equation (11)(c) becomes

{ (s) = gL (p(s),x(s)) (i=1,...,n)

(63) in+1(3) =1.
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In particular we can identify the parameter s with the time ¢.
Equation (11)(a) for the case at hand reads
#(s) = ~82(p(s),x(s)) (i=1,....,n)
P(s) = 0
the equation (11)(b) is

#(s) = DpH(p(s), x(s)) - P(s) + 2" (5)
= DpH(p(s),x(s)) - p(s) — H(p(s), x(5))-
In summary, the characteristic equations for the Hamilton-Jacobi equation
are:
(a) B(s) = —D:H(p(s),x(s))
(64) { (b) 2(s) = DpH(p(s),%(s)) - p(s) — H(p(s),%(s))
(c) *(s) = DpH(p(s),x(s))
for p(-) = (8'(-),---,P"()), 2(), and x() = (z'(-),- .-, 2" ("))-
The first and third of these equalities,
(65) { x = DpH(p,x)
p = —D;H(p,x),
are called Hamilton’s equations. We will discuss these ODE and their rela-
tionship to the Hamilton—Jacobi equation in much more detail, just below

in §3.3. Observe that the equation for z(-) is trivial, once x(-) and p(-) have
been found by solving Hamilton’s equations.

As for conservation laws (Example 5), the initial-value problem for the
Hamilton—Jacobi equation does not in general have a smooth solution u
lasting for all times ¢ > 0.

3.3. INTRODUCTION TO HAMILTON-JACOBI
EQUATIONS

In this section we study in some detail the initial-value problem for the
Hamilton-Jacobi equation:

{ut—i—H(Du):O in R™ x (0, 00)

) u=g onR"x {t=0}.

Here u : R™ x [0,00) — R is the unknown, u = u(z,t), and Du = D;u =
(ugy,.--,uz,). We are given the Hamiltonion H : R™ — R and the initial
function g : R* — R.
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Our goal is to find a formula for an appropriate weak or generalized
solution, existing for all times ¢ > 0, even after the method of characteristics
has failed.

3.3.1. Calculus of variations, Hamilton’s ODE.

Remember from §3.2.5 that two of the characteristic equations associated
with the Hamilton-Jacobi PDE
u + H(Du,z) =0
are Hamilton’s ODE i
{ % = DpH(p, x)
p=—-D:H(p,x),
which arise in the classical calculus of variations and in mechanics. (Note
the z-dependence in H here.) In this section we recall the derivation of
these ODE from a variational principle. We will then discover in §3.3.2 that
this discussion contains a clue as to how to build a weak solution of the
initial-value problem (1).

a. The calculus of variations.

Assume that L : R® x R® — R is a given smooth function, hereafter
called the Lagrangian.

Notation. We write
L=L(g,z)=L(g1,. -1 n,T1,---,Zn) (g, €R")
and
{ DyL = (qu "‘an)
D,L = (Lgy - Lg,).

Thus in the formula (2) below “g” is the name of the variable for which
we substitute w(s), and “z” is the variable for which we substitute w(s).
[m]

Now fix two points z,y € R and a time ¢t > 0. We introduce then the
action functional

@ i) = [ stswionas (=)

defined for functions w(-) = (w!(-),w?(:),...,w"(-)) belonging to the ad-
missible class

A= {w(-) € C*([0,t;R") | w(0) = y, w(t) = z}.
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w(-)

x(-)

A problem in the calculus of variations

Thus a C? curve w(-) lies in A if it starts at the point y at time 0, and
reaches the point z at time ¢. A basic problem in the calculus of variations
is then to find a curve x(-) € A satisfying

) () = gmin, Thw()

That is, we are asking for a function x(-) which minimizes the functional
I[-] among all admissible candidates w(-) € A.

We assume next that there in fact exists a function x(-) € A satisfying
our calculus of variations problem, and will deduce some of its properties.

