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3.2.1. Derivation of characteristic ODE.

We return to our basic nonlinear first-order PDE
(1) F(Du,u,z)=0 inU,
subject now to the boundary condition
(2) u=g onl,

where I' C 8U and g : I’ — R are given. We hereafter suppose that F, g are
smooth functions.

We develop next the method of characteristics, which solves (1), (2) by
converting the PDE into an appropriate system of ODE. This is the plan.
Suppose u solves (1), (2) and fix any point € U. We would like to calculate
u(z) by finding some curve lying within U, connecting x with a point el
and along which we can compute u. Since (2) says u = g on I, we know
the value of u at the one end z°. We hope then to be able to calculate u all
along the curve, and so in particular at z.

Finding the characteristic ODE. How can we choose the curve so all
this will work? Let us suppose it is described parametrically by the function

x(s) = (z'(s),...,z"(s)), the parameter s lying in some subinterval of R.
Assuming u is a C? solution of (1), we define also

@) 2(5) = u(x(s)).

In addition, set

4) p(s) := Du(x(s));

that is, p(s) = (p*(s),.-.,p"(s)), where

(5) p'(s) = ug (x(s)) (i=1,...,n).

So z(-) gives the values of u along the curve and p(-) records the values of
the gradient Du. We must choose the function x(-) in such a way that we
can compute z(-) and p(-).

For this, first differentiate (5):

© P = P x0)(e) (=)

Jj=1
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This expression is not too promising, since it involves the second derivatives
of u. On the other hand, we can also differentiate the PDE (1) with respect
to z;:

n
oF OF oF
(7) ; %(Du,u,z)um,- + E(Du, U, Thug,; + 6—1!_(Du,u, z)=0.
We are able to employ this identity to get rid of the “dangerous” second
derivative terms in (6), provided we first set

®) #(s) = g—:;(ms),z(s),x(s)) 0 =Ly vy i)

Assuming now (8) holds, we evaluate (7) at £ = x(s), obtaining thereby
from (3), (4) the identity:

Z (P(S), 2(s), %(8))uziz; (x(s))

+ 22 (p(6),26) X(5)p(5) + 5 (B(5), 5(5),x(s)) = 0.
Substitute this expression and (8) into (6):
#(6) = ~ 2 (p(s), (s}, x(5)

= 2 o), 2 XN E) (= 1,...,m).
Finally we differentiate (3):

9)

(10)  z(s) = g—;(X(S))H(S) ZPJ(S) (P(S),Z(S),X(S)).

the second equality holding by (5) and (8).

We summarize by rewriting equations (8)—(10) in vector notation:
(2) B(s) = =Dz F(p(s), 2(s), x(5)) — D= F(p(s), z(s), x(s))p(s)
(11) ¢ (b) 2(s) = DpF(p(s), 2(s), x(5)) - p(s)
(c) %x(s) = DpF(p(s), z(s),x(s)).

This important system of 2n + 1. first-order ODE comprises the char-
acteristic equations of the nonlinear first-order PDE (1). The functions
p() = ('(),---,P"()), 2(), X() = ('(), .., 2"(")) are called the charac-
teristics. We will sometimes refer to x(-) as the projected characteristic: it
is the projection of the full characteristics (p(-), z(-), x(-}) C R?**+! onto the
physical region U C R™.
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We have proved:

THEOREM 1 (Structure of characteristic ODE). Let u € C%(U) solve
the nonlinear, first-order partial differential equation (1) in U. Assume x(-)
solves the ODE (11)(c), where p(+) = Du(x(-)), z(-) = u(x(:)). Then p(-)
solves the ODE (11)(a) and z(-) solves the ODE (11)(b), for those s such
that x(s) € U.

We still need to discover appropriate initial conditions for the system
of ODE (11), in order that this theorem be useful. We accomplish this in
§3.2.3 below.

