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Reasoning tasks on Propositional Logic

Task Name Input Output
Model checking: φ,I I(φ)
Satisfiability: φ maxI I(φ)
Maximum Satisfiability: φ,w : maxI I(φ) · w(I)
Model counting: φ

∑
I I(φ)

Weighted model counting: φ, w
∑
I I(φ) · w(I)
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Definiton of Weighted Model Counting

Definition (Weighted model counting)

Let P be a set of propositional variables. Given a weight function
w : {0, 1}|P| → R+, the problem of weighted model counting is the
problem of computing the summation of the weights of the models that
satisfies a formula φ.

wmc(φ,w) =
∑

I∈{0,1}|P|

w(I) · I(φ)

An alternative and equivalent formulation of weighted model counting is
the following:

wmc(φ,w) =
∑

I∈{0,1}|P|
I|=φ

w(I)
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Example

Example

Suppose that we log what people buy in a supermarket:

# Itemsets

4 a b c d
1 a b e f
7 a b c
3 a c d f
2 g
1 d
4 d g

Every combination of items can
be seen as an interpretation on
the set of propositions
a, b, . . . g . and the number of
times we observe such a
combination could be considered
the weight of the model.

We have 27 possible itemsets (interpretations I), and we can assigns
to each a weight w(I) which is s the number of times an itemset has
been observed.
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Example

Example

I
a b c d e f g w(I)

1 1 1 1 0 0 0 4
1 1 0 0 1 1 0 1
1 1 1 0 0 0 0 7
1 0 1 1 0 1 0 3
0 0 0 0 0 0 1 2
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 4

wmc(a ∧ (b ∨ c)) = 4 + 1 + 7 + 3 = 15

wmc(a ∧ g) = 0

wmc(a ∧ ¬g) = 4 + 1 + 7 + 3 = 15

wmc(a→ b) = 4 + 1 + 7 + 2 + 1 + 4 = 19
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Model counting vs. Weighted model counting

in model counting each interpretation weights 1;

In wmc instead, some models are more important than others, and it
makes sense to associate a weight w(I) ≥ 0 to each interpretation I.

in weighted model counting each model of a formula counts for its
weight w(I)

this interpretation of weighted models can be used to represent some
form of uncertainty about the world. E.g., by associating probability
of a formula to be true.

the weight w(I) associated to the model I can be interpreted in
probabilistically; i.e., the higher the weight of a model the more likely
the model;
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Weighted model counting vs.MaxSAT

Weight functions have been defined also in MaxSAT but there are
some differences:

In MaxSAT we allow negative weights, in wmc we don’t

in MaxSAT Weights are used for defining an order on the
interpretations;

the nominal value of the weight function is not important

two weight function are equivalent for MaxSAT if they define the
same order on interpretations.

in weighted model counting instead we are really interested in the
nominal value of the weight of an interpretation.
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The partition function Z (w)

Proposition

If φ is valid, then wmc(φ,w) is equal to
∑
I:P→{0,1} w(I)

The quantity
∑
I:P→{0,1} w(I) is called partition function of w .

Z (w) =
∑
I

w(I) (1)

Computing Z (w) is a source of complexity. In general we have to
compute w(I) for all the 2n interpretations
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Specifying W : {0, 1}|P| → R+

What is a compact way to represent the weight funciton?

To explicitly defining the weights for each interpretation we need 2|P|

parameters;

Alternatively one can select n formulas φ1, . . . , φn and associate a
weight to each one w1, . . . ,wn, and define

w(I) =
∏
I|=φi

wi (2)

or alternatively

w(I) = exp

∑
I|=φi

w ′i

 (3)

There is no free lunch. There are weight function that cannot be
defined with less then 2|P| formulas.

