
Logic for Knowledge Representation,

Learning, and Inference

Luciano Serafini

serafini@fbk.eu

Version August 23, 2023

Contents

Chapter 1. Model counting 5
1. Introduction 5
2. Basic properties of model counting 7
3. DPLL-Based Model Counting 11
4. Model counting via Knowledge Compilation 13
5. Approximate algorithm for model counting 17
6. Exercises 20

Bibliography 33

3

CHAPTER 1

Model counting

1. Introduction

A propositional formula φ partition the set of interpretations into two disjoint
subsets. those that satisfy φ and those that do not.

φ
is true

φ
is false

2n interpretations

Figure 1. Visualisation of Model counting problem. The circle
contains all the interpretations of the propositional variables of φ,
which are 2n. Model counting has to count the size of the red area.

Propositional model counting or #sat Gomes, Sabharwal, and Selman 2009 is
the problem of computing the number of models of a given propositional formula,
i.e., the number of distinct truth assignments to propositional variables of a formula
φ which satisfy the formula. Let us define the problem more precisely.

Definition 1.1 (Model counting problem). For a propositional formula φ let
P(φ) be the set of propositional variables occurring in φ. the model counting of φ
#sat(φ) is the problem of finding the number of truth assignments to the proposi-
tional variables of φ that satisfies φ.

#sat(φ) = |{I : P(φ)→ {0, 1} | I |= φ}|

Example 1.1. A naive method to solve the model counting problem is via truth
tables. For instance let us compute the model counting of the following formulas:
p ∧ q, p ∨ q, p→ q, p ≡ q, ¬p and p ∧ ¬p

5

6 1. MODEL COUNTING

p q p ∧ q p ∨ q p → q p ↔ q ¬ p p ∧ ¬ p p ∨ ¬ p
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1
1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1
0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0
#sat 1 3 3 2 2 0 4

Notice that in the above truth table the first four formulas contains all the proposi-
tional variables of the truth table, p and q in this case. while the last three formulas
contains only one variables of the two. If we had computed model counting of the
last three formulas separately, we would have obtained a different result:

p ¬ p p ∧ ¬ p p ∨ ¬ p
1 0 1 1 0 0 1 1 1 0 1
0 1 0 0 0 1 0 0 1 1 0

1 0 2

The difference is due to the fact that, in the first truth table, we compute model
counting in the context of the language of the propositional variables p and q, even
if the formulas contain only one propositional variable (p in this case). This implies
that we consider four possible truth assignments. In the second truth table, instead,
we computee model counting in the context of the langauge that contains only one
single variable, i.e., the one that appears in the formulas; in this case the number
of interpretations are only two.

The previous example highlights the fact that, to be precise, #sat should also
take also an extra parameter that is the language (set of propositional variables) of
the interpretations. For this reason, when necessary we make explicit the langaue
in which we compute the model counting, by writing #sat(φ,P), where P is a set
of propositional variables such that P(φ) ⊆ P. When we write the simpler notation
#sat(φ) we actually mean #sat(φ,P(φ)).

An alternative and equivalent formulation of the model counting problem,
which will be useful when we want to extend the problem to weighted model cou-
unting is the following:

#sat(φ,P) =
∑

I:P→{0,1}

I(φ)(1)

where I(φ) = 1 if I |= φ and 0 otherwise.
The1 model counting problem presents fascinating challenges for practitioners

and poses several new research questions. Effcient algorithms for this problem will
have a significant impact on many application areas that are inherently beyond SAT
(‘beyond’ under standard complexity theoretic assumptions), such as probabilistic
reasoning Chavira and Darwiche 2008; Holtzen, Van den Broeck, and Millstein 2020
For example, various probabilistic inference problems, such as Bayesian net reason-
ing, can be effectively translated into model counting problems.Another application
is in the study of hard combinatorial problems, such as combinatorial designs, where
the number of solutions provides further insights into the problem. Even finding
a single solution can be a challenge for such problems; counting the number of so-
lutions is much harder. Not surprisingly, the largest formulas we can solve for the

1This paragraph is an excerpt of the introductory section of Gomes, Sabharwal, and Selman

2009

2. BASIC PROPERTIES OF MODEL COUNTING 7

model counting problem with state-of-the-art model counters are orders of magni-
tude smaller than the formulas we can solve with the best SAT solvers. Generally
speaking, current exact counting methods can tackle problems with a couple of
hundred variables, while approximate counting methods push this to around 1,000
variables.

A rough intuition on the relation among model counting and probabilistic rea-
soning is as follows. If we consider an assignment to a set of variables as the
outcome of an experiment and the formula φ a measure on this outcome, which is
1 if the outocme satisfy φ and 0 otherwise, then the higher #sat(φ) the higher the
probability of observing a 1 in the measure.

As mentioned before the solution of the model counting problem is a very com-
plex task and therefore one could also consider more efficient algirhtms that that
does not guarante an exact solution, but provides an approximated one. There-
fore, we will divide practical model counting techniques into two main categories:
exact counting and approximate counting. Within exact counting, we will distin-
guish between methods based on DPLL-style exhaustive search, and those based on
knowledge compilation or conversion of the formula into certain normal forms for
which model counting is efficient (polinomial) Within approximate counting, we will
distinguish between methods that provide fast estimates without any guarantees
and methods that provide lower or upper bounds with a correctness guarantee.

2. Basic properties of model counting

As shown by the introductory example, the model counting of the same formula
depends from the set of propositional variables that we consider (which should
include those of the formula itself), Such a dependency is clarified in the following
property:

Proposition 1.1. If φ is a propositinal formula that contains propositional
variables in P, i.e., P(φ) ⊆ P, then #sat(φ,P) = #sat(φ) · 2|P\P(φ)|.

Proof. Every interpretation I in P(φ) that satisfies φ can be extended to
an interpretation I ′ in the language of P by assigning any value in {0, 1} to the
variables in P \ P(φ). This implies that there are 2|P\P(φ)| estensions. Since the
truth value of φ is independent from the assignment to the variables not in P(φ),
we have that I |= φ if and only if I ′ |= φ. Therefore for every models of φ in P(φ)
we have 2|P\P(φ)| distinct models of φ in P. Furthermore, every interpretation I ′ in
P that satisfies φ, can be restricted to an interpretation I in P(φ) by dropping the
assignments to P \ P(φ). This guarantees that #sat(φ) · 2|P\P(φ)| ≤ #sat(φ,P).
To show that #sat(φ) · 2|P\P(φ)| ≥ #sat(φ,P), notice that any pair of distinct
interpretations I and J in P(φ) which are extended into I ′ and J ′ interpretations
of P, will be such that I ′ is different from J ′. �

The previous proposition states that the model counting of a fomrula φ can be
obtained multiplying the model counting of the formula w.r.t., the set of variables
it contains times the number of assignments to the variables not containing in φ.

Other important properties of #sat are the following:

Proposition 1.2. (1) If φ is valid, #sat(φ) is equal to 2|P(φ)|

(2) If φ is unsatisfiable #sat(φ) is equal to 0
(3) #sat(¬φ) = 2|P(φ)| −#sat(φ)

8 1. MODEL COUNTING

(4) If φ |= ψ then #sat(φ,P) ≤ #sat(ψ,P), where P is the set of proposi-
tional variables of φ and ψ.

(5) if φ is equivalent to ψ, then #sat(φ,P) = #sat(ψ,P) and (by Property
1.1) #sat(φ) · 2P\P(ψ) = #sat(φ) · 2P\P(φ)

Proof. (1) If φ is valied then every truth assignment of the propositional
variables in φ will satisty φ. Since there are 2P(φ) interpretation then
#sat(φ) = 2P(φ).

(2) If φ is unsatisfiable then φ is not satisfied by any interpretation and there-
fore #sat(φ) = 0;

(3) Notice that I |= ¬φ is and only if I 6|= φ. Since the total number of
interpretations of the language of φ is 2P(φ), we have that #sat(¬φ) =
2P(φ) −#sat(φ).