THEOREM 1 (Euler-Lagrange equations). The function x(-) solves the
system of Euler-Lagrange equations

d ; .
(@) —g5 (PaL(x(s),x(5))) + Dz L(x(s), x(s)) =0 (0< s <)

This is a vector equation, consisting of n coupled second-order equations.
Proof. 1. Choose a smooth function v : [0,#] — R™, v = (v!,...,9"),
satisfying
(5) v(0) =v(t) =0,

and define for 7 € R
(6) w() :=x() + Tv().

Then w(-) € A and so
I[x(:)] < Iw(")]-

Thus the real-valued function

i(r) = I[x() + 7v()]
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has a minimum at 7 = 0, and consequently

Q =0 ('=%).

provided #/(0) exists.
2. We explicitly compute this derivative. Observe

¢
i(r) = / L(x(s) + 7v(s),x(s) + 7v(s)) ds,
0
and so
t n 5 «
i(r) = / ZL‘“ (x+1v,z+71Vv)0 + Ly (X + 7V, + 7v)v' ds.
0 =1

Set 7 = 0 and remember (7):

n

0=1#(0) = /0 S Ly (6, X)* + Ly (%, %)0' ds.

i=1

We recall (5) and then integrate by parts in the first term inside the integral,
to discover

n ¢ ‘
Ozg/o\ I:_Ed; (qu‘(x!x))"'l/:,-(k,x) v' ds.

This identity is valid for all smooth functions v = (v, ..., v") satisfying the
boundary conditions (5), and so

d . 3
_E (Llh'(xxx)) + L:l:.‘(x1 x) =0
for0<s<t i=1,...,n a

Remark. We have just demonstrated that any minimizer x(-) € A of I[]
solves the Euler-Lagrange system of ODE. It is of course possible that a
curve x(-) € A may solve the Euler-Lagrange equations without necessarily
being a minimizer: in this case we say x(-) is a critical point of I[]. So every
minimizer is a critical point, but a critical point need not be a minimizer.
@]
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Example. If L(g,z) = %mlql2 — ¢(z), where m > 0, the corresponding
Euler-Lagrange equation is

mi(s) = £(x(s))
for f := —D¢. This is Newton’s law for the motion of a particle of mass m
moving in the force field f generated by the potential ¢. (See Feynman-
Leighton-Sands [F-L-S, Chapter 19].) |
b. Hamilton’s ODE.

We now convert the Euler-Lagrange equations, a system of n second-
order ODE, into Hamilton’s equations, a system of 2n first-order ODE.
We hereafter assume the C? function x(-) is a critical point of the action
functional, and thus solves the Euler-Lagrange equations (4).

First we set
(8) P(s) := DgL(k(s),x(s)) (0<s<t);
p(-) is called the generalized momentum corresponding to the position x(:)
and velocity x(-). We next make this important hypothesis:
Suppose for all z,p € R" that the equation
© p = DqL(g,z)
can be uniquely solved for ¢ as a smooth
function of p and z, ¢ = q(p, z)-

We will examine this assumption in more detail later: see §3.3.2.
DEFINITION. The Hamiltonian H associated with the Lagrangian L is
H(p,z) :=p-q(p,z) - L(a(p.z),7) (p,z €RT),

where the function q(-,-) is defined implicitly by (9).
Example (continued). The Hamiltonian corresponding to the Lagrangian
L(g,z) = ymlqf* — ¢(z) is
H(p,2) = 5ol + 9(a)
P,z) = o—lp|” + ¢(z).

The Hamiltonian is thus the total energy, the sum of the kinetic and potential
energies; the Lagrangian is the difference between the kinetic and potential
energies. a

Next we rewrite the Euler-Lagrange equations in terms of p(-), x(-):
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THEOREM 2 (Derivation of Hamilton's ODE). The functions x(-) and
p(-) satisfy Hamilton's equations:
{ *(s) = DpH(p(s), (s))
p(s) = —DzH(p(s), x(s))
for 0 < s < t. Furthermore,
the mapping s — H(p(s),x(s)) is constant.

(10)

Remark. The equations (10) comprise a coupled system of 2n first-order
ODE for x(-) = (z*(-),...,2"(-)) and p(*) = (p'(*),.--,p"()) (defined by
(8))-

Proof. First note from (8) and (9) that x(s) = q(p(s), x(s)).

