

Corso di Laurea in Chimica Industriale Chimica Fisica II

Lezione 7 Osservabili e operatori

> A.A. 2022-2023 Marco Ruzzi

Dipartimento di Scienze Chimiche Università degli Studi di Padova Via Marzolo 1 35129 Padova E-mail: marco.ruzzi@unipd.it

Osservabili e operatori [1]

Richiami sugli operatori di funzioni

Un operatore è un ente matematico che agisce su una funzione trasformandola. In tal caso un operatore generico agisce mandando da uno spazio di funzioni ad un altro spazio di funzioni...

$$\hat{\Omega}: \{f(x)\} \to \{g(x)\}$$

Per un operatore che agisce su funzioni ad una variabile vale:

$$\hat{\Omega}f(x) = g(x)$$

Esempi

La derivata prima e la derivata seconda sono operatori...

$$\hat{\Omega}_1 = D = \frac{d}{dx}$$

$$\hat{\Omega}_1 f(x) = Df(x) = \frac{d}{dx} f(x) = f'(x) = g(x)$$

$$\hat{\Omega}_2 = \hat{\Omega}_1 \hat{\Omega}_1 = DD = \frac{d}{dx} \frac{d}{dx} = \frac{d^2}{dx^2}$$

$$\hat{\Omega}_2 f(x) = D^2 f(x) = \frac{d^2}{dx^2} f(x) = f''(x) = g(x)$$

La moltiplicazione per la variabile x è un operatore...

$$\hat{\Omega}_3 = x \cdot \hat{\Omega}_3 f(x) = x \cdot f(x) = g(x)$$

L'integrale indefinito con estremo di integrazione inferiore fissato è un operatore...

$$\hat{\Omega}_4 = \int_a^x f(x) \, dx = F(x) + k = g(x)$$

Osservabili e operatori [2]

Altri esempi di operatori su funzioni a due variabili...

$$\hat{\Omega}_{1} = \frac{\partial}{\partial x}$$

$$\hat{\Omega}_{1} f(x, y) = \frac{\partial}{\partial x} f(x, y)$$

$$\hat{\Omega}_{2} = \frac{\partial^{2}}{\partial x^{2}} + 2 \frac{\partial}{\partial y} + 3$$

$$\hat{\Omega}_{2} f(x, y) = \frac{\partial^{2}}{\partial x^{2}} f(x, y) + 2 \frac{\partial}{\partial y} f(x, y) + 3 f(x, y)$$

$$\hat{\Omega}_{3} = -i\hbar \frac{\partial}{\partial x}$$

$$\hat{\Omega}_{3} f(x, y) = -i\hbar \frac{\partial}{\partial x} f(x, y)$$

Altri esempi di operatori su funzioni a tre variabili...

$$\begin{split} \hat{\Omega}_4 &= -i\hbar \nabla = -i\hbar \frac{\partial}{\partial x} \mathbf{i} - i\hbar \frac{\partial}{\partial y} \mathbf{j} - i\hbar \frac{\partial}{\partial z} \mathbf{k} \\ \hat{\Omega}_4 f\left(x, y, z\right) &= -i\hbar \nabla f\left(x, y, z\right) \\ &= -i\hbar \frac{\partial}{\partial x} f\left(x, y, z\right) \mathbf{i} - i\hbar \frac{\partial}{\partial y} f\left(x, y, z\right) \mathbf{j} - i\hbar \frac{\partial}{\partial z} f\left(x, y, z\right) \mathbf{k} \\ \hat{\Omega}_5 &= -i\hbar \frac{1}{2m} \nabla^2 = -i\hbar \frac{1}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \\ \hat{\Omega}_5 f\left(x, y, z\right) &= -i\hbar \frac{1}{2m} \nabla^2 f\left(x, y, z\right) \\ &= -i\hbar \frac{1}{2m} \frac{\partial^2}{\partial x^2} f\left(x, y, z\right) - i\hbar \frac{1}{2m} \frac{\partial^2}{\partial y^2} f\left(x, y, z\right) - i\hbar \frac{1}{2m} \frac{\partial^2}{\partial z^2} f\left(x, y, z\right) \end{split}$$

Osservabili e operatori [3]

Gli operatori della meccanica quantistica sono operatori lineari che agiscono su funzioni complesse (funzioni di stato).

Vale:

$$\hat{\Omega} \left[c_1 \psi_1(x) + c_2 \psi_2(x) \right] = c_1 \hat{\Omega} \psi_1(x) + c_2 \hat{\Omega} \psi_2(x) \qquad \forall \psi_1(x), \psi_2(x) \in L_2$$

con c_1 e c_2 coefficienti complessi.