(4) If φ |= φ then every interpretation in the language of φ and ψ that satisfies
φ also satisfies ψ.

�

A second set of properties concerns the relationship between the model counting
of a formula and the model counting of its direct sub-formulas. We concentrate on
the propositional connectives ¬, ∧ and ∨ since, all the other connectives can be
rewritten in ters of these three connectives.

2.1. #sat of negation. Since we have the low of excluded middle, i.e. every
assignment I is such that either I |= φ or I |= ¬φ, to count the models of ¬φ, we
can subtract the number of models of φ from the total set of assignments to the
variables of φ which is 2|P(φ)|.

Proposition 1.3. #sat(¬φ) = 2n−#sat(φ) where n is the number of propositi-
nal variables that appears in φ.

2.2. #sat of conjunction. In this section we consider how we can count the
models of φ∧φ by separately counting the models of φ and ψ or some derived (and
simpler) formulas. If φ and ψ do not share propositional variables, then then the
assignment to the propositional variables of φ does not interfere with the assignment
to the propositional variables of φ. Therefore an assignment that satisfies φ ∧ ψ
can be obtained by selecting any pair composed of a models of φ and a model of
ψ. And therefore the number of models n of φ ∧ ψ is the product of the models of
φ and the models ψ.

Proposition 1.4. If φ and ψ do not share propositional variables, then #sat(φ∧
ψ) = #sat(φ) ·#sat(ψ).

Proof. Let n = #sat(φ) andm = #sat(ψ). For every pair I and J of models
of φ and ψ respectively we can define the assignment I ⊗ J on the propositinal
variables of φ ∧ ψ defined as

I ⊗ J (p) =

{
I(p) if p ∈ P(φ)

J (p) if p ∈ P(ψ)

Since there is no overlap between the variables of φ and ψ the definition of I ⊗ J
is well founded, Furthermore we have that I ⊗J |= φ∧ψ if and only if I |= φ and
J |= ψ. Viceversa any model I of φ ∧ ψ can be decomposed of a model of φ and

2. BASIC PROPERTIES OF MODEL COUNTING 9

a model of ψ by restricting it to the propositional variables that appear in the two
formulas. Therefore the number of models of φ ∧ ψ is equal to n×m. �

Example 1.2. Let us consider the formula (A∨B)∧ (C ∨D) In the following
picture we show how the assignments that satisfy this formula can be obtained by
the composition of the of any models of (A ∨B) and a model of (C ∨D).

A B A ∨ B
T T T T T
T F T T F
F T F T T

C D C ∨ D
T T T T T
T F T T F
F T F T T

×

A B C D (A ∨ B) ∧ (C ∨ D)
T T T T T T T T T T T
T T T F T T T T T T F
T T F T T T T T F T T
T F T T T T F T T T T
T F T F T T F T T T F
T F F T T T F T F T T
F T T T F T T T T T T
F T T F F T T T T T F
F T F T F T T T F T T

What happens if φ and ψ contains common variables? We can combine a model
of φ with a model of ψ only if the two models agree on the assignment of the shared
propositional variables. Therefore for every assignment of the propositional vari-
ables we can combine the models that of φ and ψ that agree with this assignment.
This is stated in the following proposition.

Proposition 1.5. If Q = P(φ)∩P(ψ) is the set of propositional variables that
appears in both φ and ψ, then #sat(φ ∧ ψ) =

∑
I:Q→{0,1}#sat(φ|I) ·#sat(ψ|I)

where φ|I is the formula obtained by replacing p with > in φ if I(p) = 1 and with
⊥ if I(p) = 0.

Clearly Proposition 1.4 is a special case of Proposition 1.5.

Example 1.3. Let us compute the number of models of (p ∨ q) ∧ (¬q ∨ r).
#sat((p ∨ q) ∧ (¬q ∨ r)) = #sat((> ∨ q) ∧ (¬> ∨ r)) + #sat((⊥ ∨ q) ∧ (¬⊥ ∨ r))

= #sat(> ∨ q) ·#sat(¬> ∨ r) + #sat(⊥ ∨ q) ·#sat(¬⊥ ∨ r)
Notice that if φ and ψ share k propositional variables, the summations over all

the possible interpretations of the k shared variable will contains 2k addends.

2.3. #sat of disjunction. Let us now see how we can count the models of
φ ∨ ψ. We know that a I is a model of φ ∨ ψ if it is a model of φ or it is a model
of ψ, So a first attempt would be to sum the models of φ and the models of ψ.
However, in this way we counting twice the interpretations that satisfy both φ and
ψ Therefore to fix this we have to subtract the models of φ ∧ ψ.

Proposition 1.6. Let P be the set of propositional variables that occour in
φ ∨ ψ. The following properties holds:

10 1. MODEL COUNTING

(1) #sat(φ ∨ ψ) = #sat(φ,P) + #sat(ψ,P)−#sat(φ ∧ ψ);
(2) If φ ∧ ψ is unsatisfiable then #sat(φ ∨ ψ) = #sat(φ,P) + #sat(ψ,P).
(3) If φ and ψ contain the same set of propositional variables then #sat(φ∨

ψ) = #sat(φ) + #sat(ψ)−#sat(φ ∧ ψ).
(4) If φ and ψ contain the same set of propositional variables and φ ∧ ψ is

unsatisfiable then #sat(φ ∨ ψ) = #sat(φ) + #sat(ψ).

Proof. We prove only property (1) since all the other properties are corol-
laries. The set models(φ ∨ ψ) of the models of φ ∨ ψ can be partitioned in three
disjoint subsets models(φ∧¬ψ), models(¬φ∧ψ), and models(φ∧ψ) Which implies
that

#sat(φ ∨ ψ) = |models(φ ∧ ¬ψ)|+ |models(¬φ ∧ ψ)|+ |models(φ ∧ ψ)|(2)

The set of assignments to P that satisfy φ can be partitioned in the two subsets
models(φ ∧ ¬ψ) and models(φ ∧ ψ). From which we have that

#sat(φ,P) = |models(φ ∧ ¬ψ)|+ |models(φ ∧ ψ)|
Similarly, we have that

#sat(ψ,P) = |models(¬φ ∧ ψ)|+ |models(φ ∧ ψ)|(3)

And therefore,

#sat(φ,P) + #sat(ψ,P)

= |models(φ ∧ ¬ψ)|+ |models(¬φ ∧ ψ)|+ 2 · |models(φ ∧ ψ)|
From which we have that

#sat(φ,P) + #sat(ψ,P)−models(φ ∧ ψ)|(4)

= |models(φ ∧ ¬ψ)|+ |models(¬φ ∧ ψ)|+ |models(φ ∧ ψ)|

By combining (2) and (4), we obtain property (1). �

Proposition 1.7. If p is a propositional variable of φ,, then #sat(φ) =
#sat(φ|p) + #sat(φ|¬p)

Proof. The proposition is a direct consequence of property (4) of Proposi-
tion 1.6. Indeed φ|p and φ|¬p contain the same set of propositional variables;
furthermore, since φ|p and φ|¬p are equivalent to φ ∧ p and φ ∧ ¬p respectively,
there is no interpretation that satisfies both formulas. This implies that property
(4) of Proposition± 1.6 is applicable. Notice that the fact that p occurs in φ is an
essential assumption, otherwise φ|p and φ¬p would be the same formula �

We have seen that a näıve method for counting the models of a propositional
formula is by computing the whole truth table. Since the truth table for a formula
φ with n propositional variables contains 2n lines, this method is very costly as
it takes exponential time on the number of propositional variables. There are two
possible direction in construct more efficient model counting algorithms.