Let us hereafter write q(-) = (¢*(*),---,¢"(-)). We then compute for
i= 1, :

n k
Satn ) =Ygt o) - G0 G 0~ a0

= _a—x,-(q’z) by (9),

and
—(P,I)_‘I(P:I)+Zpk P,I) (q,r) p,z)

=¢'(p,z), again by (9).
Thus OH

a—pi(P(S),X(S)) = ¢'(p(s), x(s)) = #'(s);
and likewise

O (o), x(s)) = ~ g(a(pls), x(5)),x(6)) = g (k(6), x(5)
= _dis (% ()‘c(s),x(s))> according to (4)

= —p'(s).
Finally, observe

£ H(p(s),x( Z
Zap, ( gg) gg (313:) -
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Remark. See Arnold [AR, Chapter 9] for more on Hamilton’s ODE and
Hamilton-Jacobi PDE in classical mechanics. We are employing here differ-
ent notation than is customary in mechanics: our notation is better overall
for PDE theory. (o]

3.3.2. Legendre transform, Hopf-Lax formula.

Now let us try to find a connection between the Hamilton-Jacobi PDE
and the calculus of variations problem (2)—(4). To simplify further, we also
drop the z-dependence in the Hamiltonian, so that afterwards H = H(p).
We start by reexamining the definition of the Hamiltonian in §3.3.1.

a. Legendre transform.

‘We hereafter suppose the Lagrangian L : R® — R satisfies these condi-
tions:

(11) the mapping g — L(q) is convex
and
(12) lim @ =+00

9~ |qf

The convexity implies L is continuous.

DEFINITION. The Legendre transform of L is

(13) L*(p) = sup {p-a-L(g)} (peR").
geRr

Motivation for Legendre transform. Why do we make this definition?
For some insight let us note in view of (12) that the “sup” in (13) is really
a “max”; that is, there exists some ¢* € R™ for which
L*(p)=p-¢" - L(¢")

and the mapping g+ p - ¢ — L(g) has a maximum at ¢ = ¢g*. But then p =
DL(q*), provided L is differentiable at g*. Hence the equation p = DL(q)
is solvable (although perhaps not uniquely) for g in terms of p, ¢* = q(p).
Therefore

L*(p) = p- a(p) — L(a(p))-
However, this is almost exactly the definition of the Hamiltonian H asso-
ciated with L in §3.3.1 (where, recall, we are now assuming the variable
does not appear). We consequently henceforth write

(14) H=L".
Thus (13) tells us how to obtain the Hamiltonian H from the Lagrangian
L. m}

Now we ask the converse question: given H, how do we compute L?
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THEOREM 3 (Convex duality of Hamiltonian and Lagrangian). Assume
L satisfies (11), (12) and define H by (13), (14).

(i) Then
the mapping p — H(p) is convex
and
1m H_(p) = 400.
I~ |p|
(ii) Purthermore
(15) L=H"

Remark. Thus H is the Legendre transform of L, and vice versa:
L=H*, H=L".
We say H and L are dual convex functions. O

Proof. 1. For each fixed g, the function p — p - ¢ — L{g) is linear, and
consequently the mapping

p— H(p) = L"(p) =qseung{p~ q—-L(g)}
is convex. Indeed, if 0 < 7 < 1, p,p € R,
H(rp+(1-1)p) = sgp{(rp +(1-7)p)-q- L(g)}
< ngp{p g L(9)}
+Q1-7) Sl;p{ir g—L(q)}
=TH(p) + (1 — 7)H(p)-
2. Fix any A > 0, p # 0. Then

H(p) = sup{p-q— L(g)}
qeRn

V4
> Apl - LOE) (a=2E)
|p| |p|
= Alp| - i 3 L.

