
Logic for Knowledge Representation,

Learning, and Inference

Luciano Serafini

serafini@fbk.eu

Version August 8, 2023

Contents

Chapter 1. Maximum Satisfiability 5
1. Ordering interpretations 7
2. The MaxSAT problem 10
3. MaxSAT exact algorithms 12
4. Solving problems with MaxSAT 21
5. MaxSAT for machine learning 23
6. Exercises 24

Bibliography 33

3

CHAPTER 1

Maximum Satisfiability

So far we have considered the interpretations of a propositinal language as
a plain set. However, in many situations it is important to represent relations
between propositional interpretations, i.e, to impose some structure on the set of
interpretations of a propositional language. A tipical, and very important example
of structure definable on the set of propositional interpretation is the one that states
the fact that some interpretations are “better” then others.

Example 1.1. Suppose that you want to build a team of four people to develop
a project that requires competences in machine learning (M), knowledge representa-
tion (K) vision (V), and human computer interaction (H). You can select the team
between 6 people who have following degree of experteese for each of the competence.

Person gender M K V H

Alice f 1 1 1 1
Bea f 3 0 2 0
Celine f 1 3 0 0
Dania f 1 0 0 3
Enrico m 1 0 3 0
Felix m 2 1 0 0

The hard constraints on the formation of the team is that you have to select four peo-
ple, and each competence should be in the team. These constraints can be expressed
in terms of propositional logic formulas. For instance, the fact that you want all
the four competences in the team (independently from the competence level) can be
formalized by requiring that M ∧K ∧V ∧H is true and by stating which person can
provide the various competences (independently from the expertese level) using the
following implications:

M → A ∨B ∨ C ∨D ∨ E ∨ F
K → A ∨ C ∨ F
V → A ∨B ∨ E
H → A ∨D

(1)

The constraint about the team size can be expressed by the cardinality constraints,
exactly four among A, . . . , F . I.e.,

A+B + C +D + E + F = 4(2)

There are many choices that satisfy this constraints, they correspond to the as-
signments to A, . . . , F that satisfy the above formulas. All the interpretations that
satisfy formulas (1) and (2) are shown in Figure 1 For every interpretation Ii that
satisfy the hard constraint you can extract the corresponding team. However, you
would also like to be able to express some preference on the teams as, for instance,
you prefer teams with gender and competence balance, but also the higher the total

5

6 1. MAXIMUM SATISFIABILITY

I1 = {A,B,C,D,M,K, V,H} I8 = {A,C,D, F ,M,K, V,H}
I2 = {A,B,C,E,M,K, V,H} I9 = {A,C,E, F ,M,K, V,H}
I3 = {A,B,C, F ,M,K, V,H} I10 = {A,D,E, F ,M,K, V,H}
I4 = {A,B,D,E,M,K, V,H} I11 = {B,C,D,E,M,K, V,H}
I5 = {A,B,D, F ,M,K, V,H} I12 = {B,C,D, F ,M,K, V,H}
I6 = {A,B,E, F ,M,K, V,H} I13 = {B,D,E, F ,M,K, V,H}
I7 = {A,C,D,E,M,K, V,H} I14 = {C,D,E, F ,M,K, V,H}

Figure 1. The models of the formulas (1) and (2), In red the
people of the team.

Competence level
Team gb M K V H

Team1 = {A,B,C,D} 0.0 6 4 3 4
Team2 = {A,B,C,E} 0.5 6 4 6 1
Team3 = {A,B,C, F} 0.5 7 5 3 1
Team4 = {A,B,D,E} 0.5 6 1 6 4
Team5 = {A,B,D, F} 0.5 7 2 3 4
Team6 = {A,B,E, F} 1.0 7 2 6 1
Team7 = {A,C,D,E} 0.5 4 4 4 4
Team9 = {A,C,D, F} 0.5 5 5 1 4
Team9 = {A,C,E, F} 1.0 5 5 4 1

Team10 = {A,D,E, F} 1.0 5 2 4 4
Team11 = {B,C,D,E} 0.5 6 3 5 3
Team12 = {B,C,D, F} 0.5 7 4 2 3
Team13 = {B,D,E, F} 1.0 7 1 5 3
Team14 = {C,D,E, F} 1.0 5 4 3 3

Figure 2. Ranking of the teams w.r.t, the different criteria.

amount of each competence the better. In summary you can rank all the different
teams that satisfy the hard criteria according to some preference criteria. We can

for instance consider the gender balance criteria gb = 1− |#male−#female|
4 and the

crieria of the sum of the competence level for each competence. The evaluation of
the four teams (interpretations) according to tese 5 criteria are shown in Figure ??.

There is no team that maximizes all the criteria, hoever one could decide to give
priority to the gender balance, preferring team2 and team4 and then to the uniform
distribution among competence. which implies that team2 is seleccted.

Example 1.2. Consider the situation in which you have to build a team of n
people with a good gender balance. You will prefer teams with gender balance degree,

defined as b = 1− |#male−#female|
n is close to 1. The best option would be a team

with an even number of male and female, with b = 1. Formalizing it in propositional
logic, if pi represents the proposition that the i-th member of the team is a female,

1. ORDERING INTERPRETATIONS 7

you prefer the interpretations in which the fraction of pi set to true and those set to
false are closer. This amount in introducing an order in the set of interpretations
as shown in Figure3 following picture that shows how interpretations of p1, . . . , p4

(denoted by a sequence of four 0/1) can be orderred according to their preference.

0000 1111

1000 0100 0010 0001 0111 1011 1101 1110

1100 1010 1001 0110 0101 0011

b = 0

b = 0, 5

b = 1

Figure 3.

Maximum satisfiability problem focus on this type of relation, which formally
correspond to partial orders. In particular maximum satisfiabiliy focus on the
problem of finding the “best” interpretation that satisfy a certain set of formulas.
However, Before proceeding with the definition of the problem of maximum satisfi-
ability and the relative solution methods let us discuss how it is possible to impose
an ordering structure on the set of interpretations of a propositional language.

1. Ordering interpretations

To state that an interpretation is “better” than another, of that we “prefer” an
interpretation w.r.t., another we should be able to order the set of interpretations
from the less preferred to the most preferred. The mathematical notion that can
be used for this aim is the notion of preorder

1.1. Partial and total orders. A preorder is a structure (S,-) where S is
a set and - is a binary relation on S i.e., -⊆ S × S that satisfies the following
properties: v

Reflexivity:: s - s, for all s ∈ S
Transitivity:: s - t and t - u implies that s - u.

The preorder is said to be total if

Totality:: s - s or t - s for all s, t ∈ S
We say that s and t are equi-preferrable, in symbol s ∼ t if a - t and t - s. Finally
we say that t is strictly preferable to s, in symbol s ≺ t if s - t but not s ∼ t. One
of the simplest way to specify a total preorder on the set S is by defining a function

8 1. MAXIMUM SATISFIABILITY

w : S → R, often called weight function, that associates to each element s ∈ S a
real number w(s). The order on S is defined as s - t if and only if w(s) ≤ w(t). In
the following we will use only total preorders specified by some weight function.

Let P be a set of propositional variables, and I be the set of interpretations
of P, a weight function for P is a function w : I → R, that associates to each
interpretation I of P a real number w(I). Such a function defines the following
total preorder on the models of φ

I - J if and only if w(I) ≤ w(J)

It is easy to show that this definition satisfies the property that defines a total
pre-order (by exercise).

Example 1.3. Consider the example of forming a gender balanced team intro-
duced above. Let P = {p1, . . . , pn}. If we define the weight function as:

w(I) = −
∣∣∑

i I(pi)− n
2

∣∣(3)

we have that w(I) reaches it’s maximum equal to 0, when there is an even number
of variables set to true and false (if n is even), or − 1

2 , which is reached when the
number of variables assigned to true and false differs of one unit, in case n is odd.