The first one, consists in exploiting the properties seen in the previous section
in order to take shortcuts, parallelise, and decompose the #sat problem. Following
this direction, for instance the fact that #sat(φ ∧ ψ) = #sat(φ) ·#sat(ψ) when
φ and ψ do not share propositinal variables, can be used to reduce the complexity,
form 2n to 2max(n1,n2) where n1 and n2 is the number of propositional variables
occurring in φ and ψ respectively. This direction falls under the name of “exact

3. DPLL-BASED MODEL COUNTING 11

model counting” as the algorithms are guaranteed to return the correct value for
#sat(φ). Since, as we will see in the following, exact algorithms are anyway very
complex, the second direction aims to develop efficient algorithm that return an
approximation of #sat(φ). In this section we describe exact algorithms while an
example of approximate algorithms is described in the next section.

3. DPLL-Based Model Counting

In counting models of a propositional formula φ, one can see that 2 the models
of φ can be split in two disjoint subsets by selecting a propositional variable p and
counting the models of φ∧p and φ∧¬p. Counting the models of φ∧p, is the same as
counting the model of φ|p which is the formula obtained by replacing p with > in φ.
Similarly for φ|¬p, which is obtained from φ by replacing p with ⊥. With this simple
rule we reduce #sat(φ) to #sat(φ|p)+#sat(φ|¬p). Furthermore it is possible that
φp and φ¬p are equivalent to formulas in which many other propositional letters
have been removed. For instance if φ = (p ∨ q) ∧ (r ∨ s) then φ|p is equivalent to
r ∧ s. Therefore, by property 5 of Proposition 1.2 we can compute #sat(φ) by
summing #sat(simplify(φ|′p)) · 2n and #sat(simplify(φ|¬p)) · 2m where n and m
are the number of propositional variables that has been eliminated by simplifying
φ|p and φ|¬p respectively.

The property just described constitute the base for algorithm CDP (Counting
Decision Procedure), shown in Algorithm 1. In particular the CPD algorithms
exploits the property that for every φ in CNF

#sat(φ,P) = #sat(φ|p,P \ {p}) + #sat(φ|¬p,P \ {p})

Notice that #sat(φ,P) = #sat(φ) · 2m where m = |P \ P(φ)|. We could therefore
replace P with n where n is the cardinality of P, Since, P(φ) ⊆ P whe have that
m = n \ |P(φ)|. The above property therefore can be rephrased in

#sat(φ, n) = #sat(φ|p, n− 1}) + #sat(φ|¬p, n− 1)

CPD(φ, n) computes #sat(φ,P) for a formula φ in conjunctive normal form
w.r.t. a set P of n propositional variables.

Example 1.4. Let φ = {{p, q}, {¬r,¬p}}. To compute #sat(φ) we call CDP(φ, 3)
since φ contains 3 propositional variables. The execution of CP (φ, 3) is shown in
Figure 2.

3.1. Literal selection. As for the case of DPLL the choice of the proposi-
tional variable to expand (line 8 of algorithm 1) has great influence on the efficiency
of the algorithm. According to the above analisys the choice of p will generates two
subproblems of expected complexity of T (m1, n− 1) and T (m2, n− 1) where m1 is
the set of clauses in φ|p and m2 the number of clauses in
phi|¬p. TO maximize this reduction we should choose the split that minimize
max(m1,m2) where

3.2. Caching. If a set of clauses φ is encountered more than one time in
the CPD algorithm, it would clearly be beneficial to cash the result of the first
computation of #sat(φ) and to be able to efficiently recognize it in the next steps
and reuse previous results.

2See Birnbaum and Lozinskii 1999.

12 1. MODEL COUNTING

Algorithm 1 CPD(φ, n)

Require: φ a propositional formula in CNF
Require: n an integer larger han |P(φ)|
1: if φ = {} then . φ is the empty set of clauses
2: return 2n

3: end if
4: if {} ∈ φ then . φ contains an empty clause
5: return 0
6: end if
7: if {l} ∈ φ then . Unit propagation
8: return CDP(φ|l, n− 1)
9: else

10: p← select a propositinal variable of φ
11: return CDP(φ|p, n− 1) + CDP(φ|¬p, n− 1)
12: end if

φ =

{
{p, q}
{¬r,¬p}

}
, n = 3

φ|p = {{¬r}} , n = 2

φ|p,¬r = {}, n = 1

unit prop. ¬r

p

φ|¬p = {{q}} , n = 2

φ|¬p,q = {}, n = 1

unit prop. q

¬p

4

2

2

2

2

Figure 2. The execution tree of the function CPD(φ, 3). The
total number of models returned by this procedure is 4, which is
the sum of the two recursive calls.

3.2.1. Complexity of CPD. In the worse case the CDP decision procedure will
generate all the possible assignments and therefore runs for 2n steps. We way that
CPD is worse case exponential. However we can provide a probabilistic estimation
of the complexity of the CDP procedure. Birnbaum and Lozinskii 1999 provide
such a result, and we report it in the following.

Assume that φ contains m clauses on n propositional variable. Assume also
that the literals have the same probability p to appear in each clause φ. Let T (m,n)
denote the average running time of CDP (φ, n) We have the following theorem:

Theorem 1.1. T (m,n) = O(md · n) where d = d −1
log2(1−p)

e

4. MODEL COUNTING VIA KNOWLEDGE COMPILATION 13

The assumption of p = 1
3 is commonly adopted in probabilistic analysis of

algorithms handling CNF or DNF formulas Franco and Paull 1983 which means
that for each variable, its occurrence in a clause with or without negation or non-
occurrence, all have the same probability. Under this assumption we have that
T (m,n) = O(m2 · n).

4. Model counting via Knowledge Compilation

The second method for exact model counting of a propositional formula is
based on the transformation of φ is an equivalent formula for which model counting
is decomposable using the properties introduced at the beginning of this chapter.
Consider the following example:

Example 1.5. In computing #sat((A ∨ B) ∧ ((C ∧ D) ∨ (¬D ∧ E))) we can
recursively apply the properties of model counting. This allow to decompose the
problem of counting the models of a complex formula in the problem of counting the
models of its subformulas and aggregating the results properly. The following tree
shows how the #sat ofr such a formula can be decomposed.

#sat((A ∨B) ∧ ((C ∧D) ∨ (¬D ∧ E)))

#sat(A ∨B)

3

#sat((C ∧D) ∨ (¬D ∨ E))

#sat(C ∧D) · 2

#sat(C)

1

#sat(D)

1

#sat(¬D ∨ E) · 2

3

The above tree show that to compute #sat((A ∨ B) ∧ ((C ∧ D) ∨ (¬D ∧ E))) we
compute #sat(A ∨ B) = 3, #sat(C) = 1, #sat(D) = 1, and #sat(¬D ∨ E = 3.
We then aggregates these results by seeing the decomposition tree as a algebraic
expression:

14 1. MODEL COUNTING

3 · (((1 · 1) · 2) + (3 · 2))

3

3

((1 · 1) · 2) + (3 · 2)

(1 · 1) · 2

1

1

1

1

3 · 2

3

Knowledge compilation is the transformation of a formula φ in a form such that
the decompositions shown in the previous example are possible. To this purpose
we define a new normal form of propositional formulas and the rewriting rules that
are necessary to transform every formula in such a form.

Before doing this let us recall what is Negated Normal Form (NNF).

Definition 1.2 (NNF). A formula is in NNF (Negated Normal Form) if it
contains only ∧, ∨ and ¬ connectives, and the ¬ connective occours only in front
of propositional variables

Example 1.6. In the following we show the parse tree of a formula in NNF.
Notice that every branch contains an alternation of ∧ and ∨ and ends with either
an atom or the negation of the atom. aAA

∧

∨

∧

∨

p

¬

q

r ∧

p q ∨

p r

∨

∧

¬

p

∨

r ¬

p

∧

p ¬

r

A formula is in NNF can be written as
n∧

i1=1

ni1∨
i2=1

ni1i2∧
i3=1

· · ·
ni1...ik∨
ik=1

li1,...,ik(5)

where li1,...,ik are literals and k is the depth (= maximum branch length) of the
tree. CNF is a special kind of NNF with k = 2.