Thus liminf e S > A for all A > 0.
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3. In view of (14)
H(p)+ L{g) 2p-q

for all p, ¢ € R®, and consequently

L(q) > sup {p-q— H(p)} = H"(q).
peR”

On the other hand

H*(q) = sup {p-g— sup {p-r— L(r)}}
peR™ reR®

(16) = swp jnf {p- (=) + L(N}-

Now since g — L(g) is convex, according to §B.1 there exists s € R™ such
that
L(r) 2 L(g)+s-(r—q) (r€R").

(If L is differentiable at g, take s = DL(g).) Taking p = s in (16), we
compute
H'(q)> inf {s- (g =)+ L(r)} = L)

b. Hopf-Lax formula.

Let us now return to the initial-value problem (1). Recall that the
calculus of variations problem with Lagrangian L, discussed in §3.3.1, led to
Hamilton’s ODE for the associated Hamiltonian H. Since these ODE are
also the characteristic equations of the Hamilton—Jacobi PDE, we conjecture
there is probably a direct connection between this PDE and the calculus of
variations.

So if £ € R™ and ¢ > 0 are given, we should presumably try to minimize
the action

/  Lew(s)) ds
(1]

over functions w : [0,#] — R™ satisfying w(t) = z. But what should we take
for w(0)? As we must somehow take into account the initial condition for
our PDE, let us try modifying the action to include the function g evaluated
at w(0):

/0 * L(w(s)) ds + g(w(0)).
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Next let us construct a candidate for a solution to the initial-value prob-
lem (1), in terms of a variational principle entailing this modified action.
We accordingly set

t
(17 u(z, t) := inf {/ L(w(s))ds+g(y) | w(0) =y, w(t) = a:} ;
0
the infimum taken over all C* functions w(-) with w(t) = z. (Better justi-
fication for this guess will be provided much later, in Chapter 10.)
We propose now to investigate the sense in which u so defined by (17)

actually solves the initial-value problem for the Hamilton-Jacobi PDE:

(18)

uw + H(Du) =0 in R™ x (0,00)
1 u=g onR"x {t=0}

Recall we are assuming H is smooth,

(19) Hp) _ o

lim o

{ H is convex and
|pl—o0
‘We henceforth suppose also

(20) g:R® — R is Lipschitz continuous;

this means Lip(g) := supzyeR { g(zz):z(v)l} < 6o,
THy

First we note formula (17) can be simplified:
THEOREM 4 (Hopf-Lax formula). Ifz € R" andt > 0, then the solution
u = u(z,t) of the minimization problem (17) is

(21) u(z,t) = ;re% {tL (#) + g(y)}.

DEFINITION. We call the expression on the right hand side of (21) the
Hopf-Lax formula.

Proof. 1. Fix any y € R" and define w(s) :==y+ $(z —y) (0 < s < t).
Then the definition (17) of u implies

) < [ 2o s +at) =12 (7L +00),
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and so
u(z, 1) < inf {tL (#) +g(y)}-

2. On the other hand, if w(-) is any C* function satisfying w(t) = z, we

have . .
L(%/; v'v(s)ds) 5%/0 L{w(s))di

by Jensen’s inequality (§B.1). Thus if we write y = w(0), we find

_ t
o (y) +oly) < /0 L(%(s)) ds + g(u);

g, {12 (552) + 90 } < )

3. We have so far shown

u(z,t) = inf {tL( )+y(y)}

and leave it as an exercise to prove the infimum above is really a minimum.
a

and consequently

‘We now commence a study of various properties of the function u defined
by the Hopf-Lax formula (21). Our ultimate goal is showing this formula
provides a reasonable weak solution of the initial-value problem (18) for the
Hamilton-Jacobi equation.

First, we record some preliminary observations.

LEMMA 1 (A functional identity). For each z € R® and 0 < s < t, we
have

(22) u(z,t) = mm {(t— s)L ( ) +u(y,s )} .

In other words, to compute u(-,t), we can calculate u at time s and then
use u(-, s) as the initial condition on the remaining time interval [s, t].