Notice that, the nominal value of the weight of an interpretation is not really
important, what matters is the order between the weights that determines the order
of the interpretations. In the above exaple, for instance, if we define the weight
function as w(I) = −(

∑
i I(pi)− n

2)2 we obtain exactly the same order betwen the
interpretations.

1.2. Specifying weight function with weighted formulas. In the most
general case, the specification of w : I→ R could involce the specification of 2n − 1
parameters. The “−1” is due to the fact that, without loss of generality we can
suppose that the “worse” interpretation is weightd −∞. However there are more
compact and easy to interpret ways to specify a weight functionf on interpretations,
one of this is by associating weights to formulas.

Let F = {wi : φi}ni=1 be a multiset1 of of n propositional formulas the set of
propositional variables P each of which is assigned a real number, called weight.
We can use F to define a weight function on the set of truth assignments of P as
follows:

wF (I) =
∑
w:φ∈F

w · I(φ)(4)

which implies that the ordering ≺F is defined as

I ≺F J ⇔
∑
w:φ∈F

w · I(φ) ≤
∑
w:φ∈F

w · J (φ)

One important intuition to bear in mind is the following: For every weighted
formula w : φ ∈ F

• if wi > 0 we prefer interpretations that satisfy φ;
• if wi < 0 we prefer interpretations that do not satisfy φ;
• if wi = 0 we are indifferent about the truth value of γ.

1A multiset is a set that can contain multiple copies of the same elements. For instance
{1, 2, 3, 5, 2, 1} is a multiset, which is equal to {1, 1, 2, 2, 3, 5}.

1. ORDERING INTERPRETATIONS 9

1.3. Properties of weight function. In the MaxSAT problem the nominal
weight of a model in not important, what matters is the ordering that a certain
weight function induces on a set of iunterpretations. As a consequence the same
ordering can be obtained by different weight functions. In the following we define
the notion of equivalence between weight functions, that intuitively means that
they define the same partial order on a set of interpretations. We also introduce
the notion of a weight formula being the opposite of another weight formula with
the intuitive meaning that the order defined by the two weight funciton are one the
inverse of the other.

Definition 1.1. Two sets of weighted formulas on the propositional variables
P, F1 and F2 are equivalent if they define the same order. I.e., if for all interpre-
tations I,J of P

w1(I) < w1(J) if and only if w2(I) < w2(J)

Two sets of weighted formulas F1 and F2 are opposite if

w1(I) < w1(J) if and only if w2(J) < w2(I)

Proposition 1.1. (1) F is equivalent to a · F = {a · w : φ | w : φ ∈ F}
for a > 0;

(2) F is opposite of a · F = {a · w : φ | w : φ ∈ F} for a < 0;
(3) F ∪ {w : φ} is equivalent to F ∪ {−w : ¬φ}
(4) If |= φ↔ ψ, then F ∪ {w : φ} is equivalent to F ∪ {w : ψ};
(5) F ∪ {w1 : φ, w2 : φ} is equivalent to F ∪ {w1 + w2 : φ}

Proof. Let use wF to denote the weight function defined by the set of weighted
formulas F . Notice that wa·F (I) = a · wF (I). Indeed

wa·F (I) =
∑
w:φ∈F

a · w · · · I(φ)

= a ·
∑
w:φ∈F

w · · · I(φ) = a · wF (I)

Property (1) and (2) directly derives from this fact. For property (3) we have that

wF∪{−w:¬φ} = wF (I)− w · (1− I(φ))

= wF (I)− w + w · I(φ)

= wF∪{w:φ}(I)− w
This implies that

wF∪{w:φ}(I) < wF∪{w:φ}(J)⇔ wF∪{w:φ}(I)− w < wF∪{w:φ}(J)− w
⇔ wF∪{−w:¬φ}(I) < wF∪{−w:¬φ}(J)

The proof of properties (1) and (2) are left by exercize. �

Property (1) of Proposition 1.1 states that, if we re-scale the weights of a pos-
itive factor, the order on the interpretations does not change. Instead property
(2) says that if we rescale with a negative factor then we obtaing the opposite
ordering. Property refitem:F-phi-equiv-F–not-phi states that the weight function
obtained by inverting the weight associated to the formula and negating the formu-
las differs from a constant from the original weight. This implies that optimizing
the two weight function will lead to the same result. This property guarantees that,

10 1. MAXIMUM SATISFIABILITY

without loss of generality we can assume that all the weights are positive. Indeed
every negatively weighted formula w : φ can be replaced by the positively weighted
formula −w : ¬φ, without changing the order between the interpretations. Prop-
erty (1) implies that, if two formulas are logically equivalent, then adding one with
a weight or the other with the same weight has the same effect. In other words the
specification of the weight function using weighted formulas is independent from
the syntactic spefication of the formula but depends only from the semantics of the
formula.

2. The MaxSAT problem

There are various versions of MaxSAT problems

• Basic MaxSAT: There are no hard clauses and all the soft clauses have
the same weight (equal to 1). The solution of this problem is the assign-
ment that satisfies the maximize number of soft clauses, or equivalently
minimize the number of unsatisfied soft clauses.

• Partial MaxSAT: the set of hard clauses could be not empty and the soft
clauses have the same weight (equal to 1). The solution need to satisfy
them and to minimize the number of unsatisfied soft clauses

• Weighted MaxSAT: No hard clauses and different weights associated with
soft clauses The solution has to minimize the sum of weights of unsatisfied
soft clauses.

• Weighted Partial MaxSAT: The set of hard clauses could be non empty
and they need to be satisfied by the solution. The soft clauses can be
associated with different weight, and the solution has to minimize the
sum of the weeight of the soft clauses that are not satisfieed.

The last version os the most general version and it. If no specification is given
with the terms MaxSAT, we refer to this general formulation. In the following we
provide formal definitions of the different versions.

A general definition of the maximum satiisfiability problem is the following:

Definition 1.2 (General maximum satisfiability problem). Given a partial
order (I,≺) defined on the interpretations of a set of propositional variables P, and
a formula φ, the maximum satisfiability problem is the problem of finding a model
I∗ of φ such that:

I∗ ∈ sup
≺

({I ∈ I | I |= φ})(5)

When ≺ is a total order, then it can be specified by a weight function w : I→ R,
then the problem of maximum satisfiability can be rewritten as the problem of
finding the maximum of the weighted formula, i.e.

I∗ = argmax
I|=φ

w(I)(6)

The literature contains multiple definition and variants of the MaxSat problem,
that are specific cases, or can be reformulated in terms of (6). All the approaches
to MaxSAT assumes that weighted and hard formulas are specified in CNF. In the
following we report the various definitons. of the different MaxSAT problems

Definition 1.3 (Unweighted MaxSat). Given a set of clauses C1, . . . , Cn, the
unweighted maximum satisfiability problem is the problem of finding an assignment

2. THE MAXSAT PROBLEM 11

that maximizes the total number of satisfied clauses:, i.e.,

I∗ = argmax
I

∑
i

I(Ci)(7)

Much studied in Theoretical Computer Science are dedicated to the MaxSat
formulation (7). This formulation can is a special case of the general definition (5)
where φ is > and the weight function speficied by the weighted formulas 1 : C1,
. . . 1 : Cn. It has been proved that unweighted MaxSat is NP-complete. Even
Max2Sat, the restriction to instances in which each clause has at most two literals
in it, is NP-complete.

Definition 1.4 (Weighted MaxSat). Given a set of weighted clauses w1 :
C1, . . . , wn : Cn, the weighted maximum satisfiability problem is the problem of
finding an assignment that maximizes the sum of the weights of the clauses satisfied
by the assignment.