Esempi

Gli operatori derivata e integrale sono lineari, valendo:

$$\frac{d}{dx} \left[c_1 \psi_1(x) + c_2 \psi_2(x) \right] = c_1 \frac{d}{dx} \psi_1(x) + c_2 \frac{d}{dx} \psi_2(x)$$

$$\int \left[c_1 \psi_1(x) + c_2 \psi_2(x) \right] dx = c_1 \int \psi_1(x) dx + c_2 \int \psi_2(x) dx$$

L'operatore elevamento al quadrato non è lineare, valendo:

$$\left[c_1 \psi_1(x) + c_2 \psi_2(x) \right]^2 = c_1^2 \psi_1^2(x) + 2c_1 c_2 \psi_1(x) \psi_2(x) + c_2^2 \psi_2^2(x)$$

$$\neq c_1 \psi_1^2(x) + c_2 \psi_2^2(x) = c_1 \left[\psi_1(x) \right]^2 + c_2 \left[\psi_2(x) \right]^2$$

Osservabili e operatori [4]

Equazioni formulate in termini di problema agli autovalori

Un'equazione agli autovalori è un'equazione del tipo:

$$\hat{\Omega}\psi(x) = \omega\psi(x)$$
 con ω coefficiente reale

e in tal caso:

 $\psi(x)$ è l'autofunzione dell'operatore $\hat{\Omega}$; ω è l'autovalore dell'operatore $\hat{\Omega}$.

Esempio

$$\psi(x) = e^{\alpha}$$
 è autofunzione dell'operatore $\hat{\Omega} = D^n = \frac{d^n}{dx^n}$ con autovalore α^n .

Vale:

$$\hat{\Omega}\psi(x) = D^n \psi(x) = \frac{d^n}{dx^n} \psi(x) = \frac{d^n}{dx^n} e^{\alpha x} = \alpha^n e^{\alpha x} = \alpha^n \psi(x)$$

Esempio

$$\psi(x)=e^{ikx}$$
 è autofunzione dell'operatore $\hat{\Omega}=-i\hbar D=-i\hbar\frac{d}{dx}$ con autovalore $\hbar k$. Vale:

$$\hat{\Omega}\psi(x) = -i\hbar D\psi(x) = -i\hbar \frac{d}{dx}\psi(x) = -i\hbar \frac{d}{dx}e^{ikx} = -i\hbar ik e^{ikx} = \hbar k e^{ikx} = \hbar k \psi(x)$$

Osservazione

L'autovalore $p_x = \hbar k$ dell'operatore $\hat{\Omega} = -i\hbar \frac{d}{dx}$ rappresenta il valore dell'impulso della particella quando la particella è in uno stato descritto dalla funzione d'onda $\psi(x)$...

Osservabili e operatori [5]

Esempio

Si consideri l'operatore di inversione \hat{I} (operazione di parità 1-dimensionale) che agisce su una funzione d'onda $\psi(x)$ invertendo il segno della coordinata spaziale x: $\hat{I}\psi(x) = \psi(-x)$

Dire se le funzioni:

$$\psi_1 = x^3 - kx$$
; $\psi_2 = cos(kx)$; $\psi_3 = x^2 + 3x - 1$; sono autofunzioni dell'operatore ed eventualmente calcolarne gli autovalori.

Valgono:

$$\hat{I}\psi_1 = \hat{I}(x^3 - kx) = (-x)^3 - k(-x) = -(x^3 - kx) = -\psi_1$$

 ψ_1 è autofunzione dell'operatore $\hat{\it I}$ con autovalore -1 ;

$$\hat{I}\psi_2 = \hat{I}(\cos(kx)) = \cos(-kx) = \cos(kx) = +\psi_2$$

 ψ_2 è autofunzione dell'operatore \hat{I} con autovalore +1;

$$\hat{I}\psi_3 = \hat{I}(x^2 + 3x - 1) = (-x)^2 - 3x - 1 = x^2 - 3x - 1$$

 ψ_3 non è autofunzione dell'operatore \hat{I} .

Osservabili e operatori [6]

Prodotto e commutatore di due operatori

Appare naturale la seguente definizione di prodotto tra due operatori...

Dati due operatori generici $\hat{\Omega}_1$ e $\hat{\Omega}_2$ vale per il prodotto la seguente relazione:

$$\hat{\Omega}_1 \hat{\Omega}_2 f(x) = \hat{\Omega}_1 \left[\hat{\Omega}_2 f(x) \right] = \hat{\Omega}_1 \left(g(x) \right) = h(x)$$
con:
$$\hat{\Omega}_2 f(x) = g(x)$$

In altre parole l'operatore prodotto:

$$\hat{\Omega} = \hat{\Omega}_1 \, \hat{\Omega}_2$$

di due operatori $\hat{\Omega}_1$ e $\hat{\Omega}_2$ deve essere considerato come la successione dei due operatori che agiscono consecutivamente uno per volta lavorando da destra a sinistra.