But in many cases it is possible. In this cases we say that w factorizes
w.r.t., φ1, . . . , φn.
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Specifying W : {0, 1}|P| → R+

Example

Consider the following two weight functions

p q w(I)

0 0 1.0
0 1 2.0
1 0 3.0
1 1 6.0

p q w(I)

0 0 2.0
0 1 3.0
1 0 5.0
1 1 7.0

The left weight function can be expressed using two weighted
formulas; i.e. 3 : p and 2 : q using definition (2), indeed the weight of
the model that satisfies both p and q is the product of the weight of
p and q, so we say that it factorizes)

The second can be expressed with the weighted formulas p ∨ q : 2,
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Specifying W : {0, 1}|P| → R+ by literals

Specifying weights on literals

w(I) =
∏
p∈P

w(p)I(p) · w(¬p)1−I(p)

WMC (φ,w) =
∑
I|=φ

∏
p∈P

w(p)I(p) · w(¬p)1−I(p)

=
∑
I|=φ

exp

∑
p∈P

v(p) · I(p) + v(¬p) · (1− I(p))


where w : Lit → R+ is a mapping from the set of literals (i.e., p and ¬p
for p propositional variable) to positive real numbers. (v(·) = log(W (·)))
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Weighted Model counting

Example

p → 1.2
¬p → 3.4
q → 3.2
¬q → 1.0
r → 0.4
¬r → 0.6

w p q r w(x)MCh(I,x)w(¬x)MCh(I,¬x) w(I) Pr(I)

0 0 0 1 3.4 1 1.0 1 0.6 2.04 0.11
0 0 1 1 3.4 1 1.0 0.4 1 1.36 0.07
0 1 0 1 3.4 3.2 1 1 0.6 6.528 0.34
0 1 1 1 3.4 3.2 1 0.4 1 4.352 0.23
1 0 0 1.2 1 1 1.0 1 0.6 0.72 0.04
1 0 1 1.2 1 1 1.0 0.4 1 0.48 0.02
1 1 0 1.2 1 3.2 1 1 0.6 2.304 0.12
1 1 1 1.2 1 3.2 1 0.4 1 1.536 0.08

p q r w(x)MCh(I,x)w(¬x)MCh(I,¬x) w(I) Pr(I)

0 1 0 1 3.4 3.2 1 1 0.6 6.528 0.34
0 1 1 1 3.4 3.2 1 0.4 1 4.352 0.23
1 1 0 1.2 1 3.2 1 1 0.6 2.304 0.12
0 0 0 1 3.4 1 1.0 1 0.6 2.04 0.11
1 1 1 1.2 1 3.2 1 0.4 1 1.536 0.08
0 0 1 1 3.4 1 1.0 0.4 1 1.36 0.07
1 0 0 1.2 1 1 1.0 1 0.6 0.72 0.04
1 0 1 1.2 1 1 1.0 0.4 1 0.48 0.02

p q r w(x)MCh(I,x)w(¬x)MCh(I,¬x) w(I) Pr(I)

0 0 0 1 3.4 1 1.0 1 0.6 2.04 0.11
0 0 1 1 3.4 1 1.0 0.4 1 1.36 0.07
0 1 0 1 3.4 3.2 1 1 0.6 6.528 0.34
0 1 1 1 3.4 3.2 1 0.4 1 4.352 0.23
1 0 0 1.2 1 1 1.0 1 0.6 0.72 0.04
1 0 1 1.2 1 1 1.0 0.4 1 0.48 0.02
1 1 0 1.2 1 3.2 1 1 0.6 2.304 0.12
1 1 1 1.2 1 3.2 1 0.4 1 1.536 0.08

WMC(p ∨ ¬q → r) = w( 001 ) + w( 010 ) + w( 011 ) + w( 101 ) + w( 111 ) ≈ 14.26

p q r w(x)MCh(I,x)w(¬x)MCh(I,¬x) w(I) Pr(I)

0 0 0 1 3.4 1 1.0 1 0.6 2.04 0.11
0 0 1 1 3.4 1 1.0 0.4 1 1.36 0.07
0 1 0 1 3.4 3.2 1 1 0.6 6.528 0.34
0 1 1 1 3.4 3.2 1 0.4 1 4.352 0.23
1 0 0 1.2 1 1 1.0 1 0.6 0.72 0.04
1 0 1 1.2 1 1 1.0 0.4 1 0.48 0.02
1 1 0 1.2 1 3.2 1 1 0.6 2.304 0.12
1 1 1 1.2 1 3.2 1 0.4 1 1.536 0.08

WMC(>) = w( 000 ) + w( 001 ) + · · ·+ w( 111 ) ≈ 19.32

Pr(p ∨ ¬q → r) =
WMC(p ∨ ¬q → r)