I∗ = argmax
I

∑
i

wi · I(Ci)(8)

Definition 1.5 (Partial MaxSat). Given a set of clauses C1, . . . , Cn, called
soft clauses, and a second set of clauses D1, . . . , Dn, called hard clauses, the par-
tial maximum satisfiability problem is the problem of finding an assignment that
satisfies the hard clauses and that maximizes the number of satisfied soft clauses:

I∗ = argmax
I|=D1...,Dn

∑
i

I(Ci)(9)

Definition 1.6 (Partial weighte MaxSat). Given a set of weighted clauses
C1, . . . , Cn, called soft clauses, and a second set of clauses D1, . . . , Dn, called hard
clauses, the partial maximum satisfiability problem is the problem of finding an
assignment that satisfies the hard clauses and that maximizes the sum of the weight
of the satisfied soft clauses:

I∗ = argmax
I|=D1...,Dn

∑
i

wi · I(Ci)(10)

Inspite of the different definition each of the formulation can be rewritten in
terms of the others and in particular a general MaxSat problem can be rewritten
(in polinomial time) in an equivalent unweighted MaxSat problem.

This can be donw in the following way:

Proposition 1.2. Let {Di} and {wi : Ci} be a set of hard and soft clauses
respectively.

(1) Let δ be the the smallest value |wi − wj | different from 0, otherwise let
δ = wi;

(2) Let vi = dwi

δ e
(3) let v∗ =

∑
i vi + 1

(4) let C be the multiset of clauses that contains v∗ copies of each hard clause
and vi copies of each clause vi.

I is the solution of the partial weighted maximum satisfiability problem (10) if and
only if I is the solution of the unweighted maximum satisfiability problem (7) on C
and I |= D where D =

∧
iDi.

12 1. MAXIMUM SATISFIABILITY

Proof. By exercize. Hint. First show that if I 6|= D and j |= D then
w(I) < w(J). Then show that Then show that if I |= D and J |= D, then
w(I) < w(J) if and only if the number of clauses in C satisfied by I are less then
the number of clauses satisfied by J . �

3. MaxSAT exact algorithms

There are different approaches to solve the MaxSAT problem. They can be
classified in exact algorithms, which provide an exact solution to the problem, and
approximated algorithms, which guarantees only sub-optimal solutions. All the
algorithms assumes that weighted formulas are clauses. In this section we will
present some of the basic algorithms of the first categori. Inside this category we
can distinguish three main apporaches:

• Branch and bound algorithns;
• Transformation into Integer Programming;
• Algorithms that use SAT as oracle;
• Algorithms based on implicit hitting sets.

In the following section we introduce the basis of each of the above categories.

3.1. Branch and Bound. Branch and Bound (B&B) algorithms explore the
search tree of all partial assignments for the soft and hard clauses, in a depth-first
manner, in order to find the interpretation thas satisfy all the herd clauses and
maximizes the weight of the satisfied soft clauses. For every interpretation, I let
loss(I) is the sum of the weights of the clauses that are not satisfied by I. Solving
the MaxSAT problems coincides to find the interpretation I that minimizes loss(I).

Let us start by introducing a base algorithm that performs an exhaustive search
of all the assignments that satisfies the hard clauses and select the one with min-
imal loss (or equivalently maximal weigh). The search lgorithm for MasSAT can
be obtained by modifying the DPLL decision procedure, which searches for any
assignment that satisfies a formula φ, so that it does not stop when one model of
φ is found, but it continues to search other models of φ. The pseudocode is shown
in Algorithm 1.

Example 1.4. Let us see with a simple example how the algorithm works.
Consider the following sets of hard and soft clauses:

φ =

{
{A,B,C}
{¬A,¬B,¬C}

}
ψ

 2:{A,¬B}
3:{¬A,C}
4:{B,¬C}


Aa possible expansion of the search tree of the max-DPLL procedure is showin in
Figure 4. Notice that the best assignment, is the one with minimal loss which is
equal to 2. In the tree we choose the literals ¬A, ¬B, and ¬C in this order.

3. MAXSAT EXACT ALGORITHMS 13

Algorithm 1 Max-DPLL(φ : CNF, ψ : weighted CNF, I : Partial assignment)

1: I, φ, ψ ← UnitPropagation(I, φ, ψ)
2: if {} ∈ φ then
3: return I,∞ c
4: end if
5: if φ = {} and ψ contains only empty weighted clauses then
6: return I,

∑
(w:C)∈ψ w

7: else
8: select a l from a clause in φ or in ψ
9: I, loss←Max-DPLL(φ|l, ψ|l, I ∪ {l})

10: I ′, loss′ ←Max-DPLL(φ|l̄, ψ|l̄, I ∪ {l̄})
11: if loss ≤ loss′ then
12: return I, loss
13: else
14: return I ′, loss′

15: end if
16: end if

φ=

{
{A,B,C}
{¬A,¬B,¬C}

}
ψ=

2:{A,¬B}
3:{¬A,C}
4:{B,¬C}


φ|¬A={{B,C}}

ψ|¬A=

{
2:{¬B}
4:{B,¬C}

}

φ|¬A,¬B={{C}}
ψ|¬A,¬B={4 : {¬C}}

φ|¬A,¬B,C={}
ψ|¬A,¬B,C={4 : {}}

loss = −4

C

¬B

φ|¬A,B={}
ψ|¬A,B={2 : {}}

loss = −2

B

¬A

φ|A={{¬B,¬C}}

ψ|A=

{
3:{C}
4:{B,¬C}

}

φ|A,¬B={}

ψ|A,¬B=

{
3:{C}
4:{¬C}

}

φ|A,¬B,¬C={}
ψ|A,¬B,¬C={3 : {}}

loss = −3

¬C

φ|A,¬B,C={}
ψ|A,¬B,C={4 : {}}

loss = −4

C

¬B

φ|A,B={{¬C}}
ψ|A,B={3 : {C}}

φ|A,B,¬C={}
ψ|A,B,¬C={3 : {}}

loss = −3

¬C

B

A

Figure 4. The search tree of the max-DPLL procedure

The Max-DPLL algorithm recursively performs a depth-first visit of the tree
of the partial assignments to the propositional variables of the input, searching
for the assignment that minimizes the loss. Max-DPLL takes in input a partial
assignment, which is empty in the first call, a set of hard clauses φ and a set
of soft clauses with the associated weights. Max-DPLL starts by applying unit
propagation (line 1) only on hard clauses, This means that, for all {l} ∈ φ the
current partial assignment I is extended with {l} and φ is set to φ|l and ψ to
ψ|l. UnitPropagation repeatedly applies this reduction until φ does not contain

14 1. MAXIMUM SATISFIABILITY

any unit clause. Then, if the set of hard clauses contains an empty clause (i.e., the
current assignment does not satisfy the hard clauses), then Max-DPLL returns the
current partial assignment I with infinite loss (line 3), In this situation the infinite
loss has the effect that this solution will be the worse possible from the minimisation
point of vies, and any other solution with finite cost would be preferred to it. If
instead (line 5) the set of hard clauses are empty (i.e., all of them are satisfied by
the current partial interpretation I) and the soft clauses contains only empty (i.e.,,
unsatisfiable) clauses, then the MaxSAT-DPLL returns the current interpretation
with its cost, which is the sum of the weight of the soft clauses, which are all empty,
and therefore they are not satisfied by I. Otherwise, i.e., if there are hard clauses
that need to be satisfied, and soft clauses that could be satisfied, (i,e, if C ∈ φ for
some non empty C and w : D ∈ ψ for some non empty D), the algorithm computes
the solutions that contains the current assignment extended with l, (line 9) and
with l̄ (line 10) for some literal l, and choose the one of minimal cost (lines 11–14)