Remark. The characteristic ODE are truly remarkable in that they form
a closed system of equations for x(-), z(-) = u(x(-)), and p(-) = Du(x(")),
whenever u is a smooth solution of the general nonlinear PDE (1). The
key step in the derivation is our setting x = D, F, so that—as explained
above—the terms involving second derivatives drop out. We thereby obtain
closure, and in particular are not forced to introduce ODE for the second
and higher derivatives of u. O

3.2.2. Examples.

Before continuing our investigation of the characteristic equations (11),
we pause to consider some special cases for which the structure of these
equations is especially simple. We illustrate as well how we can sometimes
actually solve the characteristic ODE and thereby explicitly compute solu-
tions of certain first-order PDE, subject to appropriate boundary conditions.

a. F linear.

Consider first the situation that our PDE (1) is linear and homogeneous,
and thus has the form

12) F(Du,u, ) = b(z) - Du(z) + c(z)u(z) =0 (z € U).
Then F(p, z,z) = b(z) - p + ¢(x)z, and so

(13) D,F =b(z).

In this circumstance equation (11)(c) becomes

(14) x(s) = b(x(s)),

an ODE involving only the function x(-). Furthermore equation (11)(b)
becomes

(15) 5(s) = bx(s)) - P(s):
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Since p(-) = Du(x(-)), equation (12) simplifies (15), yielding
(16) z(s) = —c(x(s))z(s).

This ODE is linear in z(-), once we know the function x(-) by solving (14).
In summary,

(17) { (2) *(s) =b(x(s))

(b) 2(s) = —elx(s))z(s)

comprise the characteristic equations for the linear, first-order PDE (12).
(We will see later that the equation for p(-) is not needed.) 0O

Example 1. We demonstrate the utility of equations (17) by explicitly
solving the problem

(18)

TiUg, — ToUg, =u in U
u=g onl,

where U is the quadrant {z; > 0,z > 0} and T = {z; > 0,z2 = 0} C oU.
The PDE in (18) is of the form (12), for b = (—z2,z;) and ¢ = —1. Thus
the equations (17) read

(19)

Accordingly we have

z1(s) = 2% cos 5, z%(s) = z%sins
z(s) = 2%° = g(z") ¢’,

where 2 > 0,0 < s < %- Fix a point (z1,22) € U. We select s > 0,

20 > 0 so that (z1,x3) = (z(s), z2(s)) = (2% cos s,2%sin s). That is, 20 =

(z? + z3)/2, s = arctan (ff . Therefore

u(z1, 22) = u(z}(s),2%(s)) = 2(s) = g(z°) *

= g((a} + ey (),
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b. F quasilinear.

The partial differential equation (1) is quasilinear should it have the
form

(20) F(Du,u,z) = b(z,u(z)) - Du(z) + c(z, u(z)) = 0.
In this circumstance F(p, z,z) = b(z, 2) - p+ ¢(z, z); whence
D,F =b(z, 2).
Hence equation (11)(c) reads
%(s) = b(x(s), z(s)),
and (11)(b) becomes
2(s) = b(x(s), z(s)) - p(s)
= —c(x(s),2(s)), by (20).
Consequently

- (6 -ttt

(b) () = —e(x(s), 2(s))

are the characteristic equations for the quasilinear first-order PDE (20).
(Once again the equation for p(-) is not needed.) O

Example 2. The characteristic ODE (21) are in general difficult to solve,
and so we work out in this example the simpler case of a boundary-value
problem for a semilinear PDE:

Upy + U =u? inU
(22) { u=g onl.

Now U is the half-space {x3 > 0} and ' = {zg = 0} = 8U. Here b = (1,1)
and ¢ = —z%. Then (21) becomes

{¢1=1, 2 =1

5= 2%

Consequently

T

{zl(s) =120+s, 2(s) = s
= 2
z(s) T T-sz0 — T-sg(z0)’

where z¥ € R, 5 > 0, provided the denominator is not zero.
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Fix a point (z1,72) € U. We select s > 0 and z° € R so that (z1,%2) =
(z1(s),2%(s)) = (z° + 5, 5); that is, 20 = 21 — T2, s = 2. Then

(s 2(s)) = 2(s) = 9D
u(e,22) = (e (9),9%9) = 2(6) = 7L s
— g(z1 — z2)
1 - za9(z1 — 22)
This solution of course makes sense only if 1 — z2g(z1 — z2) # 0. [m]

c. F fully nonlinear.