WMC(>)
≈

14.26

19.32
≈ 0.74
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Weighted Model counting

Examples (Weights can be associated also to formulas)

¬(p ∨ q) → 0.0
p → 0.1

p ∨ r → 1.2
q → r → 2.5

w

f0 ↔ ¬(p ∨ q)
f1 ↔ p
f2 ↔ p ∨ r
f3 ↔ q → r

∆ defines
fresh variables

f0 → 0.0
f1 → 0.1
f2 → 1.2
f3 → 2.5

w ′

WMC(p ∨ ¬q → r ∧∆) =

w(0011011) + w(0100000) + w(0110011) + w(1010111) + w(1110111) =

0 + 1 + 3 + 0.3 + 0.3 = 4.6

WMC(∆) = w(0001001) + w(0011011) + w(0100000) + w(0110011)

+ w(1000111) + w(1010111) + w(1100110) + w(1110111)

= 0 + 0 + 1 + 3 + 0.3 + 0.3 + 0.12 + 0.3 = 5.02

Pr(p ∨ ¬q → r |∆) =
WMC(p ∨ ¬q → r ∧∆)

WMC(∆)
=

4.6

5.02
≈ 0.92
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Algorithm for Weighted Model Counting

Exact method based on knowledge compilation. Generalization of
model counting algorithm

Approximated methods (not covered in the course): based on
rectangular approximation1 or by reducing it to (unweighted) model
counting2. See3 for a survey.

1Ermon et al. 2013.
2Colnet and Meel 2019.
3Chakraborty, Meel, and Vardi 2021.
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Properties of WMC

Let w be a weight funciton on the set of propositinal variables of φ and ψ.

1 If φ and ψ do not contain common propositional variables (φ ∧ ψ is
decomposable) then:

wmc(φ ∧ ψ,w) = wmc(φ,w |P(φ)) ·wmc(ψ,w |P(ψ))

2 If φ ∧ ψ is unsatisfiable (φ ∨ ψ is deterministic) and φ and ψ contains
the same set of propositional variables (φ ∨ ψ is smooth) then

wmc(φ ∨ ψ) = wmc(φ) + wmc(ψ)

3 A formula is in smooth deterministic decomposable negated normal
form (sd-DNNF) if

negation appears only in front of atoms (NNF);
every conjunction is decomposable;
every disjunction is smooth and deterministic.
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Conversion to sd-DNNF

We use the same rules used for transforming in d-DNNF (Shannon’s
expansion) with the following additional rule

Smoothing left: For subformula φ ∨ ψ with p ∈ props(ψ) \ props(φ)
apply this transformation

φ ∧ (p ∨ ¬p) ∨ ψ

Smoothing right: For subformula φ ∨ ψ with p ∈ props(φ) \ props(ψ)
apply this transformation

φ ∨ ψ ∧ (p ∨ ¬p)

This results in:φ ∧ ∧
p∈props(ψ)\props(φ)

(p ∨ ¬p)

 ∨
ψ ∧ ∧

q∈props(φ)\props(ψ)

(q ∨ ¬q)
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Reduction to sd-DNNF

Example

Smoothing (a ∧ b) ∨ (c ∧ ¬a) results in

(a ∧ b ∧ (c ∨ ¬c)) ∨ ((c ∧ ¬a) ∧ (b ∨ ¬b))

∨

∧

a b

∧

c ¬a

∨

∧

a b ∨

c ¬c

∧

c ¬a ∨

b ¬b
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Weighted model counting of sd-DNNF formulas

Every leaf (literal) is associated with its weight, and as in d-DNNF,

at every ∧-node we perform the product of the child nodes;
at every ∨-node we perform the sum of the child nodes.

Example

Consider the following weighted literals: a : 2, ¬a : 1, b : 5, ¬b : 3, c : 7,
and ¬c : 1.