Proof. 1. Fix y € R*, 0 < s < t and choose z € R" so that

(29) ) =5 (55 42
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Now since L is convex and 2= = (1 — %) =% + $£%, we have

(5 <692 (5)

u(z,t)StL(It )+g(z)<(t—s)L( _s)+sL( - )+g()
= -9 (322) +utws),

by (23). This inequality is true for each y € R™. Therefore, since y — u(y, s)
is continuous (according to Lemma 2 below), we have

(24) u(z,?) < min {(: —5)L <f+g) +u(y, s)} .

‘“’) +g(w),

and set y := 3z + (1 — $) w. Then $=¥ = 3% = ¥ Consequently

2. Now choose w such that

(25) u(z,t) =tL (I

-9z (322) +utw.)
< (t—s)L(¥) +sL( - )+g(w)
tL( . ) S ——y
by (25). Hence
(26) mp {e- 92 (322) +ua) ) < utet
m]

LEMMA 2 (Lipschitz continuity). The function u is Lipschitz continuous
in R™ x [0,0), and
u=g onR"x {t=0}.
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Proof. 1. Fix t > 0, z,% € R™. Choose y € R™ such that
27) tL (z—;—y> +9(y) = u(z,b).
Then
u(zl)—u(zt)—mf{tL( )+g( )} tL( 7 )—g(y)

<g(Z -z +y) - g(y) < Lip(9)|2 — z|.

Hence
u(Z,t) — u(z,t) < Lip(g)|Z ~ z[;

and, interchanging the roles of £ and z, we find
(28) u(z,t) - u(&,t)| < Lip(g)|z — 2|

2. Now select z € R™, t > 0. Choosing y = z in (21), we discover
(29) u(z,t) < tL(0) + g(z).

Furthermore,

u(z,t) = mm {tL ( ) +9(?J)}
> o(@) + mip { - L@z —ol + 12 (272) }
= g(«) - tmgx{Lip(9)lz| — L(z)} (= =77
=g(z)~t axf{w -z~ L(z))
=g(z) -t

wEB(O Llp(g)) zER"
H
B(o, Llp(y))
This inequality and (29) imply
[u(z,t) — 9(z)| < Ct
for

(30) C = max(IL(O)}, , mexx | |H]).

3. Finally select z € R™, 0 < £ < t. Then Lip(u(-,t)) < Lip(g) by (28)
above. Consequently Lemma 1 and calculations like those employed in step

2 above imply
|u(z, t) - u(z,?)| < Clt 1|
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for the constant C defined by (30). 0

Now Rademacher’s Theorem (which we will prove later, in §5.8.3) asserts
that a Lipschitz function is differentiable almost everywhere. Consequently
in view of Lemma 2 our function u defined by the Hopf-Lax formula (21)
is differentiable for a.e. (z,t) € R™ X (0,00). The next theorem asserts u in
fact solves the Hamilton—-Jacobi PDE wherever u is differentiable.

THEOREM 5 (Solving the Hamilton-Jacobi equation). Suppose z € R",
t > 0, and u defined by the Hopf-Laz formula (21) is differentiable at a point
(z,t) € R® x (0,00). Then

uy(z,t) + H(Du(z,t)) = 0.

Proof. 1. Fix ¢ € R*, h > 0. Owing to Lemma 1,
hg —
u(z + hg,t+h) = mm {hL (Eh‘]—y) + u(y, t)}
< hL(q + u(z, t).
Hence
u(zx + hq,t + h) — u(z,t)
h

< L(g).
Let h — 0T, to compute
q- Du(z,t) + w(z,t) < L(q).
This inequality is valid for all ¢ € R, and so
(31)  w(z,t) + H(Du(z,t)) = w(z,t) + ;[é?i)'s{q - Du(z,t) — L(g)} < 0.

The first equality holds since H = L*.

2. Now choose z such that u(z,t) = tL (£52) + g(z). Fix h > 0 and set
s=t—h,y=%$z+ (1- %)z Then £= = ¥Z, and thus

e = ulwns) 2 11 (275 ) + ole) - E: (L) +4(0)
=(t—s)L(I;z>.

u@,t) —u(1- Yz +izt—h) L(:z:—z)
- > .

That is,