The Max-DPLL algoritm is not very useful in practice as it potentially visits
the entire tree of all the partial interpretations, which is exponentially large, w.r.t.,
the size of the input clauses. One should find some criteria for early stopping the
search when there is some evidence that this will not lead to any better solution.
Suppose that Max-DPLL has already found a solution I with loss equal to x. Then
every assignment with loss greater than x are not solutions of the maxSat problem.
This means that x acts as an upper bound on the cost of the solutions, let denote x
with UB . If Max-DPLL is expanding anothe partial interpretation I ′. Let LB be
the minimal loss of all the assignments which are expansions of I ′. A näıve wey to
find a value for LB is by summing the weights of the soft-clauses not satisfied by I ′.
If LB ≥ x, then the loss of any extension of I ′ will have cost larger or equal to x,
and they will not be better than the solution I already found which means that we
can stop expanding I ′ and look to other alternative partial interpretations. This
idea is implemented in the Branch and Bound algorithm shown in Algorithm 2.
Algorithm B&B takes in input two additional parameters than Max-DPLL which

Algorithm 2 B&B(φ: CNF, ψ: Weighted CNF, I: Partial assignment,
IUB : Best previously found solution, UB: Cost of IUB)

1: I, φ, ψ ← UnitPropagation(I, φ, ψ)
2: LB ← lowerBound(φ, ψ)
3: if {} ∈ φ or UB ≤ LB then
4: return IUB,UB
5: end if
6: if φ = {} and ψ contains only empty weighted clauses then
7: return I,

∑
(w:D)∈ψ w

8: else
9: select a l from some clause in φ or in ψ

10: I,UB ← B&B(φ|l, ψ|l, I ∪ {l}, IUB,UB)
11: I ′,UB ′ ← B&B(φ|l̄, ψ|l̄, I ∪ {l̄}, IUB,UB)
12: return I ′,UB ′

13: end if

are the best solution found sofar IUB and its loss UB . B&B proceeds as Max-
DPLL with the only exception that it first computes a lower bound of the current

3. MAXSAT EXACT ALGORITHMS 15

partial assignment (line ??) and checks it it is larger than than the loss of the best
solution found until now (line ??). In this case the previous solution is returned.
The first call of B&B is done with the empty interpretation I, and IUB and the
infinite cost UB =∞.

The simplest way to compute the lower bound of a partial interpretation is by
summing the weights of the empty clauses in ψ. i.e.,

lowwerBound(φ, ψ) =
∑

w:{}∈ψ

w(11)

Later we will see more sophisticated algorithm that compute higher lower bounds
and therefore that prevents B&B to explore larger parts of the search space. For
the time being, let us see an example of B&B with this simple method of estimating
lower bound.

Example 1.5. Consider the following set of hard and soft clauses with relative
weight (hard clauses are labelled with infinite weight).

(¬a ∨ b ∨ c :∞) (a : 1) (c : 3)

(¬b ∨ d :∞) (b : 2) (d : 2)

(¬d ∨ ¬a :∞)

3.1.1. Lower bound computation. One step forward w.r.t., (11) can be done
by incorporating an underestimation of the sum of the weights of clauses that
will become unsatisfied if the current partial assignment is extended to a complete
assignment.

Example 1.6. Suppose that ψ contains the two weighted unary clauses w : {x}
and v : {¬x}. This implies that every assignment for φ, ψ will falsify one of the
two clauses. Therefore, the loss for φ, ψ will not be less then min(w, v). A little
more complicated example is when ψ contains multiple pairs of contradicting unary
weighted clauses. 

w1 : {x1}, v1 : {¬x1}
w2 : {x2}, v2 : {¬x2}

. . .
wn : {xn}, vn : {¬xn}

 ⊆ ψ
then every assignment for φ, ψ will falsify one of the two unary clause for every
pair. Therefore a lowerbound for the loss is therefore equal to:

n∑
i=1

min(wi, vi)

Finally suppose that φ contains the hard clause {a, b} and ψ contains the two
weighted unary clauses w : {¬a} and v : {¬b} Then every assignment that sat-
isfy φ will not satisfy one of the two weighted unary clauses, which implies that the
loss will be at least min(w, v).

The following method to find a lowerbound for the loss of a maxSAT problem
φ, ψ is a generalization of the previous example and uses a SAT solver as an oracle.

16 1. MAXIMUM SATISFIABILITY

I = IUB = {}, UB =∞

¬a ∨ b ∨ c : ∞
¬b ∨ d : ∞
¬d ∨ ¬a : ∞

a : 1
b : 2
c : 3
d : 2

(1)

b ∨ c : ∞
¬b ∨ d : ∞
¬d : ∞
b : 2
c : 3
d : 2

(2)

{} : 2
{} : 2

(3)

IUB = {a,¬b, c,¬d}
UB = 2

I = {a,¬b, c,¬d}

I = {a}

¬b ∨ d : ∞
{} : 1
b : 2
c : 3
d : 2

(4)

d : ∞
{} : 1
c : 3
d : 2

(5)

{} : 1
c : 3

(6)

{} : 1(7)

IUB = {¬a, b, c, d}
UB = 1

I = {¬a, b, c, d}

LB ≥ UB

I = {¬a, b, d}

I = {¬a, b}

LB ≥ UB

I = {¬a}

Figure 5. Exploration tree of the B&B algorithm for the hard
and soft clauses of Example 1.5. Nodes are labelled in order of
expansion. B&B find the first solution at node (3), the cost of
this solution is 4. Therefore IUB is set to be this solution and the
UB (upper bound cost) is set to be 4. Then the algorithm find a
second solution at node (7) whose cost is equal to 1 smaller than
UB. Therefore IUB is set to this new solution and UB is set to
1. Successively the B&B reaches the node (8), which does not
correspond to a solution. but the solutions that are derivable from
the partial assignment at this node will have a cost higher or equal
to 3 (the sum of the costs of the two empty soft clauses) which is
higher than the current UB and therefore B&B stops and returns
IUB and UB .

Suppose that ψ contains n disjoint subsets ψ1, . . . , ψn and each {C | w : C ∈ ψi}∪φ

3. MAXSAT EXACT ALGORITHMS 17

is not satisfiable, then

lowerBound(φ, ψ) =

n∑
i=1

min
w:C∈ψi

w(12)

Indeed notice that every assignment that satisfy φ will not satisfy at least one clause
in each φi. Since we don’t know which of the clauses of φi will be falsified, we can
only infer that the loss will be increased with the minimum weights among those
of the clauses in φi. Notice that (11) is a special case of (12).

Example 1.7. Consider the set of hard and soft clauses:

φ =

{
{a, b}
{¬a,¬b}

}
ψ =

1:{a,¬c} 2:{¬a, c}
3:{b,¬c} 4:{¬b, c}
5:{c} 6:{¬c}


ψ contains the following two disjoint sets of weighted clauses

ψ1 =

1:{a,¬c}
3:{b,¬c}
5:{c}exercize

 ψ2 =

2:{¬a, c}
4:{¬b, c}
6:{¬c}


such that, if we extend their unweighted version with φ, we obtain the following two
sets of clauses 

{a, b}
{¬a,¬b}
{a,¬c}
{b,¬c}
{c}




{a, b}
{¬a,¬b}
{¬a, c}
{¬b, c}
{¬c}


which are both unsatisfiable. This means that every assignment does not satisfy at
least one clause in ψ1 and one in ψ2. This implies that the minimum value of the
loss of any assignments for φ, ψ is 1 + 2 = 3 which is the sum of the minimum
weights of the clauses in ψ1 and ψ2.