Nel caso gli operatori considerati soddisfino le seguenti equazioni agli autovalori, con $\psi(x)$ autofunzione per entrambi:

$$\hat{\Omega}_1 \psi(x) = \omega_1 \psi(x)$$

$$\hat{\Omega}_2 \psi(x) = \omega_2 \psi(x)$$

allora vale:

$$\hat{\Omega}_1 \hat{\Omega}_2 \psi(x) = \hat{\Omega}_1(\omega_2 \psi(x)) = \omega_2 \hat{\Omega}_1(\psi(x)) = \omega_2(\omega_1 \psi(x)) = \omega_2\omega_1 \psi(x) = \omega_1\omega_2 \psi(x)$$

Osservabili e operatori [7]

Il prodotto di due operatori non verifica sempre la proprietà commutativa. In meccanica quantistica gli operatori che commutano hanno un'importanza fondamentale e la proprietà di commutazione ha un profondo significato (come si

In fisica due operatori si dice che *commutano* se il loro prodotto verifica la proprietà commutativa, ossia se, per ogni funzione f(x) definita nel suo dominio di esistenza D_f , è soddisfatta la seguente relazione:

$$[\hat{\Omega}_1, \hat{\Omega}_2]f(x) = \hat{\Omega}_1 \hat{\Omega}_2 f(x) - \hat{\Omega}_2 \hat{\Omega}_1 f(x) = 0$$

vedrà nel seguito...).

L'operazione appena definita prende il nome di commutazione di due operatori e l'ente matematico che la esegue è definito commutatore.

In tal caso due operatori $\hat{\Omega}_1$ e $\hat{\Omega}_2$ si dice che commutano se il loro commutatore è nullo per ogni funzione f(x) definita nel suo dominio di esistenza D_f .

Osservabili e operatori [8]

Esercizio

Dati gli operatori derivata rispetto a x e moltiplicazione per x^2 :

$$\hat{\Omega}_1 = \frac{d}{dx}$$
 $\hat{\Omega}_2 = x^2$

mostrare che, per ogni funzione f(x), valgono:

(a)
$$\hat{\Omega}_1^2 f(x) \neq \left[\hat{\Omega}_1 f(x)\right]^2$$

Valgono:

$$\hat{\Omega}_{1}^{2} f(x) = \frac{d}{dx} \left(\frac{df}{dx} \right) = \frac{d^{2} f}{dx^{2}}$$

$$\left[\hat{\Omega}_{1} f(x) \right]^{2} = \left(\frac{df}{dx} \right)^{2} \neq \frac{d^{2} f}{dx^{2}}$$

$$\forall f(x)$$

(b)
$$\hat{\Omega}_1 \hat{\Omega}_2 f(x) \neq \hat{\Omega}_2 \hat{\Omega}_1 f(x)$$

Valgono:

$$\hat{\Omega}_{1}\hat{\Omega}_{2}f(x) = \frac{d}{dx}\left[x^{2}f(x)\right] = 2x f(x) + x^{2} \frac{df}{dx}$$

$$\hat{\Omega}_{2}\hat{\Omega}_{1}f(x) = x^{2} \frac{df}{dx} \neq \hat{\Omega}_{1}\hat{\Omega}_{2}f(x) \qquad \forall f(x)$$

Osservabili e operatori [9]

Esempio

Operatori che soddisfino equazioni agli autovalori con la stessa autofunzione $\psi(x)$:

$$\hat{\Omega}_1 \, \psi(x) = \omega_1 \, \psi(x)$$

$$\hat{\Omega}_2 \psi(x) = \omega_2 \psi(x)$$

sono operatori che commutano.

Valgono infatti:

$$\hat{\Omega}_1 \hat{\Omega}_2 \psi(x) = \hat{\Omega}_1(\omega_2 \psi(x)) = \omega_2 \hat{\Omega}_1(\psi(x)) = \omega_2(\omega_1 \psi(x)) = \omega_2\omega_1 \psi(x)$$

$$\hat{\Omega}_2 \, \hat{\Omega}_1 \psi(x) = \hat{\Omega}_2 \left(\omega_1 \, \psi(x) \right) = \omega_1 \, \hat{\Omega}_2 \left(\, \psi(x) \right) = \omega_1 \left(\omega_2 \, \psi(x) \right) = \omega_1 \omega_2 \, \psi(x)$$

Valendo certamente:

$$\omega_1 \omega_2 \psi(x) = \omega_2 \omega_1 \psi(x)$$

Per ogni arbitraria f(x) si ottiene l'asserto:

$$\hat{\Omega}_1 \, \hat{\Omega}_2 \psi(x) = \hat{\Omega}_2 \, \hat{\Omega}_1 \psi(x)$$

$$\hat{\Omega}_1 \hat{\Omega}_2 \psi(x) - \hat{\Omega}_2 \hat{\Omega}_1 \psi(x) = 0$$

$$\left[\hat{\Omega}_1, \hat{\Omega}_2\right] \psi(x) = 0$$

Osservabili e operatori [10]