In the general case, the full characteristic equations (11) must be inte-
grated, if possible.

Example 3. Consider the fully nonlinear problem
U Uz, =u inU
(28) { u=z} onT,
where U = {1 > 0}, I' = {z; = 0} = 8U. Here F(p,z,x) = p1p2 — 2, and
hence the characteristic ODE (11) become
=9, p*=p
5 = 2p'p?
& =p?, 32=pl.
We integrate these equations to find
zl(s) = p(e* — 1), 2%(s) =2 +pi(e° — 1)
2(s) = 2% + pPpd(e* — 1)
pi(s) = ple* P (s) = pe,
where 2° € R, s € R, and z° = (29)%.

We must determine p® = (p?,pJ). Since u = 7% on I, p§ = u,,(0,2°) =
220, Furtgxermore the PDE uz, uz, = u itself implies p9pd = 2° = (z9)2, and
so p) = %-. Consequently the formulas above become

zl(s) = 22%(e* — 1),2%(s) = %g(es +1)
2(s) = (a9
pi(s) = I ef, p*(s) = 220"

Fix a point (z1,22) € U. Select s and z° so that (z1,22) = (z!(s),z%(s))
= (2z%(e* — 1), Z(e* + 1)). This equality implies 2® = oz o = %Iz*%jf;
and so

u(z1,72) = u(zl(s), £2(s)) = 2(s) = (z°)%e?
_(m+ 4z5)?
16 ’
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3.2.3. Boundary conditions.
We return now to developing the general theory.
a. Straightening the boundary.

We intend in the section following to invoke the characteristic ODE
(11) actually to solve the boundary-value problem (1), (2), at least in a
small region near an appropriate portion I' of OU. In order to simplify
the relevant calculations, it is convenient first to change variables, so as to
“fatten out” part of the boundary 8U. To accomplish this, we first fix
any point 2° € OU. Then utilizing the notation from §C.1, we find smooth
mappings ®, ¥ : R* — R” such that ¥ = &~ and & straightens out oU
near z0. (See the illustration in §C.1.)

Given any function u : U — R, let us write V := ®(U) and set

(24) o(y) =u(¥(y) (weV).
Then
(25) u(z) = v(®(z)) (zeU).

Now suppose that u is a C? solution of our boundary-value problem (1), (2)
in U. What PDE does v then satisfy in V7

According to (25), we see

Uz, (z) = Y vy, (B(2))B5 (@) (i=1,...,n)

k=1
that is,
Du(z) = Du(y)D®(z).
Thus (1) implies
0 = F(Du(z),u(z), z)
= F(Du(y) D2(¥(v)), v(v), ¥(v))-
This is an expression having the form
G(Dv(y),v(y),y) =0 inV.
In addition v = h on A, where A := &(T) and h(y) := g(¥(y)).
In summary, our problem (1), (2) transforms to read
G(Dv,v,y) =0 inV
v=h onA,

for G, h as above. The point is that if we change variables to straighten out
the boundary near z°, the boundary-value problem (1), (2) converts into a
problem having the same form.

(26)

(27)
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b. Compatibility conditions on boundary data.

In view of the foregoing computations, if we are given a point 20 €T we
may as well assume from the outset that I is flat near z0, lying in the plane
{zn =0}.

We intend now to utilize the characteristic ODE to construct a solution
(1), (2), at least near z°, and for this we must discover appropriate initial
conditions .

(28) p(0) =%, 2(0) = 2°, x(0) = =".
Now clearly if the curve x(-) passes through 29, we should insist that
(29) 20 = g(z9).

What should we require concerning p(0) = p°? Since (2) implies
u(zy ... Tn-1,0) = g(T1...Tp-1) near z°, we may differentiate to find

Uz, (2%) = g, (z%) (i=1,...,n—1).

As we also want the PDE (1) to hold, we should therefore insist p? =
(03, ...,p}) satisfies these relations:

=0,  (G=1..,n-1)
(30) 0,0 .0
F(p’ 2% 2% =0.
These identities provide n equations for the n quantities p° = (p},...,p%).