3.1.2. Literal selection. One of the key aspect of the B&B algorithm is the
literal selection performed on line 9. Selecting the “right” literal will avoid the
expansion of many parts of the search tree and go straight to the maxSAT solution.
For instance in figure 5 if the algorithm would have selected ¬a instead of a in the
first branching it would have reached the solution straightaway without expanding
the subtree on the left (the one under the selection of a). Most of the exact MaxSAT
solvers incorporate variable selection heuristics that take into account the number of
literal occurrences in such a way that each occurrence has an associated weight that
depends on the length of the clause that contains the literal. MaxSAT heuristics
give priority to literals occurring in binary clauses instead of literals occurring in
unit clauses as SAT heuristics do. Things are getting to technical and detailed here.
So I decided to stop here with this topic. For those interested in the argument you
can check works like Mohamedou and Planes 2009,

3.2. Core based algorithm. Core based algorithms for maximum satisfiabil-
ity uses a SAT solver as subrutine. The main idea behind the core based approaches
is the following:

If φ, ψ is satisfiable then any interpretation I that satisfies φ and ψ is a solution
of the MaxSAT problem with cost equal to 0. If φ, ψ the ideas is to weakening the

18 1. MAXIMUM SATISFIABILITY

soft clauses ψ (by adding literals to some of the clauses in ψ) but at the same time
impose some additional constraints by extending the hard clauses, requiring that
the added literals will be minimally true. Then check the satisfiability of the new
MaxSAT problem. Let us see a concrete example on how this works:

Example 1.8. Consider the MaxSAT instance:

φ =

 {p, q}
{¬p,¬r}
{¬q,¬r}

 ψ =

1:{p}
1:{q}
1:{r}


Notice that the union of φ with (the unweighted version of) ψ is not satisfiable.
Which implies that a solution of this simple MaxSAT should not satisfy at least
one of the soft clauses. The idea is to weaken the soft clauses so that they become
satisfiable and add a constraint that states that only one of them can be falsified.

To weaken a soft clause C we can add a fresh atom b obtaining C ∪{b}. In our
example we have

ψ1 =

1:{p, b1}
1:{q, b2}
1:{r, b3}


and then add the constraint that at most one among b1, b2 and b3 can be true. I.e.,∑3
i=1 bi. The new MaxSAT problem becomes:

φ(1) =


{p, q}
{¬p,¬r}
{¬q,¬r}∑3
i=1 bi ≤ 1

 ψ(1) =

1:{p, b1}
1:{q, b2}
1:{r, b3}


Notice that every interpretation I that satisfies φ(1) and the unweighted version
of ψ(1) must satisfy at least one bi. Otherwise the initial φ ∪ ψ would have been
satisfiable. In other words bi being true indicates that the initial i-th clause can be
falsified. Furthermore it I is a solution of the MaxSAT problem φ(1), ψ(1) it will
also be a solution of the initial MaxSAT problem with a cost augmented of one unit.

In this simple case we have that φ(1) ∪ ψ(1) is satisfiable, by the assignment:

p = 1 q = 0 r = 0 b1 = 0 b2 = 0 b3 = 1

which contains a solution of the initial MaxSAT problem, with cost/loss equal to 1.
One can minimize the number of soft clauses to weaken by adding new variable,

by considering only the minimal set of weak clause ψ′ such that φ∪ψ′ is inconsistent.
In the example we have two alternatives such a minimal sets.

ψ′ =

{
1:{p}
1:{r}

}
ψ′′ =

{
1:{q}
1:{r}

}
We can consider one of the two subsets and proceed as before by adding two new
variables b1 and b2 (instead of 3) obtaining the set of hard and soft clasuses:

φ(1) =


{p, q}
{¬p,¬r}
{¬q,¬r}∑2
i=1 bi ≤ 1

 ψ(1) =

{
1:{p, b1}
1:{r, b2}

}

The pair φ(1) ∪ ψ(1) is satisfiable with the same assignment as before, with the
exception of the assignment to b3.

3. MAXSAT EXACT ALGORITHMS 19

Now let us generalize the above example. We first define the notion of core.
Given a set φ of unsatisfiable clauses a core is a subset φ′ of φ such φ′ \ {C} for Core of a set of

clauses (Exercize 6).every C ∈ φ′ is consistent. In other words, a core is a minimally inconsistent set of
formulas. such that if we remore one formula from it we are left with a consistent
set of formulas.

Example 1.9. The core sets of the set of clauses

{{a, b}, {¬a,¬b}, {a}, {b}, {¬a}, {¬b}}

are the following:

{{a}, {¬a}} {{b}, {¬b}} {{a, b}, {¬a}, {¬b}} {{¬a,¬b}, {a}, {b}}

Notice that all the above subsets of the given clauses are not satisfiable, but removing
one clause from each of them results in a satisfiable set of clauses.

SAT solvers are such that, when they are called with a a set of clauses φ which
are inconsistent, they return UNSAT, and in addition they return a core set, i.e. a
minimally inconsistent subset of φ. The Fu and Malik MaxSAT algorithm exploit
this feature of SAT solver in order to solve the MaxSAT problem.

The Fu and Malik algorithm for MaxSAT, originally proposed by Fu and Malik
2006, uses the SAT subrutine; when it is called with a set of clauses φ, it returns a
pair x, y where x = SAT and y = I if φ is satisfiable and I is an interpretation of
φ. or the pair x = UNSAT and φ′ is a core set. In the following, we consider the
special case in which the weights of the soft clauses are equal to 1. Extensions of the
algorithm for more general formulations of MaxSAT can be found in Manquinho,
Marques-Silva, and Planes 2009.

Algorithm 3 Fu and Malik MaxSAT algorithm

Require: φ set of hard clauses; ψ set of soft clauses with weight = 1
1: x, y ← SAT(φ);

2: if x = UNSAT then
3: return ∞,None

4: end if

5: cost← 0
6: while True do

7: x, y ← SAT(φ ∪ ψ)
8: if x = SAT then
9: return cort, y

10: else . x = UNSAT, y is a core for φ ∪ ψ
11: B = ∅
12: for C ∈ y ∩ ψ do . C is a soft clause that appears in the core y

13: b← new propositional variable

14: C ← C ∪ {b}
15: B ← B ∪ {b}
16: end for
17: end if

18: φ← φ ∪
{∑

b∈B b ≤ 1
}

19: cost← cost+ 1
20: end while

20 1. MAXIMUM SATISFIABILITY

Example 1.10. Consider the set of hard and soft clauses φ and ψ.

φ = {¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x2,¬x3}, {¬x2,¬x4}, {¬x3,¬x4}
ψ = 1 : {x1}, 1 : {x2}, 1 : {x3}, 1 : {x4}

• Since φ ∪ ψ is not satisfiable, then the call to SAT(φ ∪ ψ) returns x =
UNSAT and y a core set of φ ∪ ψ;

• Suppose that the returned core set is the following:

y = {¬x1,¬x2}, {x1}, {x2}

there are other core sets, but the result of the algorithm is independend
from which core is returned by the sat solver.

• The two waighted clauses {x1}, {x2} are extended with two new proposi-
tions b1 and b2 respectively and the clause b1 + b2 ≤ 1 (which is equivalent
to {¬b1,¬b2} is added.

• the cost is set to 1.
• Therefore we ontain the following new set of hard and soft clauses

φ ={¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x2,¬x3}, {¬x2,¬x4}, {¬x3,¬x4},
{¬b1,¬b2}

ψ =1 : {x1, b1}, 1 : {x2, b2}, 1 : {x3}, 1 : {x4}

• The new set of clauses φ ∪ ψ is also inconsistent, and a possible core is
{¬x2,¬x4}, {x3}, {x4}.

• the cost is set to 2.
• We proceed as before obtaining the set of hard and soft clauses

φ ={¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x2,¬x3}, {¬x2,¬x4}, {¬x3,¬x4},
{¬b1,¬b2}, {¬b3,¬b4}

ψ =1 : {x1, b1}, 1 : {x2, b2}, 1 : {x3, b3}, 1 : {x4, b4}

• the new set of clauses are not satisfiable and the only core is the set itself.
• the cost is set to 3;
• Every soft clause is therefore extended with a new variable. Since there are

four soft clauses in the core, we introduce four new variables b5, . . . , b8.
And we also add the hard clause b5 + · · ·+ b8 ≤ 1 obtaining the following
set of clauses:

φ ={¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x2,¬x3}, {¬x2,¬x4}, {¬x3,¬x4},
{¬b1,¬b2}, {¬b3,¬b4}

ψ =1 : {x1, b1, b5}, 1 : {x2, b2, b6}, 1 : {x3, b3, b7}, 1 : {x4, b4, b8}

which is satisfiable.
• Therefore the algorithm terminates.