∨
136

∧

a

2

b

5

∨

c

7

¬c

1

8

80

∧

c

7

¬a

1

∨

b

5

¬b

3

8

56
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Interference between smoothing and determinism

Example
consider the formula (a ∧ b) ∨ c, This formula is neither smooth nor deterministic. Should we
try to first smooth it and then make it deterministic by applying Shannon’s expansion? or
should we proceed in the opposite direction? Let’s analize the two cases:

First Smooth then determinism

(a ∧ b) ∨ c

((a ∧ b) ∧ (c ∨ ¬c)) ∨ (c ∧ (a ∨ ¬a) ∧ (b ∨ ¬b))

(a ∧ b) ∧ (> ∨⊥)) ∨ (> ∧ (a ∨ ¬a) ∧ (b ∨ ¬b)) ∧ c ∨
((a ∧ b) ∧ (⊥ ∨>)) ∨ (⊥ ∧ (a ∨ ¬a) ∧ (b ∨ ¬b)) ∧ ¬c

However notice that the formula in blue is not deterministic and we should repeat the
application of Shannon’s expansion. This method of proceeding, though it is correct will
result in exploding the formula.
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Interference between smoothing and determinism

Example
First determinism then Smooth

(a ∧ b) ∨ c Shannon’s exp. on a

((b ∨ c) ∧ a) ∨ (c ∧ ¬a) Shannon’s exp. on b

((b ∨ (c ∧ ¬b)) ∧ a) ∨ (c ∧ ¬a) Smoothing

((b ∨ (c ∧ ¬b)) ∧ a) ∨ (c ∧ ¬a ∧ (b ∨ ¬b) Smoothing

(((b ∧ (c ∨ ¬c)) ∨ (c ∧ ¬b)) ∧ a) ∨ (c ∧ ¬a ∧ (b ∨ ¬b))

Let us use the resulting
formula for weighted model
counting of (a ∧ b) ∨ c with
the weighted literals: a : 2,
¬a : 1, b : 5, ¬b : 3, c : 7,
and ¬c : 1.

∨178

∧

∨

∧

b

5

∨

c

7

¬c

1

8

40

∧

c

7

¬b

3

21

61

a

2

122

∧

c

7

¬a

1

∨

b ¬b

3

8

56
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Interference between smoothing and determinism
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Interference between smoothing and determinism

Example
First determinism then Smooth

(a ∧ b) ∨ c Shannon’s exp. on a

((b ∨ c) ∧ a) ∨ (c ∧ ¬a) Shannon’s exp. on b

((b ∨ (c ∧ ¬b)) ∧ a) ∨ (c ∧ ¬a) Smoothing

((b ∨ (c ∧ ¬b)) ∧ a) ∨ (c ∧ ¬a ∧ (b ∨ ¬b) Smoothing

(((b ∧ (c ∨ ¬c)) ∨ (c ∧ ¬b)) ∧ a) ∨ (c ∧ ¬a ∧ (b ∨ ¬b))

Let us use the resulting
formula for weighted model
counting of (a ∧ b) ∨ c with
the weighted literals: a : 2,
¬a : 1, b : 5, ¬b : 3, c : 7,
and ¬c : 1.
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∨

∧

b

5

∨

c

7

¬c

1

8
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∧
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7
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3

21
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1

∨
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wmc and probabulity

The weight function w define the probability measure on the space of
all the propositional interpretations of a finite set of propositional
variable P.

Pr(I) =
w(I)∑
I∈I w(I)

(4)

Foe every formula φ

Pr(φ) =
∑
I
I(φ) · Pr(I) (5)

By replacing (4) in (5) we obtain:

Pr(φ) =
wmc(φ,w)

wmc(>,w)
=

1

Z (w)
wmc(φ,w) (6)

Conditional probability can also be defined:

Pr(φ | ψ) =

wmc(φ∧ψ,w)
wmc(>,w)

wmc(ψ,w)
wmc(>,w)

=
wmc(φ ∧ ψ,w)

wmc(ψ,w)
(7)
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wmcand probability

Example

w(I) p q r p ∧ q → r (¬p ∧ q) ≡ r
1.2 0 0 0 1 1
1.1 0 0 1 1 0
2.8 0 1 0 1 0
2.6 0 1 1 1 1
0.8 1 0 0 1 1
0.0 1 0 1 1 0
2.1 1 1 0 0 1
1.3 1 1 1 1 0