We call (29) and (30) the compatibility conditions. A triple (p°, 2%, 2°%) €
R2+! verifying (29), (30) is admissible. Note z° is uniquely determined
by the boundary condition and our choice of the point 2%, but a vector p°
satisfying (30) may not exist or may not be unique.

c. Noncharacteristic boundary data.

So now assume as above that z0 € T, that ' near z° lies in the plane
{zn = 0}, and that the triple (p°,2°,z%) is admissible. We are planning to
construct a solution u of (1), (2) in U near z° by integrating the character-
istic ODE (11). So far we have ascertained x(0) = z°, z(0) = 2°, p(0) = p°
are appropriate boundary conditions for the characteristic ODE, with x(-)
intersecting T at z°. But we will need in fact to solve these ODE for nearby
initial points as well, and must consequently now ask if we can somehow
appropriately perturb (p°, 2%, z%), keeping the compatibility conditions.
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In other words, given a point y = (y1,..-,¥n-1,0) € T, with y close to
2%, we intend to solve the characteristic ODE

(a) B(s) = =Dz F(p(s), 2(s), x(s)) — D=F(p(s), 2(s), x(s))P(s)
(31) (b) 2(s) = DpF(p(s), 2(s),x(s)) - p(s)
(¢) %(s) = DyF(p(s), 2(s), x(s)),

with the initial conditions

(32) p(0) =q(y), 2(0) =g(v), x(0) = v.
Our task then is to find a function q(-) = (¢'(*),...,¢"()), so that
(33) q(z°) =p°

and (q(y), 9(y),y) is admissible; that is, the compatibility conditions
{ ¢ =g(y) (=1..,n-1)
F(a(y),9(y).y}) =0
hold for all y € T close to z°.

(34)

LEMMA 1 (Noncharacteristic boundary conditions). There ezists a unique
solution q(-) of (33), (34) for ally € T sufficiently close to z°, provided

(35) Fp (6 2°,2°) # 0.

We say the admissible triple (p°, 20, z°) is noncharacteristic if (35) holds.
‘We henceforth assume this condition.

Proof. To simplify notation, let us now temporarily write y = (y1,...,Yn) €
R". We apply the Implicit Function Theorem (§C.6) to the mapping

G:R"xR" = R", G(p,y) = (G'(»,y),---.G"(P.Y)),

where )
{ G'(p,y) = Pi — 9z,(y) (i=1,...,n—1)
G"(p,y) = F(p,9(v),v)-
Now G(p? z%) = 0, according to (29), (30). Also
i 0 0

DG =, :
By (0%, 2%29). . B (0% 2%, 2%) ) nsim
and thus

det DG (p",2°) = Fp, (°,2°,2°) #0,

in view of the noncharacteristic condition (35). The Implicit Function Theo-
rem thus ensures we can uniquely solve the identity G(p,y) = 0 for p = q(y),
provided y is close enough to z°. a
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Remark. If T is not flat near z0, the condition that I' be noncharacteristic
reads

(36) DpF(p°, 2°,2%) - v(zg) # 0,

v(z°) denoting the outward unit normal to 8U at z°. ]

3.2.4. Local solution.

Remember that our aim is to use the characteristic ODE to build a
solution u of (1), (2), at least near I'. So as before we select a point z° € T
and, as shown in §3.2.3, may as well assume that near z° the surface I is flat,
lying in the plane {z, = 0}. Suppose further that (p?, 2%, z°) is an admissible
triple of boundary data, which is noncharacteristic. According to Lemma 1
there is a function q(-) so that p° = q(z%) and the triple (q(y), 9(y),¥) is

admissible, for all y sufficiently close to z°.

Given any such point ¥ = (yi,---,¥n-1,0), we solve the characteristic
ODE (31), subject to initial conditions (32).
Notation. Let us write
p(s) =P(¥,8) =P(y1,-- -, Y¥n-1,9)
z(s) = z(y,s) = z(y1,- - - Yn-1, )
X(.i) = x(y, 5) = x(y1, <o Yn—-1, 5)
to display the dependence of the solution of (31), (32) on s and y. O

LEMMA 2 (Local invertibility). Assume we have the noncharacteristic
condition Fp, (p°,2% 1% # 0. Then there ezist an open interval I C R
containing 0, a neighborhood W of z° in T € R™}, and a neighborhood V
of 2° in R™, such that for each = € V there erist unique s € I, y € W such
that

z = x(y, 5)-
The mappings  — s,y are C2.