We have to prove that the algorithm terminates.

4. SOLVING PROBLEMS WITH MAXSAT 21

Proposition 1.3. The algorithm Fu and Malik terminates for every input of
φ, ψ

Proof. to do �

3.3. Pseudo Boolean Optimizatiom. A Pseudo-Boolean function is a func-
tion f0, 1n → R. This type of function have beenn tudied since the ’60s in oper-
ations research in integer linear programming Boros and Hammer 2002. One can
consider also restricted versions, where f is represented in a polynomial of a given
degree; f is represented as linear form, polinomial of degree 1;

A pseudo-boolean constraint is a constraint defined on a pseudo-boolean func-
tion f .

Example 1.11. Let f(x1, . . . , xn) be the linear pseudo-boolean function
∑n
i=1 xi.

An example of constraint on f is

n∑
i=1

xi ≤ k0

for some integer k, which corresponds to the cardinality constraint “at most k”
introduced in the previous chapters.

Definition 1.7 (Pseudo-Boolean optimization). A pseudo-Boolean optimiza-
tion is the problem of finding a boolean assignment to the variables x1, . . . , xn, that
satisfy the following:

Minimize

n∑
i=1

cixi

Subject to

n∑
j=1

aijxj ≤ bi ∀i = 1, . . . ,m

where ai, bi, ci ∈ Z.

[Section to be completed]

4. Solving problems with MaxSAT

4.1. Minimal path. Find shortest path in a grid with horizontal/vertical
moves. Travel from S to T without enter in the black squares

S

T

22 1. MAXIMUM SATISFIABILITY

p0,5,5 :∞(13)

22∨
i=1

pi,2,5 :∞(14)

5∧
r,c=1

(r,c)6=(2,5)

pi,r,c → 5∨
r′c′=1

|(r,c)−(r′,c′)|=1

pi+1,r′,c′

 :∞(15)

22∧
i=1

(¬pi,1,3 ∧ ¬pi,4,1 ∧ ¬pi,4,4) :∞(16)

¬pi,r,c : 1(17)

4.2. Optimal correlation clustering. The problem of optimal correlation
clustering can be formulatecd as follows: Given a set of n points V = {v1, . . . , vn}
and a symmetric similarity function s : V × V → {0, 1} (such that s(vi, vj) = 1
(resp. 0) means that vi is similar (resp. dissimilar) to vj), the problem of optimal
correlation clustering is the problem of partitioning V in a set of cluster C =
C1, . . . , Ck for some (unknown) k ≥ 1 such that the global correlation G(C) is
minimized:

G(C) =
∑

vi 6=vj∈V
cl(vi)=cl(vj)

(1− s(vi, vj)) +
∑

vi 6=vj∈V
cl(vi)6=cl(vj)

s(vi, vj)

where cl(v) = i means that v ∈ Ci.
A MaxSAT formulation of the optimal correlation clustering problem is based

on a set of indicator variables xij , where i < j, with the interpretation that xij
is true if points vi and vj are put in the same cluster. Using this variables we can
formulate the following hard and soft clauses

Hard clauses:: for every i < j < k

¬xij ∨ ¬xjk ∨ xik ¬xij ∨ ¬xik ∨ xjk
Soft clauses:: for every i < j

xij : 1 If s(vi, vj) = 1

¬xij : 1 If s(vi, vj) = 0

The first hard clause states that, if vi and vj are put in the same cluster and vj and
vk are also put in the same cluster then vi and vk must be put in the same cluster.
This clause is the CNF form of transidivity: xij ∧ xjk → xik. The second hard
clause has similar meaning; it corresponds to the euclidean property of a relation
xij ∧ xik → xjk. Notice that clustering is a special type of equivalence relation
and therefore it is both transitive and euclidean. We don’t need symmetry and
reflexivity because for i < j xji and xii are not propositional variables. Soft clauses
mimic what happens in the cost function G(V). Notice that if vi and vj are symilar
(i.e., s(vi, vj) = 1) and they are assigned with different clusters, i.e., xij is false,
then the cost of the interpretation is increased by 1. This corresponds to the term
s(vi, vj) of the second summation of G(V). Vice-versa, if two points vi and vj which
are dissimilar (i.e., v(vi, vj) = 0) are put in the same cluster, i.e., xij is true then
the cost of the interpretation will increase by 1, These corresponds to the term
1− s(vi, vj) (which is equal to 1) of the first summations of G(V)

5. MAXSAT FOR MACHINE LEARNING 23

ε

0

00 01

1

10 11

ε

0

00 01

010 011

1

Figure 6. Two examples of binary trees with 7 nodes. Notice
that the maximum depth of a binary tree with 7 nodes, is 7−1

2 = 3.
Therefore we define B all the 0/1 strings of length less then or equal
to 3. B indicates all the potential nodes of a binary tree.

Notice that the solution I of the MaxSAT problem does not provide directly the
mapping of the vi to the clusters. One has to derive such a clustering from the truth
assignments of xij . This can be easily extracted by the following procedure; Let C =
{{v1}, {v2}, . . . , {vn}} be the initial clustering, and x1,2, . . . , x1,n, x2,3, . . . , xn−1,n

be an enumeration of the propositional variables, Then iterate on the elements
of such a list, and at any step revise C as follows: If you are analyzing xi,j and
I(xi,j) = 1, and vi ∈ Cq and vj ∈ Cr in the current clustering and r 6= q, then
rmove Cq and Cr from V and add Cq ∪ Cr.

5. MaxSAT for machine learning

5.1. Learning optimal decision tree. Let
{
x(i), y(i)

}d
i=1

be a dataset that

we use to train a classifier for a class C. Suppose that x(i) is a vector (x1, . . . , xk)
of boolean features and that y(i) is equal to 0 if the i-th individual doesn’t belong
to C and 1 otherwise. Our goal is to construct a binary decision tree for the class
C with at most n nodes. To cast this task in a MaxSat problem, we proceed in
two steps, First, we formalize binary trees with at most n nodes in propositional
logic. Successively, we associate to the internal node of the tree the corresponding
features.

Let us start by formalizing binary trees in propositional logic. Before doing this
let us see how a binary tree with n nodes looks like. Figure ?? shows two examples
of binary trees with 7 nodes. To identify all possible nodes of a binary tree we use
0/1 strings, as follows. Suppose we want to consider a binary tree with at most n
nodes. The maximum height of a binary tree with with n nodes. is H = n−1

2 . Let

B be the set B =
⋃H
h=0{0, 1}h. Intuitively B is all the potential nodes of a binary

tree with n nodes. However we have to select only n elements of B. A binary tree
can be seen as a non enpty subset of T ⊆ B closed under substring. More formally
T ⊆ B is a tree iff

(1) ε ∈ T where ε is the empty string
(2) For all bi ∈ B, bi ∈ T ⇒ b ∈ T

The above conditions can be easily formalized in propositional logic. Let vbi for
b ∈ B and i ∈ {0, 1} be a propositional variable indicating that the node b belongs
to a binary tree T . For unifromity of formalization we add an extra depth step
H + 1 but we require that nodes with labels of length H + 1 never belong to T .