11.9

wmc(>) = 11.9

wmc(p ∧ q → r) = 1.2 + 1.1 + 2.8 + 2.6 + 0.8 + 0.0 + 1.3 = 9.8

wmc((¬p ∧ q) ≡ r) = 1.2 + 2.6 + 0.8 + 2.1 = 5.9

Pr(p ∧ q → r) =
9.8

11.9
≈ 0.82

Pr((¬p ∧ q) ≡ r) =
5.9

11.9
≈ 0.49

Pr((¬p ∧ q) ≡ r) | p ∧ q → r) =
1.2 + 2.6 + 0.8

9.8
≈ 0.47
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Bayesian networks

Definition (Bayesian Network)

A Bayesian network on a set of random variables X = {X1, . . . ,Xn} is a
pair B = (G ,Pr) is a pair composed of a directed acyclic graph
G = ([n],E ) (where [n] = {1, . . . , n}) and Pr specifies the conditional
probababilities

Pr(Xi = xi | Xpar(i) = xpar(i))

for every Xi ∈ X . B uniquely define the join distribution on X

Pr(X = x) =
n∏

i=1

Pr(Xi = xi | Xpar(i) = xpar(i)) (8)
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Bayesian networks

Example

The following simple Bayesian Netsork

A

B

Pr(A) = 1

0.3

a Pr(B = 1 | A = a)

0 0.4
1 0.9

specifies the joint probability distribution P(A,B) = P(A) · P(B | A)

a b P(A = a,B = b)

0 0 0.42
0 1 0.28
1 0 0.03
1 1 0.27
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Encoding bayesian networks in #SAT

D

P(D)

0.5

F

D P(F |D)

true 0.5

false 0.1
G

D P(G |D)

true 0.7

false 0.2

H

F G P(H|F ,G)

true true 1.0
true false 0.5
false true 0.4
false false 0.0 4

4Sang, Beame, and Kautz 2005.
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Semantics of BN

nodes are propositional variables

D : John is Doing some work

F : John has Finished his work

G : John is Getting tired

H : John Has a rest

tables associated to noses (conditional probability table (CPT))
specifies conditional probabilities of the node. w.r.t, its parents

Pr(F = 1 | D = 1) = 0.5

P(F = 1 | D = 0) = 0.1

Pr(F = 0 | D = 1) = 1− Pr(F = 1 | D = 1) = 0.5

Pr(F = 0 | D = 1‘) = 1− Pr(F = 1 | D = 0) = 0.9
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D

P(D)

0.5

F

D P(F |D)

true 0.6

false 0.1
G

D P(G |D)

true 0.7

false 0.2

H

F G P(H|F ,G )

true true 1.0
true false 0.5
false true 0.4
false false 0.0

d f g h Pr(D,F ,G ,H = d , f , g , h)
0 0 0 0 0.5 · 0.9 · 0.8 · 1.0 = 0.360
0 0 0 1 0.5 · 0.9 · 0.8 · 0.0 = 0.000
0 0 1 0 0.5 · 0.9 · 0.2 · 0.6 = 0.054
0 0 1 1 0.5 · 0.9 · 0.2 · 0.4 = 0.036
0 1 0 0 0.5 · 0.1 · 0.8 · 0.6 = 0.024
0 1 0 1 0.5 · 0.1 · 0.8 · 0.4 = 0.016
0 1 1 0 0.5 · 0.1 · 0.2 · 0.0 = 0.000
0 1 1 1 0.5 · 0.1 · 0.2 · 1.0 = 0.010
1 0 0 0 0.5 · 0.4 · 0.3 · 1.0 = 0.060
1 0 0 1 0.5 · 0.4 · 0.3 · 0.0 = 0.000
1 0 1 0 0.5 · 0.4 · 0.7 · 0.6 = 0.084
1 0 1 1 0.5 · 0.4 · 0.7 · 0.4 = 0.056
1 1 0 0 0.5 · 0.6 · 0.3 · 0.5 = 0.045
1 1 0 1 0.5 · 0.6 · 0.3 · 0.5 = 0.045
1 1 1 0 0.5 · 0.6 · 0.7 · 0.0 = 0.000
1 1 1 1 0.5 · 0.6 · 0.7 · 1.0 = 0.210

1.000
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