L'equazione di Schroedinger formulata in termini di problema agli autovalori

Assumendo una funzione d'onda con la forma analitica:

$$\Psi(x,t) = \psi(x)\varphi(t) = e^{i(kx - \omega t)} \qquad k = \frac{2\pi}{\lambda} \qquad \omega = \frac{2\pi}{P} \quad \omega = kc$$

per la particella libera e per la particella soggetta ad un campo di forze non dipendente dal tempo valgono le seguenti equazioni di Schroedinger:

$$\frac{\partial \varphi(t)}{\partial t} = -\frac{i}{h} E \varphi(t)$$

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} = E \psi(x)$$

$$U(x,t) = U_0 = 0$$

$$\frac{\partial \varphi(t)}{\partial t} = -\frac{1}{h} E \varphi(t)$$

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x) \psi(x) = E \psi(x)$$

$$U(x,t) = U(x)$$

Osservabili e operatori [11]

L'equazione di Schroedinger formulata in termini di problema agli autovalori

Assumendo una funzione d'onda con la forma analitica:

$$\Psi(x,t) = \psi(x)\varphi(t) = e^{i(kx - \omega t)} \qquad k = \frac{2\pi}{\lambda} \qquad \omega = \frac{2\pi}{P} \quad \omega = kc$$

per la particella libera e per la particella soggetta ad un campo di forze non dipendente dal tempo valgono le seguenti equazioni di Schroedinger:

$$\frac{\partial \varphi(t)}{\partial t} = -\frac{i}{h} E \varphi(t)$$

$$\frac{\partial \varphi(t)}{\partial t} = -\frac{i}{h} E \varphi(t)$$
operatore energia cinetica
$$\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} = E \psi(x)$$

$$\hat{T} \psi(x) = E \psi(x)$$

$$\hat{T} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$$

$$\frac{\partial \varphi(t)}{\partial t} = -\frac{1}{h} E \varphi(t)$$

$$\frac{U(x,t) = U(x)}{\text{operatore energia (totale)}}$$

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x)\psi(x) = E \psi(x) \qquad \hat{H} \psi(x) = E \psi(x) \qquad \hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \hat{U}(x)$$

Le equazioni di Schroedinger per la particella libera e per la particella soggetta ad un campo di forze possono dunque essere formulate in termini di equazioni agli autovalori con operatori energia cinetica \hat{T} ed energia totale \hat{H} .

Osservabili e operatori [12]

L'estensione al caso tridimensionale è immediata...
Assumendo una funzione d'onda con la forma analitica:

$$\Psi(\mathbf{r},t) = \psi(\mathbf{r})\varphi(t) = e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$$

$$k = k_x \mathbf{i} + k_y \mathbf{j} + k_z \mathbf{k} \qquad \omega = \frac{2\pi}{P} \quad \omega = kc$$

per la particella libera e per la particella soggetta ad un campo di forze non dipendente dal tempo valgono le seguenti equazioni di Schroedinger:

$$\frac{\partial \varphi(t)}{\partial t} = -\frac{i}{h} E \varphi(t)$$

$$-\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

$$\hat{T} \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

$$\hat{T} \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

$$\hat{T} = -\frac{\hbar^2}{2m} \nabla^2$$

$$\hat{T} = -\frac{\hbar^2}{2m} \nabla^2$$

$$\frac{\partial \varphi(t)}{\partial t} = -\frac{1}{h} E \varphi(t)$$

$$-\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r}) + U(\mathbf{r}) \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

$$\hat{H} \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + \hat{U}(\mathbf{r})$$

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + \hat{U}(\mathbf{r})$$

Le equazioni di Schroedinger per la particella libera e per la particella soggetta ad un campo di forze possono dunque essere formulate in termini di equazioni agli autovalori con operatori energia cinetica \hat{T} ed energia totale \hat{H} .

Osservabili e operatori [13]

L'equazione di Schroedinger per la particella libera può essere formulata in termini di equazioni agli autovalori con l'operatore energia cinetica \hat{T} .

In una dimensione:

$$\hat{T}\psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) = E\psi(x)$$

Se la funzione d'onda $\psi(x)$ della particella libera è autofunzione dell'operatore energia cinetica \hat{T} allora l'autovalore E rappresenta l'energia cinetica della particella libera nello stato descritto da $\psi(x)$.

Osservabili e operatori [13]

L'equazione di Schroedinger per la particella libera può essere formulata in termini di equazioni agli autovalori con l'operatore energia cinetica \hat{T} .

In una dimensione:

$$\hat{T}\psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) = E\psi(x)$$

Se la funzione d'onda $\psi(x)$ della particella libera è autofunzione dell'operatore energia cinetica \hat{T} allora l'autovalore E rappresenta l'energia cinetica della particella libera nello stato descritto da $\psi(x)$.

L'equazione di Schroedinger per la particella confinata può essere formulata in termini di equazioni agli autovalori con operatore energia totale \hat{H} .