4. MODEL COUNTING VIA KNOWLEDGE COMPILATION 15

Definition 1.3 (DNNF). A propositional formula φ is in Decomposable nega-
tion normal form (DNNF) it is in Negated Normal Form (NNF) and for each con-
junction φ1 ∧ φ2 ∧ · · · ∧ φn P(φi) ∩ P(φj) = ∅.

Notice that in a DNNF formula in order to compute the model counting of a
sub-formula that is a disjunction φ∧ψ we can apply Proposition 1.4 by computing
the model counting of φ and ψ separately and then multiply the results.

Let us define a form that guarantee a similar property for disjunction.

Definition 1.4 (d-DNNF). A formula is in d-DNNF (deterministic DNNF) if
it is in DNNF and for each disjunction φ1 ∨φ2 ∨ · · · ∨φn occurring in the formula,
there is at most one I such that I |= φi for every φi.

As in the case of CNF we can define a set of rules that allows to tranform
a formula φ in an equivalent formula in d-DNNF. The key tranformation to is
called Shannon’s expansion. The Shannon’s expansion is a transformation that at
the same time remove shared variables in a conjunction φ ∧ ψ and introduces a
deterministic disjunction. The Shannon’s expansion of φ is equal to

(p ∧ φ|p) ∨ (¬p ∧ φ|¬p)(6)

• Notice that, if φ is a conjunction φ1 ∧ φ2, then p ∧ φ|p = p ∧ φ1|p ∧ φ2|p,
which is a conjunction of three formulas that do not share the variable
p since p has been removed in φ|p and φ¬p. Similar observation holds
for ¬p ∧ φ|¬p. Furthermore, the disjunction introduced by the Shannon
expansion is deterministic, since it is not possible that p∧φ|p and ¬p∧φ|¬p
are both true in an interpretation.

• If instead φ is the disjunction φ1 ∨ φ2 and p occours either in φ1 or in φ2
or in both, then p ∧ φ|p ∨ ¬p ∧ φ|¬p is equal to

(p ∧ (φ1|p ∨ φ2|p)) ∨ (¬p ∧ (φ1|¬p ∨ φ2|¬p))
is a deterministic disjunction, and the internal disjunctions φ1|p ∨ φ2|p
and φ1|¬p ∨ φ2|¬p are less non-deterministic since they are interpreted on
a smaller set of propositional variables.

Definition 1.5 (Circuit for a d-DNNF formula). Given a d-DNNF formula
φ, the circuit for φ is the aritmetic expression circuit(φ) that computes #sat(φ)
recursively defined as follows:

• if φ is a literal p or ¬p then circuit(l) is 1
• if φ is φ1 ∧ φ2, then circuit(φ) = circuit(φ1) · circuit(φ2)
• if φ is φ1 ∨φ2, then circuit(φ) = circuit(φ1) · 2n2 + circuit(φ2) · 2n1 , where
n1 (resp. n2) is the number of propositional variables that occour in φ1
(resp. φ2) but not in φ2 (resp. phi1),

Example 1.7. Let us transform φ = (A∨B)∧ (C ∨D)∧ (¬D∨E) in d-DNNF.
First notice that φ is the conjunction of two formulas φ1 and φ2 that do not share
common variables. So the main conjunciton does not require any transformation,
and we need to transform in d-DNNF the two sub-formula φ1 and φ2.

φ1 = A ∨B
φ1 = (C ∨D) ∧ (¬D ∨ E)

φ2 is not deterministic, since there is an interpretation that satisfies both disjunct
A and B (i.e., the interpretation that makes both A and B true) so we have to apply

16 1. MODEL COUNTING

∧
12

∨

A

1 · 21

∧

¬

A

1

1

B

1

1

3

∨

∧

D

1

E

1

1 · 21

∧

¬

D

1

1

C

1

1 · 21

4

Figure 3. The formula tree of the d-DNNF formula (A∨ (¬A∧
B)) ∧ ((D ∧ E) ∨ (¬D ∧ C)). The numbers on the arcs represent
the model counting of the corresponding subformula. To compute
the model counting of the entire formula is is sufficient to start
from the bottom, assigning a 1 to every proposition, and propagate
up ∧ nodes by multiplying the model counting of the subformulas
(using property (1.4)) and propagating up ∨ nodes by summing the
mc of the subformulas multiplied by 2m where m is the number
of variable occouring in the other subformula composing the or
(property (2) of Proposition 1.6)

Shannon’s expansion on some proposition of φ1. Let us consider A. By Shannon’s
expansion we obtain

(A ∧ (> ∨B)) ∨ (¬A ∧ (⊥ ∨B))

and simplifying we obtain:

φ′1 = A ∨ (¬A ∧B)

Notice that φ′1 is deterministic, since every interpretation either falsify A or ¬A,
with implies that there is no interpretation that simultaneously satisfies both the
disjuncts. Furthermore every conjunction in φ′1 is such that the two conjuncts
(A ∧ > and ¬A ∧B) do not share propositional variables. So φ′1 is in d-DNNF.

Let us not tranform φ2 in d-DNNF. Notice that φ2 is the conjunciton of two for-
mulas that share the propositonal variable D. Therefore we have to apply Shannon
expansion on φ2 w.r.t. the propositional variable D. We obvtain:

(D ∧ (C ∨ >) ∧ (⊥ ∨ E) ∨ (¬D ∧ (C ∨ ⊥) ∧ (> ∨ E))

which is equivalent to

φ′2 = (D ∧ E) ∨ (¬D ∧ C)

Therefore the original formula φ is equivalent to φ′ = φ′1 ∧φ′2 which is in d-DNNF.
The formula tree of φ′ and how model counting can be obtained from the associated
circuit is shown in Figure 3.

5. APPROXIMATE ALGORITHM FOR MODEL COUNTING 17

5. Approximate algorithm for model counting

In this section we describe one of the most basic algorithm for approximate
model counting. The algorithm called ApproxCount has beed introduced in Wei
and Selman 2005. The algorithm is based on a method called SampleSat for
uniformly sampling models of a formula φ. Let us first introduce the SampleSat
algorithm.

5.1. SampleSat. SampleSat algorithm is based on random walk strategies.
It requires in input a formula φ in CNF, i.e., a set of clauses {C1, . . . , Cn}. Random
walk (RW) strategy to search for a truth assignment that satisfies a formula φ starts
from a random truth assignment. At every iteration the if the current assignment
satisfies a formula then it is returned; otherwise one unsatisfied clause Ci is chosen
uniformly at random from φ and a variable in the clause is chosen by some heuristic.
The value of the variable is flipped. The algorithm repeats these steps until a
satisfying assignment is reached.

Algorithm 2 SampleSat

1: I ← random assignments to the variabels of φ
2: while true do
3: if I |= φ then
4: return I
5: else
6: C ← random clause C ∈ φ such that I 6|= C
7: p← SelectVar(C);
8: I(p)← 1− I(p) . Flip the truth value of p in I
9: end if

10: end while

The function SelectVar(C) select a literal from the clause C. A random
selection of the literal when clauses are longer than 2 does not result in an unbias
choice. It has been shown in Selman, Kautz, Cohen, et al. 1993 that using ε-greedy
strategy provide a better behaviour (but other stratecies are also possible and could
lead to better results).

For an assignment I, the break degree of a propositional variable p is the number
of clauses that are true in I and become false if we change the truth value of p.

break(p, I) = |{C ′ ∈ φ | I |= C ′ and Iflip(p) 6|= C ′}

The SelectVar(C) method proposed by Selman, Kautz, Cohen, et al. 1993 selects
a variable with break degree equal to 0 if there exists one, otherwise it selects the
variable of C with lower break degree with probability 1 − ε and a random literal
with probability ε. (for some small ε). Though this strategy does not guarantee
unbiased sampleing it is an improvement w.r.t., random sampling. The algorithm is
shown in Algorithm 3. Advanced method are described in Selman, Kautz, Cohen,
et al. 1993.