24 1. MAXIMUM SATISFIABILITY

The above conditions can be formalized as follows:

vε(18)

vbi → vb for b ∈ B and i ∈ {0, 1}(19)

¬vbi for b ∈ B and i ∈ {0, 1} with |b| = H(20)

Since we want a tree to be perfectly binary we have to guarantee that every
node has either no children or two children. This can be formalized as:

vb0 ↔ vb1(21)

We can now pass to the second step in which we associate to each node b ∈ T
one of the k features. To represent which feature is associated to which node we

introduce the set of propositional variables vfb that codifies the fact that at node
b we take the decision looking at feature f . We also want that only one feature is
associated to internal nodes. This is formalizable by the axiom:

vb ∧ vbi →
∑
f

vfb = 1(22)

Every propositional assignment that satisfies the above axioms identifies a unique
binary decision tree with n nodes. We are only remained with the problem of
formalizing in propositional logic how an item xi is classified by such a binary tree.

To this aim we introduce the propositional variabels x
(i)
b that indicates that the

i-th item is classified in a subtree of the node b. We can formalize the decision
taken at each node of the tree, by the following set of formulas:

x(i)
ε Every element is classified under the root node

(x
(i)
b ∧ v

f
b)↔ x

(i)
bxf

If an is classified in b and the value of the fea-
ture associated to is i, then such item is classified
under bi

At this point you have to maximize the following measure

(x
(i)
b ∧ ¬vbi) ∧ (Cb ↔ y(i))

5.2. Training Binary Neural Networks. [to be done]

6. Exercises

Exercise 1:

Given a list of numbers a1, . . . , an, formalize in propositional logic all the possi-
ble ways to split them into two sets. Then define a weight function that is maximal
when the sums of the numbers in each set are as close as possible.

Exercise 2:

Define the weight functions that realizes the following total order on the inter-
pretations of the propositinal variables P = {A,B}

(1) {} ≺ {A} ≺ {B} ≺ {A,B}
(2) {} ≺ {B} ≺ {A} ≺ {A,B}
(3) {} ≺ {A,B} ≺ {A} ≺ {B}
(4) {A,B} ≺ {A} ≺ {} ≺ {B}
(5) {A} ≺ {B} ≺ {A,B} ≺ {}

6. EXERCISES 25

Exercise 3:

Prove the following facts:

(1) If |= φ↔ ψ, then F ∪ {w : φ} is equivalent to F ∪ {w : ψ};
(2) F ∪ {w1 : φ, w2 : φ} is equivalent to F ∪ {w1 + w2 : φ}

Exercise 4:

Prove that F ∪{w : φ∨ψ} is equivalent to F ∪{w : φ∧ψ,w : ¬φ∧ψ,w : φ∧¬ψ}

Exercise 5:

Suppose that w < v, Prove that F ∪{w : φ, v : ¬φ} is equivalent to F ∪{v−w :
¬ψ}

Exercise 6:

Let P be a set of n propositinal variables, and let w : 2P → R be a generic
weight function. Define an algorithm that extract a set of weighted clauses F such
that wF is equivalent to w

Exercise 7:

Consider the set of strings that you can build with the letter A, B, C, and
D. Define a propositional language such that everty interpretation correspond to
a string and define a weight function that orders the strings (or equivalently the
corresponding interpretations) lexicographically.

Solution Let us first define a set of propositional variables that we can use toi
describe the finite strings composed of the letters A, B, C, and D. For every
natural number n ∈ N, we introduce the propositional variables An, Bn, Cn and
Dn, where xn for x ∈ {A,B,C,D} means that the letter the n-th letter of the
string is an x.

Then we have to add axioms that restricts the set of interpretations to those
corresponding to strings.

(1) There must be at most one character at position n. This can be encoded
either by a cardinality constraint AtMost(1, {An, Bn, Cn, Dn}) or by ex-
plicit representation:

¬(An ∧Bn) ¬(An ∧ Cn) ¬(An ∧Dn) ¬(Bn ∧ Cn) ¬(Bn ∧Dn)(23)

(2) The second constraint states that, if in position n there is a character
then there should be a character also in position n− 1 i.e., we doin’t have
strings with “blanks” in the middle. This cen be formulated wiith:

(An+1 ∨Bn+1 ∨ Cn+1 ∨Dn+1)→ (An ∨Bn ∨ Cn ∨Dn)(24)

Notiche that every string x1x2, . . . , xn, with xi ∈ {A,B,C,D} can be mapped to
an interpretation that makes xi true and yi false for eveyr y 6= x, and yj false
for every y ∈ {A,B,C,D} and j ≥ n. Therefore for instance, the string ABAAC
corresponds to the interpretation IABAAC = {A1, B2, A3, A4, C5}. Notice that
the interpretation Ix1x2...xn corresponding to the string x1x2 . . . xn satisfies the
axioms (23) and (24). Furtermore, every interpretation that satisfies these axioms
corresponds to a (possibly infinite) string.

26 1. MAXIMUM SATISFIABILITY

Let us now define a weight function that allow to order the interpretations that
satisfies (23) and (24) lexicographically. I.e., w(Ix1x2...xn...) < w(Iy1y2...ym...) if and
only if there is a k such that xk < yk and xh = yh for all h < k.

We define our weight function by associating a weight to each propositional
variables and defining w(I) =

∑
p∈I w(p)

w(An) = 1 · 10−n w(Bn) = 2 · 10−n w(Cn) = 3 · 10−n w(Dn) = 4 · 10−n

For instance we have the following weights:

w(IA) = 0.1

w(IAB) = 0.1 + 0.02 = 0.12

w(IB) = 0.2

w(IBA) = 0.2 + 0.01 = 0.21

w(IC) = 0.3

w(ID) = 0.4

w(IDDDDDDD...) = 0.4 + 0.04 + 0.004 + . . . = 0.4̄

�

Exercise 8:

Find all the cores of the following set of clauses.

(1) {a, b, c}, {a, b, d}, {¬a}, {¬b}, {¬c}, {¬d};
(2) {¬a, b}, {¬b, c}, {¬c, d}, {¬d, e}, {a,¬b,¬d};
(3) {a}, {¬a}, {b}, {¬b}, {¬a, b}, {a,¬b};
(4) {¬a, b, c}, {¬b,¬d}, {¬c,¬d}, {a, d};
(5) {xi | i ∈ I}, {xj | j ∈ J}, for some I, J ⊆ {1, . . . , n}, with I ∩ J = ∅ and

the set of clauses {¬xi,¬xj} for every i < j ∈ {1, . . . , n}.

Exercise 9:

Use B&B algorithm to solve the following maxSat problem

(¬a ∨ d ∨ c :∞) (a ∨ c : 3) (c : 2)

(¬b ∨ ¬c :∞) (b : 1) (d : 1)

(¬d ∨ ¬a :∞)

Solution

6. EXERCISES 27

I = IUB = {}, UB =∞

¬a ∨ d ∨ c : ∞
¬b ∨ ¬c : ∞
¬d ∨ ¬a : ∞

a ∨ c : 3
b : 1
c : 2
d : 1

(1)

¬b ∨ ¬c : ∞
c : 3
b : 1
c : 2
d : 1

(2)

c : 3
{} : 1
c : 2
d : 1

(3)

IUB = {¬a,¬b}
UB = 1

I = {¬a,¬b}

{¬c} :∞ :
c : 3
c : 2
d : 1

(4)

{} : 3
b : 1

{c} : 2
d : 1

(5)

LB = 3 + 2 > UB

UP ¬c, I = {¬a, b,¬c}

I = {¬a, b}

I = {¬a}

d ∨ c : ∞
¬b ∨ ¬c : ∞

¬d : ∞
b : 1
c : 2
d : 1

(6)

c : ∞
¬b ∨ ¬c : ∞

b : 1
c : 2
{} : 1

(7)

LB = 1 ≥ UB

UP on ¬d,I = {a,¬d}

I = {a}

�

Exercise 10:

In the Fu and Malik algorithm for MaxSat, explain what is a minimally in-
consistent set of clauses. And provide an example of four clauses, which has a
minimally inconsistent set of three clauses.

Solution Given a set of clauses S = {C1, C2, . . . , Cn} a minimally inconsistent
subset of clauses of S is any subset S′ of S such that S′ is inconsistent, and for all
C ∈ S′, S′ \ {C} is consistent.