In una dimensione:

$$\hat{H}\psi(x) = (\hat{T} + \hat{U}(x))\psi(x) = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \hat{U}(x)\right)\psi(x) = -\frac{\hbar^2}{2m}\frac{\partial^2\psi(x)}{\partial x^2} + \hat{U}(x)\psi(x) = E\psi(x)$$

Se la funzione d'onda $\psi(x)$ della particella confinata è autofunzione dell'operatore energia totale \hat{H} allora l'autovalore E rappresenta l'energia totale (somma di energia cinetica e potenziale) della particella nello stato descritto da $\psi(x)$.

L'operatore energia totale \hat{H} è denominato operatore Hamiltoniano.

Osservabili e operatori [14]

L'equazione di Schroedinger nella sua forma più generale e sintetica si scrive dunque utilizzando l'operatore Hamiltoniano:

$$\hat{H}\psi(x) = E\psi(x)$$

Nel caso della particella libera l'energia è puramente cinetica e in tal caso vale:

$$\hat{H}\psi(x) = \hat{T}\psi(x) = E\psi(x)$$

Nel caso della particella confinata l'energia è sia cinetica che potenziale e dunque:

$$\hat{H}\psi(x) = (\hat{T} + \hat{U}(x))\psi(x) = E\psi(x)$$

Osservabili e operatori [14]

L'equazione di Schroedinger nella sua forma più generale e sintetica si scrive dunque utilizzando l'operatore Hamiltoniano:

$$\hat{H}\psi(x) = E\psi(x)$$

Nel caso della particella libera l'energia è puramente cinetica e in tal caso vale:

$$\hat{H}\psi(x) = \hat{T}\psi(x) = E\psi(x)$$

Nel caso della particella confinata l'energia è sia cinetica che potenziale e dunque:

$$\hat{H}\psi(x) = (\hat{T} + \hat{U}(x))\psi(x) = E\psi(x)$$

Quanto detto porta necessariamente a definire l'operatore energia potenziale. In una dimensione:

$$\hat{U}(x)\psi(x) = \hat{I}U(x)\psi(x) = U(x)\psi(x)$$

Se la funzione d'onda $\psi(x)$ della particella confinata è autofunzione dell'operatore energia potenziale $\hat{U}(x)$ allora l'autovalore U(x) rappresenta l'energia potenziale della particella nello stato descritto da $\psi(x)$.

Osservazione

Si noti che l'operatore energia potenziale può essere pensato come l'operatore identità \hat{I} moltiplicato per la forma analitica che descrive la buca di potenziale. In tal caso tutte le funzioni sono autofunzioni dell'operatore energia potenziale.

Osservabili e operatori [15]

Quanto detto porta inoltre a definire l'operatore impulso. In una dimensione:

$$\hat{P}_x \psi(x) = \left(-i\hbar \frac{\partial}{\partial x}\right) \psi(x) = p_x \psi(x)$$

Se la funzione d'onda $\psi(x)$ della particella (libera o confinata) è autofunzione dell'operatore impulso \hat{P}_x allora l'autovalore p_x rappresenta l'impulso della particella nello stato descritto da $\psi(x)$.

L'espressione scritta per l'operatore impulso è compatibile con la forma scritta per l'operatore energia cinetica. In una dimensiona vale infatti:

$$\hat{T}\psi(x) = \frac{1}{2m}\hat{P}_x^2\psi(x) = \frac{1}{2m}\hat{P}_x\hat{P}_x\psi(x)$$

$$= \frac{1}{2m}\left(-i\hbar\frac{\partial}{\partial x}\right)\left(-i\hbar\frac{\partial}{\partial x}\right)\psi(x)$$

$$= \frac{1}{2m}\left(-i\hbar\frac{\partial}{\partial x}\right)p_x\psi(x)$$

$$= \frac{p_x}{2m}\left(-i\hbar\frac{\partial}{\partial x}\right)\psi(x)$$

$$= \frac{p_x^2}{2m}\psi(x) = E\psi(x)$$

Osservabili e operatori [16]

Osservazione

Si noti che lo sviluppo eseguito:

$$\hat{T}\psi(x) = \frac{1}{2m}\hat{P}_x^2\psi(x) = \frac{1}{2m}\hat{P}_x\hat{P}_x\psi(x)$$

$$= \frac{1}{2m}\left(-i\hbar\frac{\partial}{\partial x}\right)\left(-i\hbar\frac{\partial}{\partial x}\right)\psi(x)$$

$$= \frac{1}{2m}\left(-i\hbar\frac{\partial}{\partial x}\right)p_x\psi(x)$$

$$= \frac{p_x}{2m}\left(-i\hbar\frac{\partial}{\partial x}\right)\psi(x) = \frac{p_x^2}{2m}\psi(x) = E\psi(x)$$

$$= \frac{p_x^2}{2m}\psi(x) = E\psi(x)$$

è in accordo con la definizione precedentemente data di prodotto di due operatori.