Let us now describe the ApproxCount algorithm, which is shown ,in Algo-
rithm 4, The algorithm is based on the following intuition. Let S be a set of models
of φ and Sp the subset of S that assigns p to true, I.e, Sp = {I ∈ S | I(p) = True}.

18 1. MODEL COUNTING

Algorithm 3 SelectVar(C, I)

1: if there is a p in C with break(p, I) = 0 then
2: return p
3: else
4: with probability 1− ε return argminp∈C break(p, I)
5: with probability ε return a random propositional variable of C
6: end if

If S is a good sampling of the models of φ then we can estimate

#sat(φ|p)
#sat(φ)

≈ |Sp|
|S|

From which we have that

#sat(φ) =
|S|
|Sp|
·#sat(φp)

Which means that we can appriximate the model counting of a formula φ by mul-

tiplying the model counting of a simpler formula φp by the factor |S||Sp| . The same

resoning can be done by considering the set S¬p = {I ∈ S | I |= ¬p}, obtaining a
second approximation of #sat(φ):

#sat(φ) =
|S|
|S¬p|

·#sat(φ¬p)

For every literal l we call |S||Sl| the muliplying factor associated to the literal l.

Let l1, . . . , lk be a set of non contraddictory literals, then by iterating the above
argument we obtain the approximation

#sat(φ) = #sat(φ|l1,...,lk)

k∏
i=1

|S(i)|
|S(i)
li
|

(7)

Where S(i) is the assignments that satisfies φ|l1...,Li−1
. Notice that at eery iteration

we sample different models. The ApproxCount algorithm uses this method to
approximate #sat(φ). Finally let us see a small example on how ApproxCount.

Example 1.8. Let us ppply ApproxCount to estimate the number of models
of the following formulas and compare the the exact solution.

(p ∧ r) ∨ (q ∧ ¬s)
Run ApproxCount with input φ = (p ∧ r) ∨ (q ∧ ¬s) and k = 2

(1) Repeatetly all SampleSat to obtain a set S of n models for φ. You can
decide the number n of models that you want. The larger n the better the
approximation.

(2) suppose that S = {1010, 1100, 0110, 1110, 0100}, (an interpretation on
p, q, r, s is represented with the 4-bit value I(p)I(q)I(r)I(s));

(3) select a propositional variable x ∈ {p, q, r, s} to split in order to minimize
(|Sx| − |S¬x|)2. The proposiitional variables that minimize this difference
are p and r. Suppose that we select p

(4) Sp = {1010, 1100, 1110}
(5) S¬p = {0110, 0100}

5. APPROXIMATE ALGORITHM FOR MODEL COUNTING 19

Algorithm 4 ApproxCount φ in CNF

1: m← 1 . m is called the multiplier factor
2: while |props(φ)| ≥ k do . When φ is small we apply exact method
3: S ← SampleSat(φ) n times . Select n models for φ the larger the better
4: p← Select a propositional variable of φ . Heuristic: Choose p that

maximizes (|Sp|−|S¬p|)2
5: Sp ← {I ∈ S | I(p) = True}
6: S¬p ← {I ∈ S | I(p) = False}
7: if |Sp| ≥ |S¬p| then
8: m← m · |S||Sp|
9: φ← φ|p

10: else
11: m← m · |S||S¬p|
12: φ← φ|¬p
13: end if
14: end while
15: return m ·#sat(φ) . #sat(φ) is computed with an exact method

(6) since |SP | > |S¬p|, we choose to multiplication fuctor |S|
|Sp| = 5

3 .

(7) m = 5
3 .

(8) φ = φ|p = (r ∨ (q ∧ ¬s)
(9) repeatetly call SampleSat in order to sample a new set of models for φ

(10) suppose that S = {100, 010, 110}
(11) the propositional variable that minimies (|Sx| − |S¬x|)2 are q and r. Sup-

pose that we select q
(12) Sq = {100, 110}
(13) S¬q = {010}
(14) since |Sq| > |S¬q| we select the multiplicative factor |S|

|Sq| = 3
2

(15) m = m · 32 = 5
2

(16) φ = φ|q = (r ∨ ¬s)
(17) since φ contains 2 ≤ k variables, we exit the wile and return m ·#sat(r∨

¬s) = 5
2 · 3 = 7.5

20 1. MODEL COUNTING

To understand quality of the result and measure the error let us compare the output
of ApproxCount and the exact value of #sat computed via truth table:

p q r s (p ∧ r) ∨ (q ∧ ¬s)
1 1 1 1 1
1 1 1 0 1
1 1 0 1 0
1 1 0 0 1
1 0 1 1 1
1 0 1 0 1
1 0 0 1 0
1 0 0 0 0
0 1 1 1 0
0 1 1 0 1
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

7

The error is around 7%.

5.2. Graph Neural Networks for Propositional Model Counting. Saveri
and Bortolussi 2022 TO DO

6. Exercises

Exercise 1:

Explain the difference between #sat(φ) and #sat(φ,P) when P is a set of
propositional variables larger than the set of propositional variables that appears
in φ.

Exercise 2:

Find an example in which φ |= ψ but #sat(φ) > #sat(ψ).

Exercise 3:

Prove that if φ contains p, then φ|p is equivalent to φ ∧ p. Provide a countere-
sample of this property when p does not occour in φ.

Exercise 4:

Given a set of propositional variables p1, . . . , pn, describe a method to produce
a formula that has exactly k models for every k ≤ 2n .

Solution Let b = b1 . . . bn be the bitwise representation of any the integer h between
0 and 2n − 1 (included). Let us define

φh =

n∧
i=1
bi=1

pi ∧
n∧

i=1
bi=0

¬pi

6. EXERCISES 21

Notice that the formula φh is satisfied by a single interpretation, i.e., the interpreta-
tion I, such that I(pi) = True if and only if bi = 1. Furthermore, for every g 6= h,
we have that there is no model that satisfies both φg and φh. We can therefore
define the formula

φ≤k =

k−1∨
0=1

φh

which will be satisfied by exaclty k models. �

Exercise 5:

Use CPD to count the models of the formulas (A → C) ∧ (B → C) and the
formula (A∨B)→ C. Solution The two formulas need to be tranformed in CNF.

They both are transformed in the following set of clauses:

(¬A,B}, {¬B,C}

Let us run CPD on them.

CPD(φ = {{¬A,B}, {¬B,C}}, n = 0)
unit propagation is not applicable since there are no unit clauses
select the literal ¬A
φ¬A = {{¬B,C}}
CPD(φ = {{¬B,C}}, n = 1)

unit propagation is not applicable since there are no unit clauses
select the literal ¬B
φ¬B = {}
CPD(φ = {}, n = 2)

return 2|P|−n = 23−2 = 2 (P = A,B,C}
select the literal B
φB = {{C}}
CPD(φ = {{C}}, n = 2)

apply unit propagation obtaining {} and n = 3
return 2|P|−n = 20 = 1

return 2 + 1 = 3
select the literal A
φ¬A = {{B}, {¬B,C}}
CPD(φ = {{B}{¬B,C}}, n = 1)

apply unit propagation obtaining {} and n = 3
return 2|P|−n = 20 = 1

return 3 + 1 = 4

�

Exercise 6:

Use CPD to count the models of the formula (A→ B) ∧ (B → C) ∧ (C → D)
Solution CPD require the formula in CNF. So we first need to transform (A →

B) ∧ (B → C) ∧ (C → D) in CNF, which results in the forllowing clauses:

{¬A,B}, {¬B,C}, {¬C,D}

22 1. MODEL COUNTING

CPD(φ = {{¬A,B}, {¬B,C}, {¬C,D}}, n = 0)
unit propagation is not applicable since there are no unit clauses
select the literal ¬A
φ¬A = {{¬B,C}, {¬C,D}}
CPD(φ = {{¬B,C}, {¬C,D}}, n = 1)

unit propagation is not applicable since there are no unit clauses
select the literal ¬B
φ¬B = {{¬C,D}}
CPD(φ = {{¬C,D}}, n = 2)

unit propagation is not applicable since there are no unit clauses
select the literal ¬C
φ¬C = {}
CPD(φ = {}, n = 3)
return 2|P|−n = 21 = 2 (P = A,B,C,D}
select the literal C
φC = {D}
CPD(φ = {D}, n = 3)

apply unit propagation which returns φ = {} and n = 4
return 2|P|−n = 20 = 1

return 2 + 1 = 3
select the literal B
φB = {{C}, {¬C,D}}
CPD(φ = {{C}, {¬C,D}}, n = 2)

apply unit propagation obtaining {} and n = 4
return 2|P|−n = 20 = 1

return 3 + 1 = 4
select the literal A
φA = {{B}{¬B,C}, {¬C,D}}
CPD(φ = {{B}{¬B,C}, {¬C,D}}, n = 1)

apply unit propagation obtaining {} and n = 4
return 2|P|−n = 20 = 1

return 4 + 1 = 5

To check the correctness of the result let us compute the truth table explicitly:

6. EXERCISES 23

A B C D (A → B) ∧ ((B → C) ∧ (C → D))
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 0 1 0 0
1 1 0 1 1 1 1 0 1 0 0 0 0 1 1
1 1 0 0 1 1 1 0 1 0 0 0 0 1 0
1 0 1 1 1 0 0 0 0 1 1 1 1 1 1
1 0 1 0 1 0 0 0 0 1 1 0 1 0 0
1 0 0 1 1 0 0 0 0 1 0 1 0 1 1
1 0 0 0 1 0 0 0 0 1 0 1 0 1 0
0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0 1 1 1 0 1 0 0
0 1 0 1 0 1 1 0 1 0 0 0 0 1 1
0 1 0 0 0 1 1 0 1 0 0 0 0 1 0
0 0 1 1 0 1 0 1 0 1 1 1 1 1 1
0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
0 0 0 1 0 1 0 1 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
8 8 8 8 8 12 8 5 8 12 8 8 8 12 8

�

Exercise 7:

Count the models that satisfy the formula (A→ B ∨ C) ∧ (C → D ∨ E)

Solution The formula is a conjunction of two formulas that share the propositional
C variable. We can therefore we can apply the Shannon reduction on C obtaining
the formula:

C∧(A→ B ∨ >) ∧ (> → D ∨ E)∨
¬C∧(A→ B ∨ ⊥) ∧ (⊥ → D ∨ E)

which is equivalent to

C∧(A→ B ∨ >) ∧ (D ∨ E)∨
¬C∧(A→ B) ∧ (⊥ → D ∨ E)

Since the disjunction is deterministic (since only one of the disjunct holds), we can
compute separately the number of models of the formulas and then sum up.

The number of models of C ∧ (A → B ∨ >) ∧ (D ∨ E) is 1 · 4 · 3 = 12 The
number of models of ¬C ∧ (A→ B)∧ (⊥ → D∨E) is 1 · 3 · 4 = 12 In total we have
12 + 12 = 24 models.

Alternatively one can fill the truth table

24 1. MODEL COUNTING

A B C D E (A → (B ∨ C)) ∧ (C → (D ∨ E))
T T T T T T T T T T T T T T T T
T T T T F T T T T T T T T T T F
T T T F T T T T T T T T T F T T
T T T F F T T T T T F T F F F F
T T F T T T T T T F T F T T T T
T T F T F T T T T F T F T T T F
T T F F T T T T T F T F T F T T
T T F F F T T T T F T F T F F F
T F T T T T T F T T T T T T T T
T F T T F T T F T T T T T T T F
T F T F T T T F T T T T T F T T
T F T F F T T F T T F T F F F F
T F F T T T F F F F F F T T T T
T F F T F T F F F F F F T T T F
T F F F T T F F F F F F T F T T
T F F F F T F F F F F F T F F F
F T T T T F T T T T T T T T T T
F T T T F F T T T T T T T T T F
F T T F T F T T T T T T T F T T
F T T F F F T T T T F T F F F F
F T F T T F T T T F T F T T T T
F T F T F F T T T F T F T T T F
F T F F T F T T T F T F T F T T
F T F F F F T T T F T F T F F F
F F T T T F T F T T T T T T T T
F F T T F F T F T T T T T T T F
F F T F T F T F T T T T T F T T
F F T F F F T F T T F T F F F F
F F F T T F T F F F T F T T T T
F F F T F F T F F F T F T T T F
F F F F T F T F F F T F T F T T
F F F F F F T F F F T F T F F F

and counth the number of assignments that satisfy the formula. They are 24. �

Exercise 8:

Transform the following formula in d-DNNF.

(P ∨Q) ∧ (R ∨ S) ∧ (¬S ∨ T)

Exercise 9:

Compute #SAT ((P ∧ R → Q) ∧ (¬R ∨ ¬S)) using knowledge compilation
method.

6. EXERCISES 25

Solution We first have to transform the formula in deterministic decomposable
negated normal form (d-DNNF).

(P ∧R→ Q) ∧ (¬R ∨ ¬S) ≡
(¬P ∨ ¬R ∨Q) ∧ (¬R ∨ ¬S) ≡

((¬P ∨ ⊥ ∨Q) ∧ (⊥ ∨ ¬S) ∧R) ∨ ((¬P ∨ ⊥R ∨Q) ∧ (> ∨ ¬S) ∧ ¬R) ≡
(((⊥ ∨⊥ ∨Q) ∧ P) ∨ ((> ∨⊥ ∨Q) ∧ ¬P) ∧ (⊥ ∨ ¬S) ∧R) ∨

(((⊥ ∨> ∨Q) ∧ P) ∨ ((> ∨> ∨Q) ∧ ¬P) ∧ (> ∨ ¬S) ∧ ¬R)

∨
11

∧

∨

∧

∨

⊥

0

⊥

0

Q

1

1

P

1

1

∧

¬P

1

∨

>

1

⊥

0

Q

1

2

2

3

R

1

∨

⊥

0

¬S

1

1

3

∧

∨

∧

∨

⊥

0

>

1

Q

1

2

P

1

2

∧

¬P

1

∨

>

1

>

1

Q

1

3

3

5

¬R

1

∨

>

1

¬S

1

2

8

Let us verify the correctenss of the result by compiling the truth table

P Q R S ((P ∧ R) → Q) ∧ (¬ R ∨ ¬ S)
T T T T T T T T T F F T F F T
T T T F T T T T T T F T T T F
T T F T T F F T T T T F T F T
T T F F T F F T T T T F T T F
T F T T T T T F F F F T F F T
T F T F T T T F F F F T T T F
T F F T T F F T F T T F T F T
T F F F T F F T F T T F T T F
F T T T F F T T T F F T F F T
F T T F F F T T T T F T T T F
F T F T F F F T T T T F T F T
F T F F F F F T T T T F T T F
F F T T F F T T F F F T F F T
F F T F F F T T F T F T T T F
F F F T F F F T F T T F T F T
F F F F F F F T F T T F T T F

26 1. MODEL COUNTING

�

Exercise 10:

Codify in #SAT the problem of counting how many different k-tuples (i1, . . . , i5)
of integers ≤ 8 such that i1 ≤ ı2 ≤ · · · ≤ i5.