Proof. We have x(z°, 0) = 9. Consequently the Inverse Function Theorem
(§C.5) gives the result, provided det Dx(z?,0) # 0. Now

x(,0)=(3,0) (yeD),
andsoifi=1,...,n—1,

9 o (& (G=1,..n-1)
ay,-(“”’o)‘{ 0 (j=n)
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Furthermore equation (31)(c) implies
Oz
o (a%,0) = Fy, (", 2%, 2°).

Th
1S 1 0 Fy(p° 2, z0)

Dx(z°,0) = - :
0 1 :
0---0 FPn (pD’ZOfIO) nxn
whence det Dx(z?, 0) # 0 follows from the noncharacteristic condition (35).
[m]

In view of Lemma 2 for each z € V, we can locally uniquely solve the
equation

(37) { T = x(y, S),

for y=y(z), s = s(z).
Finally, let us define

(38) { 1;((2)) :_= z(y(z), s(z))

= p(y(z): s(z))
for z € V and s,y as in (37).

We come finally to our principal assertion, namely, that we can locally
weave together the solutions of the characteristic ODE into a solution of the
PDE.

THEOREM 2 (Local Existence Theorem). The function u defined above
is C? and solves the PDE

F(Du(z),u(z),z) =0 (z€V),
with the boundary condition
u(z) =g(z) (zelnV).

Proof. 1. First of all, fix y € T close to z° and, as above, solve the charac-
teristic ODE (31), (32) for p(s) = p(¥, 5), 2(s) = 2(y, s), and x(s) = x(y, 5).

2. We assert that if y € T is sufficiently close to z°, then

(39) fly,s) = F(p(v,5), 2(y,9),x(y,5)) =0 (s €R).
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To see this, note

f(9,0) = F(p(y,0), 2(y,0),x(y, 0))
= F(q(y),9(y),y) =0,

by the compatibility condition (34). Furthermore

) "\ 9F
O (y,5) = b3 o+ 5 Z 5
9F 5\ . 9F
—Eapj< dz; 0z ) (Z )

Z 82:_, (6}7_7) according to (31)

(40)

=0.

This calculation and (40) prove (39).
3. In view of Lemma 2 and (37)-(39), we have

F(p(z),u(z),z) =0 (z€V).
To conclude, we must therefore show
(41) p(z) = Du(z) (zeV).

4. In order to prove (41), let us first demonstrate for s € I, y € W that

(42) Sows) = ij(y,s) ’ (0,9)
and
Oz e oz? i
(43) a_y!y's’:;”"y’s’a—m(y-s) (i=1,...,n-1)

These formulas are obviously consistent with the equality (41) and will later
help us prove it. The identity (42) results at once from the characteristic
ODE (31)(b),(c). To establish (43), fix y € T, i € {1,...,n — 1}, and set

(44) r(s) = 22 (4,9 = 3P 0,9 2 (3, 9)
ayz = ay.
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We first note r(0) = ¢,(y) — ¢'(y) = 0 according to the compatibility
condition (34). In addition, we can compute

. 0%z op’ 077 . §2zi
(45) (s) = 8y;0s JE: [ ds Oy +pJ6y,—65:| ’

In order to simplify this expression, let us first differentiate the identity (42)
with respect to y;:

02z = [8pf 67 . 92
(46) el Z; [a—yiﬁ + asayi] :

Substituting (46) into (45), we discover

. [8p’ Oz B_ﬂa.rj
Pl Z [ayi ds  0s ayi]

LR E)-(2- %)% o

Now differentlate (39) with respect to y;:

ZBF@p’ Eaz ZaFaa:-”
6pJ 8y; 0Oz 6y, Bz_, Oyi

(47)

1]
5 M* i

We employ this 1dent1ty in (47), thereby obtammg

(48) #() =2 Zﬂa—z:—a—y’ =-%ia.

Hence 7(-) solves the linear ODE (48), with the initial condition r(0) = 0.