L'operatore \hat{P}_x^2 deve essere considerato come la successione di due operatori \hat{P}_x che agiscono in successione. In questo caso si deve far agire un operatore per volta lavorando da destra a sinistra.

Osservabili e operatori [17]

Osservabili e operatori in meccanica quantistica

In meccanica quantistica le variabili dinamiche misurabili della fisica classica sono rappresentate da operatori che agiscono sullo spazio di Hilbert delle funzioni d'onda

impulso (1D)
$$\hat{P}_x = -i\hbar \frac{\partial}{\partial x}$$
 impulso (3D) $\hat{P} = -i\hbar \frac{\partial}{\partial x}$ i $-i\hbar \frac{\partial}{\partial y}$ j $-i\hbar \frac{\partial}{\partial z}$ k energia cinetica (1D) $\hat{T} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$ energia cinetica (3D) $\hat{T} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) = -\frac{\hbar^2}{2m} \nabla^2$ energia potenziale (1D) $\hat{U}(x) = \hat{I}U(x)$ energia potenziale (3D) $\hat{U}(r) = \hat{I}U(r)$ energia totale (1D) $\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \hat{I}U(x)$ energia totale (3D) $\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \hat{I}U(x)$ energia totale (3D) $\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + \hat{U}(r)$ energia totale (3D) $\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + \hat{U}(r)$ energia totale (3D)

Osservabili e operatori [17]

Osservabili e operatori in meccanica quantistica

In meccanica quantistica le variabili dinamiche misurabili della fisica classica sono rappresentate da operatori che agiscono sullo spazio di Hilbert delle funzioni d'onda

impulso (1D)
$$\hat{P}_x \psi(x) = -i\hbar \frac{\partial}{\partial x} \psi(x)$$
impulso (3D)
$$\hat{P} \psi(r) = -i\hbar \frac{\partial}{\partial x} \psi(r) i - i\hbar \frac{\partial}{\partial y} \psi(r) j - i\hbar \frac{\partial}{\partial z} \psi(r) k$$
energia cinetica (1D)
$$\hat{T} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x)$$
energia cinetica (3D)
$$\hat{T} \psi(r) = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) \right) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r)$$
energia cinetica (3D)
$$\hat{U}(x) \psi(x) = \hat{I} U(x) \cdot \psi(x)$$
energia potenziale (3D)
$$\hat{U}(r) \psi(r) = \hat{I} U(r) \cdot \psi(r)$$
energia totale (1D)
$$\hat{H} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + \hat{I} U(x) \cdot \psi(x)$$
energia totale (3D)
$$\hat{H} \psi(r) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) + \hat{U}(r) \cdot \psi(r) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) + \hat{U}(r) \cdot \psi(r)$$

Osservabili e operatori [18]

Se il sistema (all'istante t) si trova in uno stato descritto da una funzione d'onda ψ che è anche autofunzione di un operatore corrispondente ad un certo osservabile allora è possibile trovare l'autovalore corrispondente a quell'osservabile...

impulso (1D)
$$\hat{P}_x \psi(x) = -i\hbar \frac{\partial}{\partial x} \psi(x) = p_x \psi(x)$$
impulso (3D)
$$\hat{P} \psi(r) = -i\hbar \frac{\partial}{\partial x} \psi(r) i - i\hbar \frac{\partial}{\partial y} \psi(r) j - i\hbar \frac{\partial}{\partial z} \psi(r) k = p \psi(r) \qquad p = \left(p_x + p_y + p_z\right)^{V/2}$$
energia cinetica (1D)
$$\hat{T} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) = E \psi(x)$$
energia cinetica (3D)
$$\hat{T} \psi(r) = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r)\right) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) = E \psi(r)$$
energia potenziale (1D)
$$\hat{U}(x) \psi(x) = \hat{I} U(x) \cdot \psi(x) = U \psi(x)$$
energia potenziale (3D)
$$\hat{U}(r) \psi(r) = \hat{I} U(r) \cdot \psi(r) = U \psi(r)$$
energia totale (1D)
$$\hat{H} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + \hat{I} U(x) \cdot \psi(x) = E \psi(x)$$
energia totale (1D)
$$\hat{H} \psi(r) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) + \hat{U}(r) \cdot \psi(r) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) + \hat{U}(r) \cdot \psi(r)$$
energia totale (3D)
$$\hat{H} \psi(r) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) + \hat{U}(r) \cdot \psi(r) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) + \hat{U}(r) \cdot \psi(r)$$

Osservabili e operatori [18]

Se il sistema (all'istante t) si trova in uno stato descritto da una funzione d'onda ψ che è anche autofunzione di un operatore corrispondente ad un certo osservabile allora è possibile trovare l'autovalore corrispondente a quell'osservabile...