Solution Let pij , for 1 ≤ i ≤ 5 and 1 ≤ j ≤ 8, be a propositional variable that
stands for “there is a j in position i”. The set of strings that satisfy the conditions
of the exercise are those that satisfy the following formulas:

5∧
i=1

8∨
j=1

pij in every position there is at least one digit

5∧
i=1

8∧
j<k=1

¬(pij ∧ pik) in every position there is at most one digit

4∧
i=1

8∧
j=1

pij → 8∨
k=j

pi+1,k

 In the next position can occour only num-
ber larger or equal to the one present in
the current position

�

Exercise 11:

Codify in #SAT the problem of counting how many different strings can be
made by reordering the letters of the word “SUCCESS”?

Solution The reordering of the string “SUCCESS” is any string that contains three
“S”s, two “C”s, one “U” and one “E”. Let us introduce the following propositional
variables

Si 1 ≤ i ≤ 7 there is an ”S” in position i

Ci 1 ≤ i ≤ 7 there is an ”C” in position i

Ui 1 ≤ i ≤ 7 there is an ”U” in position i

Ei 1 ≤ i ≤ 7 there is an ”E” in position i

We have the following axioms:

7∧
i=1

Si ∨ Ci ∨ Ui ∨ Ei In each position there is at least one letter∧
i 6=j

¬(Ui ∧ Uj) At most one ”U”

∧
i6=j

¬(Ei ∧ Ej) At most one ”E”

∧
i 6=j 6=k

¬(Ci ∧ Cj ∧ Ck) At most two ”C”

∧
i 6=j 6=k 6=h

¬(Si ∧ Sj ∧ Sk¬Sh) At most tree ”S”

�

Exercise 12:

6. EXERCISES 27

To buy a computer system, a customer can choose one of 4 monitors, one of 2
keyboards, one of 4 computers and one of 3 printers. But only certain combinations
are allowed. Provide some example of how you can express constraints on possible
combinations with propositional formulas, and codify the problem of determining
the number of possible systems that a customer can choose from as model counting.

Exercise 13:

Suppose you have three coins: the faces of the first coin are black and white,
the faces of the second coin are yellow and green, and the faces of the third coin
are blue and red. In an experiment you toss the first coin; if you obtain a black
you toss the second coin otherwise you toss the third coin. What are the number of
possible outcomes? Encode the problem of counting the possible outcomes of this
simple experiment in the problem of model counting a set of formulas

Exercise 14:

Transform the formula (A ∨B) ∧ (¬B ∨ C) ∧ (¬D ∨ E) in d-DDNF form, and
use it for model counting. Solution Split in

(1) (A ∨B) ∧ (¬B ∨ C)
(2) (¬D ∨ E)

since they don’t have common variables, and treat them separately

(1) let us consider (A ∨B) ∧ (¬B ∨ C)

(A ∨B) ∧ (¬B ∨ C) Apply Shannon’s expansion on B

(B ∧ (A ∨ >) ∧ (⊥ ∨ C)) ∨ (¬B ∧ (A ∨ ⊥) ∧ (> ∨ C)) in d-DDNF

The last formula has:

(1 · (1 + 1) · (0 + 1)) + (1 · (1 + 0) · (1 + 1) = 4

models
(2) Let us now consider (¬D ∨ E)

¬D ∨ E Apply Shannon’s expansion on D

(D ∧ (⊥ ∨ E)) ∨ (¬D ∧ (> ∨ E)) in d-DDNF

The last formula has:

(1 · (0 + 1)) + (1 · (1 + 1)) = 3

The total number of models is 4 · 3 = 12. �

Exercise 15:

Transform the following formula in d-DNNF.

(P ∨Q) ∧ (R ∨ S) ∧ (¬S ∨ T)

Solution Notice that the formula is the conjunction of two formulas that do not

have common propositional variables. We can therefore proceed to transform each
subformula in d-DNNF.

(P ∨Q) is transformed (via Shannon’s expansion) in

P ∧ (> ∨Q) ∨ ¬P ∧ (⊥ ∨Q)

28 1. MODEL COUNTING

(R ∨ S) ∧ (¬S ∨ T) instead is the conjunciton of two formulas that have one
propositional variable in common (i.e., S). Therefore we have to consider the two
cases in which S is true and S is false. We therefore rewrite the formula by using
the Shannon’s expansion

(S ∧ (R ∨ >) ∧ (⊥ ∨ T)) ∨ (¬S ∧ (R ∨ ⊥) ∧ (> ∨ T))

THe result d-DNNF transofmraiton is the conjunction of the two resutls:, i.e.,

P ∧ (> ∨Q) ∨ ¬P ∧ (⊥ ∨Q) ∧
(S ∧ (R ∨ >) ∧ (⊥ ∨ T)) ∨ (¬S ∧ (R ∨ ⊥) ∧ (> ∨ T))

�

Exercise 16:

Explain in at most 10 lines, why if φ1 and φ2 don’t share propositional variabels
then #SAT (φ1 ∧ φ2) = #SAT (φ1) ·#SAT (φ2)

Solution A model I of φ1 ∧ φ2 is an assignment of all the variables in φ1 and φ2
that satisfies both φ1 and φ@. Since φ1 and φ2 do not have variables in common,
we can split the assignment I in two assignments I1 and I2 where I1 assigns the
variables in φ1 and I2 the variables in φ2. Furthermore, we have that I1 |= φ1 and
I2 |= φ2. Therefore all the models of φ1 ∧φ2 corresponds to all the pairs I1 and I2
where Ii is a model of φi for i = 1, 2.

Graphically:

6. EXERCISES 29

p1 p2 . . . pm−2 pm−1 pm φ1

0 0 . . . 0 0 0 1
0 0 . . . 0 0 1 0

0 0 . . . 0 1 0 1

0 0 . . . 0 1 1 0
0 0 . . . 1 0 0 1

0 0 . . . 1 0 1 0
. . .

1 1 . . . 1 0 0 1

1 1 . . . 1 0 1 1
1 1 . . . 1 1 0 0

1 1 . . . 1 1 1 0

×

pm+1 pm+2 . . . pn−2 pn−1 pn φ2

0 0 . . . 0 0 0 0
0 0 . . . 0 0 1 0

0 0 . . . 0 1 0 1

0 0 . . . 0 1 1 0
0 0 . . . 1 0 0 1

0 0 . . . 1 0 1 0
. . .

1 1 . . . 1 0 0 1

1 1 . . . 1 0 1 1
1 1 . . . 1 1 0 0

1 1 . . . 1 1 1 0

p1 p2 . . . pm−2 pm−1 pm

0 0 . . . 0 0 0
0 0 . . . 0 0 0

0 0 . . . 0 0 0

0 0 . . . 0 0 0
0 0 . . . 0 0 0

0 0 . . . 0 0 0

0 0 . . . 0 0 0
0 0 . . . 0 0 0

0 0 . . . 0 0 0

0 0 . . . 0 0 0
0 0 . . . 0 0 0

0 0 . . . 0 0 1
0 0 . . . 0 0 1

0 0 . . . 0 0 1

0 0 . . . 0 0 1
0 0 . . . 0 0 1

0 0 . . . 0 0 1

0 0 . . . 0 0 1
0 0 . . . 0 0 1

0 0 . . . 0 0 1

0 0 . . . 0 0 1
0 0 . . . 0 0 1

0 0 . . . 0 1 0
0 0 . . . 0 1 0

0 0 . . . 0 1 0

0 0 . . . 0 1 0
0 0 . . . 0 1 0

0 0 . . . 0 1 0

0 0 . . . 0 1 0
0 0 . . . 0 1 0

0 0 . . . 0 1 0

0 0 . . . 0 1 0
0 0 . . . 0 1 0

...

pm+1 pm+2 . . . pn−2 pn−1 pn φ1 ∧ φ2
0 0 . . . 0 0 0 0

0 0 . . . 0 0 1 0

0 0 . . . 0 1 0 1
0 0 . . . 0 1 1 0

0 0 . . . 1 0 0 1
0 0 . . . 1 0 1 0

. . .