Consequently r*(s) = 0 (s € R, i = 1,...,n — 1); and so identity (43) is

verified.
5. We finally employ (42), (43) in proving (41). Indeed, if j =1,...,n,

ou 0z s
B = 8503, 255’ by (38)

k 35 = kax oyt
(%) 2T () 2

=1

9z~ Bs 1ok o
— k|92 95 Y
- 111 (35 azj+?—: Oyi 31,-)

k

El)

n

c’)
kT _ p5 =
P e, ; gk

?r
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This assertion at last establishes (41), and so finishes up the proof. 0

3.2.5. Applications.

We turn now to various special cases, to see how the local existence
theory simplifies in these circumstances.

a. F linear.

Recall that a linear, homogeneous, first-order PDE has the form
(49) F(Du,u,z) =b(z) - Du(z) + c(z)u(z) =0 (zeU).
Our noncharacteristic assumption (36) at a point z° € T as above becomes
(50) b(z°) - v(z°) #0,

and thus does not involve z0 or p? at all. Furthermore if we specify the
boundary condition

(51) u=g onl,

we can uniquely solve equation (34) for q(y) if y € T is near z°. Thus we
can apply the Local Existence Theorem 2 to construct a unique solution
of (49), (51) in some neighborhood V' containing z0. Note carefully that
although we have utilized the full characteristic equations (31) in the proof
of Theorem 2, once we know the solution exists, we can use the reduced
equations (17) (which do not involve p(-)) to compute the solution. Observe
also the projected characteristics x(-) emanating from distinct points on T’
cannot cross, owing to uniqueness of solutions of the initial-value problem
for the ODE (17)(a).

Example 4. Suppose the trajectories of the ODE
(52) %(s) = b(x(s))

are as drawn for Case 1.

We are thus assuming the vector field b vanishes within U only at one
point, which we will take to be the origin 0, and b-» <0 on I' := 6U. Can
we solve the linear boundary-value problem

b-Du=0 inU
|4
(53) { u=g onl?

Invoking Theorem 2 we see that there exists a unique solution u defined
near I, and indeed that u(x(s)) = u(x(0)) = g(z°) for each solution of the
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Case 1: flow to an attracting point

Case 2: flow across a domain

ODE (52), with the initial condition x(0) = z° € . However, this solution
cannot be smoothly continued to all of U (unless g is constant): any smooth
solution of (53) is constant on trajectories of (52), and thus takes on different
values near = = 0.

On the other hand, now suppose the trajectories of the ODE (52) look
like the illustration for Case 2. We are consequently now assuming that each
trajectory of the ODE (except those through the characteristic points A, B)
enters U precisely once, somewhere through the set

I':={z € 9U | b(z) - v(z) < 0},

and exits U precisely once. In this circumstance we can find a smooth
solution of (53) by setting u to be constant along each flow line.
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Case 3: flow with characteristic points

Assume finally the flow looks like Case 3. We can now define u to be
constant along trajectories, but then u will be discontinuous (unless g(B) =
9(D)).

Note that the point D is characteristic and that the local existence theory
fails near D. a

b. F quasilinear.

Should F be quasilinear, the PDE (1) becomes
(54) F(Du,u,z) =b(z,u) - Du+c(z,u) =0.
The noncharacteristic assumption (36) at a point z° € T reads b(z?,2°) -
v(z°) # 0, where z° = g(z°). As in the preceding example, if we specify the
boundary condition
(55) u=g onl,
we can uniquely solve the equations (34) for q(y) if y € T near z°. Thus
Theorem 2 yields the existence of a unique solution of (54), (55) in some

neighborhood V of z°. We can compute this solution in V' using the reduced
characteristic equations (21), which do not explicitly involve p(-).

In contrast to the linear case, however, it is possible that the projected
characteristics emanating from distinct points in I may intersect outside V;
such an occurrence usually signals the failure of our local solution to exist
within all of U.

Example 5 (Characteristics for conservation laws). As an instance of a
quasilinear first-order PDE, we turn now to the scalar conservation law
G(Du,w,u,z,t) = uy + divF(u)

(a6} =u+F'(u)-Du=0