impulso (1D)
$$\hat{P}_x \psi(x) = -i\hbar \frac{\partial}{\partial x} \psi(x) = \left(p_x \right) \psi(x)$$
autovalore dell'impulso 1D
autovalore dell'impulso 3D
impulso (3D)
$$\hat{P} \psi(r) = -i\hbar \frac{\partial}{\partial x} \psi(r) \mathbf{i} - i\hbar \frac{\partial}{\partial y} \psi(r) \mathbf{j} - i\hbar \frac{\partial}{\partial z} \psi(r) \mathbf{k} = \left(p \right) \psi(r) \qquad p = \left(p_x + p_y + p_z \right)^{1/2}$$
energia cinetica (1D)
$$\hat{T} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r)$$
energia cinetica (3D)
$$\hat{U}(x) \psi(x) = \hat{I} U(x) \cdot \psi(x) = \frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r)$$
energia potenziale (1D)
$$\hat{U}(x) \psi(x) = \hat{I} U(x) \cdot \psi(x) = \frac{\partial^2}{\partial x^2} \psi(x) + \hat{I} U(x) \cdot \psi(x) = \frac{\partial^2}{\partial x^2} \psi(x) + \frac{\partial^2}{\partial y^2} \psi(x) = \frac{\partial^2}{\partial x^2} \psi(x)$$
energia totale (1D)
$$\hat{H} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + \hat{I} U(x) \cdot \psi(x) \neq 0$$
autovalore dell'energia potenziale 3D
energia totale (1D)
$$\hat{H} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + \hat{I} U(x) \cdot \psi(x) \neq 0$$
autovalore dell'energia totale 1D
energia totale (3D)
$$\hat{H} \psi(r) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) + \hat{U}(r) \cdot \psi(r) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) + \hat{U}(r) \cdot \psi(r)$$
energia totale (3D)
$$\hat{H} \psi(r) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) + \hat{U}(r) \cdot \psi(r) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) + \hat{U}(r) \cdot \psi(r)$$

Osservabili e operatori [19]

... e il risultato di una misura su quell'osservabile, eseguita all'istante t, coincide necessariamente con l'autovalore calcolato. Non sono possibili altri risultati...

impulso (1D)
$$\hat{P}_x \psi(x) = -i\hbar \frac{\partial}{\partial x} \psi(x) = \left(p_x \right) \psi(x)$$
impulso (3D)
$$\hat{P} \psi(r) = -i\hbar \frac{\partial}{\partial x} \psi(r) \, i - i\hbar \frac{\partial}{\partial y} \psi(r) \, j - i\hbar \frac{\partial}{\partial z} \psi(r) \, k \quad \text{(p)} \psi(r) \qquad p = \left(p_x + p_y + p_z \right)^{1/2}$$
energia cinetica (1D)
$$\hat{T} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) \quad \text{(E)} \psi(x)$$
energia cinetica (3D)
$$\hat{T} \psi(r) = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) \right) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) \quad \text{(f)}$$
energia potenziale (1D)
$$\hat{U}(x) \psi(x) = \hat{I} U(x) \cdot \psi(x) = U \psi(x)$$
energia potenziale (3D)
$$\hat{U}(r) \psi(r) = \hat{I} U(r) \cdot \psi(r) \quad \text{(f)} \psi(r)$$
energia totale (1D)
$$\hat{H} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + \hat{I} U(x) \cdot \psi(x) \quad \text{(f)} \psi(x)$$
energia totale (3D)
$$\hat{H} \psi(r) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) + \hat{U}(r) \cdot \psi(r) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) + \hat{U}(r) \cdot \psi(r)$$
energia totale (3D)
$$\hat{H} \psi(r) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(r) + \frac{\partial^2}{\partial y^2} \psi(r) + \frac{\partial^2}{\partial z^2} \psi(r) + \hat{U}(r) \cdot \psi(r) = -\frac{\hbar^2}{2m} \nabla^2 \psi(r) + \hat{U}(r) \cdot \psi(r)$$

Osservabili e operatori [19]

 \dots e il risultato di una misura su quell'osservabile, eseguita all'istante t, coincide necessariamente con l'autovalore calcolato. Non sono possibili altri risultati \dots

impulso (1D)
$$\hat{P}_x\psi(x) = -i\hbar\frac{\partial}{\partial x}\psi(x) = \left(p_x\right)\nu(x)$$
impulso (3D)
$$\hat{P}\psi(r) = -i\hbar\frac{\partial}{\partial x}\psi(r)i - i\hbar\frac{\partial}{\partial y}\psi(r)j - i\hbar\frac{\partial}{\partial z}\psi(r)k \neq p$$
energia cinetica (1D)
$$\hat{T}\psi(x) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) \neq E$$
energia cinetica (3D)
$$\hat{T}\psi(r) = -\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2}\psi(x)\right) \neq E$$
energia cinetica (3D)
$$\hat{T}\psi(r) = -\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2}\psi(x)\right) \neq E$$
energia potenziale (1D)
$$\hat{U}(x)$$
energia potenziale (1D)
$$\hat{U}(x)$$
energia quantistico si trova, nell'istante t, in uno stato descritto da un osservatore coincide con l'elevatore coincide con l'elevatore elevatore coincide con l'elevatore elevatore elevator

Osservabili e operatori [20]

Le regole d'oro della meccanica quantistica (viste sin qui!) ...