1 1 . . . 1 0 0 1
1 1 . . . 1 0 1 1

1 1 . . . 1 1 0 0

1 1 . . . 1 1 1 0

0 0 . . . 0 0 0 0
0 0 . . . 0 0 1 0

0 0 . . . 0 1 0 0

0 0 . . . 0 1 1 0
0 0 . . . 1 0 0 0

0 0 . . . 1 0 1 0

. . .
1 1 . . . 1 0 0 0

1 1 . . . 1 0 1 0

1 1 . . . 1 1 0 0
1 1 . . . 1 1 1 0

0 0 . . . 0 0 0 0

0 0 . . . 0 0 1 0

0 0 . . . 0 1 0 1
0 0 . . . 0 1 1 0

0 0 . . . 1 0 0 1

0 0 . . . 1 0 1 0
. . .

1 1 . . . 1 0 0 1
1 1 . . . 1 0 1 1

1 1 . . . 1 1 0 0

1 1 . . . 1 1 1 0
...

�

Exercise 17:

Explain in at most 10 lines, why if φ1 and φ2 don’t share propositional variabels
then #SAT (φ1 ∨ φ2) = #SAT (φ1) · 2|P2| + #SAT (φ2) · 2|P1|, where P1 ad P2 are
the set of propositional variables that occours in φ1 and φ2 respectively.

Exercise 18:

Find a formula for #SAT (φ1 ↔ φ2) under the ussumption that φ1 and φ2
don’t share any propositional variable.

Solution Notice that φ1 ↔ φ2 is equivalent to (φ1∧φ2)∨(¬φ1∧¬φ2). Furthermore
the set of models that satisfy (φ1∧φ2) is disjoint from the set of models that satisfy
(¬φ1 ∧ ¬φ2). This implies that

#SAT (φ1 Y φ2) = #SAT (φ1 ∧ φ2) + #SAT (¬φ1 ∧ ¬φ2)

30 1. MODEL COUNTING

Since φ1 and φ2 don’t share any propositional variable, then we have that

#SAT (φ1 Y φ2) = #SAT (φ1) ·#SAT (φ2) + #SAT (¬φ1) ·#SAT (¬φ2)

Let P1 and P2 be the set of propositional variables occurring in φ! and φ2 respec-
tively, then we have that #SAT (¬φi) = 2|Pi) − #SAT (φi) for i = 1, 2. We can
therefore conclude that :

#SAT (φ1 Y φ2) = #SAT (φ1) ·#SAT (φ2) + (2|P1| −#SAT (φ1)) · (2|P2| −#SAT (φ2))

= 2|P1∪P2| − 2|P1|#SAT (φ2)− 2|P2|#SAT (φ1)

+ 2 ·#SAT (φ1) ·#SAT (φ2)

�
Solution(alternative) According to the definition of exclusive or, we have that
φ1 Y φ2 is equivsalent to

(φ1 ∧ ¬φ2) ∨ (¬φ1 ∧ φ2)

The above formula has the following “nice” properties. The disjunciton is determin-
istic, which means that there is no interpretations that satisfies both the formulas
of the dijunction. I.e., the models of (φ1 ∧ ¬φ2) are not models of (¬φ1 ∧ φ2) and
viceversa. Furthermore the disjunciton is also smooth, i.e, the set of propositional
variables in the two disjuncts are the same. The third “nice”property derives from
the fact that φ1 and φ2 do not share any propositional variable, which means that,
we can obtain the model counting of the conjunction as the product of the model
counting fo the conjuncts. We can therefore conclude that

#SAT(φ1 Y φ2) = s1 · (2n2 − s2) + s2 · (2n1 − s1)

where si = #SAT(φi) and ni is the number of propositional variables that appear
in φi for i = 1, 2. �

Exercise 19:

Let Y be the connective for exclusive or, i.e., p Y q is equivalent to (p ∧ ¬q) ∨
(¬p ∧ q). Express #SAT (φ1 Y φ2) in terms of #SAT (φ1) and #SAT (φ2) under
the hypothesis that φ1 and φ2 don’t share any propositional variable. Explain your
solution.

Exercise 20:

Show that if |= φ1 ≡ φ2, then

#SAT (φ1) = #SAT (φ2) · 2|P2\P1|−|P1\P2|

where Pi is the set of propositional variables occourring in φi for i = 1, 2.

Solution Let us consider the special case in which P2 ⊆ P1, We prove that

#SAT (φ1) = #SAT (φ2) · 2|P1\P2|

Let I2 be an assignment to P2 that satisfies φ2, and let I1 be an estension of I2 for
the variables in P1 \ P2. We have that I1 |= φ and since |= φ1 ≡ φ2 then I2 |= φ1.
Since there are 2|P1\P2| different extensions of I2, we have that

#SAT (φ1) ≥ #SAT (φ2) · 2|P1\P2|

. SInce we also have that |= ¬φ1 ≡ ¬φ2, for the same argument we can show that

#SAT (¬φ1) ≥ #SAT (¬φ2) · 2|P1\P2|

6. EXERCISES 31

. Which implies that

2|P1| −#SAT (φ1) ≥ (2|P2 −#SAT (φ2)) · 2|P1\P2|

Since P2 ⊆ P2 we can conlcude that

#SAT (φ1) ≤ #SAT (φ2) · 2|P1\P2|

And therefore we can have the following lemma:

forall φ1 and φ2 if |= φ1 ≡ φ2 and P2 ⊆ P2

then #SAT (φ1) = #SAT (φ2) · 2|P1\P2|(8)

We can now use lemma (8) to show the main result. First notice that if |= φ1 ≡ φ2,
then |= φi ≡ φ1 ∧ φ2 for i = 1, 2. By applying lemma (8) we have that

#SAT (φ1 ∧ φ2) = #SAT (φ1) · 2|P1∪P2\P1|

#SAT (φ1 ∧ φ2) = #SAT (φ2) · 2|P1∪P2\P2|

From which one can derive

#SAT (φ1) · 2|P1∪P2\P1| = #SAT (φ2) · 2|P1∪P2\P2|

#SAT (φ1) · 2|P1\P1| = #SAT (φ2) · 2|P1\P2|

#SAT (φ1) = #SAT (φ2) · 2|P1\P2|−|P1\P1|

�

Bibliography

Birnbaum, Elazar and Eliezer L Lozinskii (1999). “The good old Davis-Putnam pro-
cedure helps counting models”. In: Journal of Artificial Intelligence Research
10, pp. 457–477.

Chavira, Mark and Adnan Darwiche (2008). “On probabilistic inference by weighted
model counting”. In: Artificial Intelligence 172.6-7, pp. 772–799.

Franco, John and Marvin Paull (1983). “Probabilistic analysis of the Davis Putnam
procedure for solving the satisfiability problem”. In: Discrete Applied Mathe-
matics 5.1, pp. 77–87.

Gomes, Carla P., Ashish Sabharwal, and Bart Selman (2009). “Model Counting”.
In: Handbook of Satisfiability, pp. 633–654.

Holtzen, Steven, Guy Van den Broeck, and Todd Millstein (2020). “Scaling exact
inference for discrete probabilistic programs”. In: Proceedings of the ACM on
Programming Languages 4.OOPSLA, pp. 1–31.

Saveri, Gaia and Luca Bortolussi (2022). “Graph Neural Networks for Propositional
Model Counting”. In: arXiv preprint arXiv:2205.04423.

Selman, Bart, Henry A Kautz, Bram Cohen, et al. (1993). “Local search strategies
for satisfiability testing.” In: Cliques, coloring, and satisfiability 26, pp. 521–
532.

Wei, Wei and Bart Selman (2005). “A new approach to model counting”. In: In-
ternational Conference on Theory and Applications of Satisfiability Testing.
Springer, pp. 324–339.

33

	Chapter 1. Model counting
	1. Introduction
	2. Basic properties of model counting
	3. DPLL-Based Model Counting
	4. Model counting via Knowledge Compilation
	5. Approximate algorithm for model counting
	6. Exercises

	Bibliography