For instance consider the set of clauses

S = {{A,B}, {¬A,¬B}, {A,C}, {B,C}, {¬A,¬C}, {¬B,¬C}, {C}}

28 1. MAXIMUM SATISFIABILITY

Then the subset

S′ = {{A,B}, {¬A,¬C}, {¬B,¬C}, {C}}
is a minimally inconsistent subset of S. Indeed if we remove from S′ any clause we
can find always an interpretation. Indeed notice that

S′ \ {{A,B}} = {{¬A,¬C}, {¬B,¬C}, {C}} Is satisfied by A = F,B = F,C = T

S′ \ {{¬A,¬C}} = {{A,B}, {¬B,¬C}, {C}} Is satisfied by A = T,B = F,C = T

S′ \ {{¬B,¬C}} = {{A,B}, {¬A,¬C}, {C}} Is satisfied by A = F,B = T,C = T

S′ \ {{C}} = {{A,B}, {¬A,¬C}, {¬B,¬C}} is satisfied by A = T,B = T,C = F

�

Exercise 11:

Consider the following set of formulas

weight : formula
∞ : φ1 = A↔ (X ∧ Y ∧ Z)
∞ : φ2 = B ↔ (Y ∧ T ∧W)
∞ : φ3 = C ↔ (T ∧ V)
∞ : φ4 = ¬A ∧ ¬B ∧ ¬C
1 : X
2 : Y
3 : Z
4 : W
5 : V
6 : T

Find an assignment that minimizes the cost. Remember that the cost of an assign-
ment is the sum of the weights of the clauses that are not satisfied by the assignment
Solution

var A B C X Y Z W V T φ1 φ2 φ3 φ4

I(var) 0 0 0 0 1 1 1 1 0 1 1 1 1
cost 0 0 0 1 0 0 0 0 6 0 0 0 0

cost(I) = 1 + 6 = 7 A different model with the same cost is:

var A B C X Y Z W V T φ1 φ2 φ3 φ4

I ′(var) 0 0 0 1 0 1 1 0 1 1 1 1 1
cost 0 0 0 0 2 0 0 5 0 0 0 0 0

cost(I ′) = 2 + 3 = 7 � Exercise 12:

Suppose that you have to place m queens in an n×n chess board, with m ≤ n2.
Every queen i can be placed in p(i) = (xi, yi) with 1 ≤ xi, yi ≤ n, so that it cannot
be “eaten” by any other queen. Encode the problem of finding the configuration
that maximizes the total distance between the items, i.e.,∑

1≤i,j≤m

(xi − xj)2 + (yi − yj)2

.

Exercise 13:

6. EXERCISES 29

Thransform the following MaxSat problem in and Integer Programming prob-
lem

∞ :a↔ ¬b
2 :a ∧ ¬b→ r

3 :b ∧ ¬a→ r

Solution Since we have two weighted formulas we introduce two new propositional
variables b1 and b2 and transform the clauses in the following integer constraints:

1 ≤ a ≤ 1

1 ≤ b ≤ 1

1 ≤ r ≤ 1

a+ b = 1

0 ≤ b1 ≤ 1

0 ≤ b2 ≤ 1

b1 + (1− a) + b+ r ≥ 1

b2 + (1− b) + a+ r ≥ 1

with the cost function: 2b1 + 3b2. �

Exercise 14:

Suppose that you hae R rectangles r1, . . . , rR, where each rectangle ri has
dimensions (wi, hi), with wi and hi natural numbers. Suppose that you have to
arrange them inside an n× n square so that they don’t overlap. Provide a MaxSat
formulation of the problem of funding the smallest n for which theis is possible.

Solution To explain the general solution, let us consider an example with the
following four rectangles:

r1 = (4, 1)

r2 = (3, 2) r3 = (2, 2)

r4 = (1, 1)

Without loss of generality we can assume that wi ≤ hi. LetN = max(
∑
i hi,maxj wj).

Notice that it is always possible to arrange the rectangles in an N ×N square by
stacking them, as shown in the following picture.

30 1. MAXIMUM SATISFIABILITY

∑ i
h
i

maxi wi

r1 = (4, 1)

r2 = (3, 2)

r3 = (2, 2)

r4 = (1, 1)

However this is not the optimal placement. An optimal placement would be, for
instance, the following:

r1

r2

r3

r4

n
=

4

n = 4

Let us formulate the problem to find such an optimal placement as a MaxSat
problem. n We first provide the set of hard constraints that must be satisfied by
every solution of the problem (not only the optimal ones). We use the propositions
H(i, j, k) and V (i, j, k) to state that the i-th rectangle has been positioned horizon-
tally or vertically respectivelly, in the position j, k where the position refers to the
bottom left corner of the rectangle.

For instance the positioning of the first picture is the following:

H(1, 0, 0), H(2, 0, 1), H(3, 0, 3), H(4, 0, 5)

while that of the second picture is the following:

V (1, 0, 0), H(2, 1, 0), H(3, 1, 2), H(4, 3, 3)

Let us formulate the hard constraints:

6. EXERCISES 31

(1) Every rectangle should be positioned either vertically or horizontally in-
side the N ×N square. For every i ∈ {1, . . . , R} we add

N−wi∨
j=0

N−hi∨
k=0

H(i, j, k) Y V (i, k, j)

where Y is the disjunctive or.
(2) Rectangles cannot overlap. If a rectangle is positioned in j, k then the

other rectangles cannot be positioned in the slots occupied by the rectan-
gle.

H(i, j, k)→
wi−1∧
j′=0

hi−1∧
k′=0

∧
i′ 6=i

¬H(i′, j + j′, k + k′) ∧ ¬V (i′, j + j′, k + k′)

V (i, j, k)→
hi−1∧
j′=0

wi−1∧
k′=0

∧
i′ 6=i

¬H(i′, j + j′, k + k′) ∧ ¬V (i′, j + j′, k + k′)

We then have to add some minimization criteria. The main idea is that if the
top right corner of a rectangle covers the position j, k you will pay a cost of (R +
1)max(j,k). This can be obtained by adding the following weighted formula, one for
every rectangle

H(i, j, k) : (R+ 1)max(j+wi,k+hi)

V (i, j, k) : (R+ 1)max(j+hi,k+wi)

Why we choose such a cost function. Because the cost of placing one single rectangle
outside the n × n square will be larger than the cost of putting all the rectangles
inside the n × n square. Indeed, if all the rectangles are inside the n × n square,
the maximal cost that you will pay is

R(R+ 1)n

If instead you put one single rectangle which goes out the n × n square you will
pay a cost larger than

(R+ 1)n+1

which it is larger than R(R+ 1)n. This will force the system to search the minimal
n. �

Bibliography

Boros, Endre and Peter L Hammer (2002). “Pseudo-boolean optimization”. In:
Discrete applied mathematics 123.1-3, pp. 155–225.

Fu, Zhaohui and Sharad Malik (2006). “On solving the partial MAX-SAT prob-
lem”. In: International Conference on Theory and Applications of Satisfiability
Testing. Springer, pp. 252–265.

Manquinho, Vasco, Joao Marques-Silva, and Jordi Planes (2009). “Algorithms for
weighted boolean optimization”. In: International conference on theory and
applications of satisfiability testing. Springer, pp. 495–508.

Mohamedou, Nouredine Ould and Jordi Planes (2009). “Solver MaxSatz in Max-
SAT Evaluation 2009”. In: SAT 2009 competitive events booklet: preliminary
version, p. 155.

33

	Chapter 1. Maximum Satisfiability
	1. Ordering interpretations
	2. The MaxSAT problem
	3. MaxSAT exact algorithms
	4. Solving problems with MaxSAT
	5. MaxSAT for machine learning
	6. Exercises

	Bibliography