In meccanica quantistica le variabili dinamiche misurabili (osservabili) della fisica classica sono rappresentate da operatori che agiscono sullo spazio di Hilbert L_2 delle funzioni d'onda...

La funzione d'onda $\psi_n(\mathbf{r})$ caratterizza, nell'istante t, lo stato n-esimo di un sistema quantistico con potenziale stazionario. Tutte le informazioni possibili riguardo al sistema si possono ricavare da $\psi_n(\mathbf{r})$.

La probabilità di trovare la particella quantistica in volume infinitesimo $d\tau$ di spazio è calcolabile utilizzando la densità di probabilità ottenuta con la funzione d'onda $\psi_n(\mathbf{r})$ normalizzata. Vale:

$$dw = \left| \psi_n \left(\mathbf{r} \right) \right|^2 d\tau = \psi_n^* \left(\mathbf{r} \right) \psi_n \left(\mathbf{r} \right) d\tau$$

Se (e solo se) il sistema, nell'istante t, si trova in uno stato descritto da una funzione d'onda $\psi_n(\mathbf{r})$ che è anche autofunzione di un operatore $\hat{\Omega}$ corrispondente ad un certo osservabile Ω allora è possibile risolvere il problema agli autovalori e calcolare gli autovalori ω_n corrispondenti a quell'osservabile:

$$\hat{\Omega}\psi_n\left(\boldsymbol{r}\right) = \omega_n\psi_n\left(\boldsymbol{r}\right)$$

In ogni misura dell'osservabile Ω , eseguita nell'istante t, i soli valori che si possono ottenere sono gli autovalori ω_n . Non verranno mai rilevati altri valori.

Indicazione dei contenuti inerenti la prima parte del corso [1]

Teoria classica delle onde.

Equazione delle onde di d'Alembert e relative soluzioni.

Forma analitica di un'onda armonica piana monocromatica.

Onde elettromagnetiche viaggianti e stazionarie (equazioni).

Crisi della fisica classica

Tutto su teoria del corpo nero e densità di energia spettrale di volume.

Tutto su effetto fotoelettrico.

Tutto su diffrazione di elettroni e microscopia elettronica.

Tutto su emissione radiativa dell'atomo di idrogeno. Serie di Balmer, Lyman e Paschen.

Campo dei numeri complessi

Elementi di algebra e funzioni sul campo complesso.

Forma algebrica, trigonometrica ed esponenziale di numeri complessi.

Funzioni circolari.

Descrizione di segnali periodici tramite funzioni complesse.

Equazione di Schroedinger

Equazione di Schroedinger per la particella libera e per la particella confinata da campi di forze.

Descrizione analitica delle funzioni d'onda in 1, 2 e 3 dimensioni.

Soluzioni dell'equazione di Schroedinger per la particella libera e confinata.

Funzioni d'onda stazionarie e dipendenti dal tempo (evoluzione temporale della funzione d'onda).

Principio di indeterminazione (fatto attraverso lo sviluppo in serie di Fourier)

Indicazione dei contenuti inerenti la prima parte del corso [2]

Funzioni d'onda

Descrizione analitica di funzioni d'onda stazionarie ad 1, 2 e 3 variabili.

Coordinate cartesiane e coordinate polari.

Risoluzione di integrali, integrali doppi e integrali tripli in coordinate cartesiane e polari.

Tutto su densità di probabilità (interpretazione di Born).

Normalizzazione e calcolo di probabilità di trovare la particella in domini 1, 2 e 3 dimensionali.

Funzioni d'onda e Spazi di Hilbert

Struttura vettoriale dello spazio delle funzioni d'onda.

Prodotto scalare e norma di funzioni d'onda.

Spazio di Hilbert L_2 .

Particelle quantistiche confinate in buche di potenziale e in prossimità di barriere di potenziale

Funzioni d'onda e livelli energetici di particelle confinate in buche 1, 2 e 3 dimensionali.

Funzioni d'onda e livelli energetici di particelle in prossimità di barriere di potenziale.

Effetto tunnel.

Osservabili e Operatori sugli spazi di Hilbert

Operatori lineari. Equazioni agli autovalori. Autofunzioni e autovalori.

L'equazione di Schroedinger in forma operatoriale.

Operatori associati ad osservabili.

Hamiltoniano H.

Operatore energia cinetica *T*.

Operatore energia potenziale *U*.

Operatore impulso *P*.

Osservabili e operatori in meccanica quantistica.

Le regole d'oro della meccanica quantistica.