
Logic for knowledge representation,

learning, and inference

Luciano Serafini

Contents

Chapter 1. Decision Procedures in Propositional Logic 5
1. Model checking 5
2. Satisfiability checking 7
3. Normal forms 8
4. Davis-Putnam-Logemann-Loveland Procedure (DPLL) 15
5. Sat Solvers 19
6. Exercises 20

Bibliography 31

3

CHAPTER 1

Decision Procedures in Propositional Logic

In the previous chapter we have presented four problems that involves proposi-
tional formulas and interpretations. In this chapter we analize them in details. We
will see that the problems of checking the validity of a formula, and the problem of
cheking that a formula is a logical consequence of a set of formulas can be rewritten
in a problem of checking satisfiability of a set of formulas. Therefore, after a first
part in which we will consider the problem of model checking, we will dedicate most
of the chapter to the problem of satisfiability.

1. Model checking

The first and simplest problem that one has to solve in propositional logic is
to compute the truth value of a formula with respecrt to a given interpretation I.

Definition 1.1 (Model checking Problem). Given a formula φ on a set of
primitive propositions P, and an interpretation (truth assignment) I of P, the
model checking problem is the problem of checking if

I |= φ

An alternative formulation of the model cheking problem, is the problem of
computing the truth value of a formula φ w.r.t., an interpretation I of the propo-
sitional variables of φ.

1.1. Decision procedure. A model checking decision procedure, MCDP is
an algorithm that checks if a formula φ is satisfied by an interpretation I. Namely

MCDP(φ, I) = true if and only if I |= φ

MCDP(φ, I) = false if and only if I 6|= φ

The procedure of model checking returns for all inputs either true or false since
for all models I and for all formulas φ, we have that either I |= φ or I 6|= φ.

A simple way to check if I |= φ is the following:

(1) Replace each occurrence of a propositional variables in φ with the truth
value assigned by I. I.e. replace each p with > is I(p) = True and with
⊥ is I(p) = False;

(2) Recursively apply the following rewriting rules:

¬> ⇒ ⊥ > ∧> ⇒ > > ∨> ⇒ > > → > ⇒ > > ≡ > ⇒ >
¬⊥ ⇒ > > ∧⊥ ⇒ ⊥ > ∨⊥ ⇒ > > → ⊥ ⇒ ⊥ > ≡ ⊥ ⇒ ⊥

⊥ ∧> ⇒ ⊥ ⊥ ∨> ⇒ > ⊥ → > ⇒ > ⊥ ≡ > ⇒ ⊥
⊥ ∧⊥ ⇒ ⊥ ⊥ ∨⊥ ⇒ ⊥ ⊥ → ⊥ ⇒ > ⊥ ≡ ⊥ ⇒ >

5

6 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

The complexity of this procedure is linear in the number of the connectives
that appear in the formula φ. More specifically, the algorithm terminates in n
steps where n is the number of connectives that appear in φ.

Example 1.1. Let us consider the formula φ

φ = p ∨ (q → r)

and the interpretation I with

I(p) = False I(q) = False I(r) = True

To check if I |= φ replace, p, q, and r in φ with I(p), I(q) and I(r), obtaining

⊥ ∨ (⊥ → >)

and then recursively apply the reduction rules

⊥ ∨ (⊥ → >)
⊥ ∨>
>

Since we obtain > we can conclude that I |= φ.

This method is not the most efficient one. One can notice that in many rewrit-
ing rules if one for the binary connectives ∧,∨, and →, if one knows the value of
one of the arguments it is not necessary to evaluate the other. For instance in
evaluating φ ∨ ψ if we already know that φ is true, we don’t need to evaluate ψ,
since we already know that the disjunction is true. Similarly in φ ∧ ψ, if we have
evaluated φ to be false, then we do not need to evaluate ψ since we already know,
that independently from the evaluation of ψ the conjunction will be false. Notice
that, this simplification is not possible for the ≡ connective, since to evaluate the
truth value of φ ≡ ψ knowing the truth value of φ is not sufficient to predict the
truth value of the entire formula; we indeed have to evaluate ψ and check that the
two truth values coincides.

The rewriting rules for ∧, ∨ and → therefore can be rewritten as follows:

> ∧> ⇒ > > ∨ ∗ ⇒ > ∗ → > ⇒ >
∗ ∧ ⊥ ⇒ ⊥ ∗ ∨ > ⇒ > > → ⊥ ⇒ ⊥
⊥ ∧ ∗ ⇒ ⊥ ⊥ ∨⊥ ⇒ ⊥ ⊥ → ∗ ⇒ >

where “∗” denotes either > or ⊥ and therefore the corresponding expression does
not need to be evaluated.

1.2. Formulas as boolean functions. A propositional formula φ on the set
of propositional variables P specifies a boolean function

fφ : {0, 1}|P| → {0, 1}

fφ is a function that takes a vector of n 0-1 values (corresponding to a truth
assignment) where n = |P| and returns either 1 or 0 depending of the fact that the
corresponding truth assignment satisfies or does not satisfies the formula. More
formually, if P = {p1, . . . , pn}, for every vector x = (x1, . . . , xn) ∈ {0, 1}n we define

2. SATISFIABILITY CHECKING 7

Ix as the interpretation of P that assigns Ix(pi) = xi. With this convention the
function fφ can be defined

fφ(x) =

{
1 if Ix |= φ

0 if Ix 6|= φ

Notice that, if φ is equivalent to ψ then fφ and fψ are the same functions.

Proposition 1.1. If |P| = n then there are at most 22n

boolean functions that
can be defined in terms of a formulas with propositinal variables in P.

Proof. The number of functions from a finite set M to another finite set N
are nm, where m and n are the number of elements (the cardinality) of the sets M
and N respectively. Indeed for every element x ∈M whe have n different options to
define f(x) since f(x) ∈ N . So we have n options for the first element of M , other
n options for the second elements, and so on. In total we have nm alternatives.
Therefore the number of distinct functions form {0, 1}n to {0, 1} are equal to 1

|{0, 1}||{0,1}
n| = 22n

Notice that {0, 1} contains 2 elements, and {0, 1}n contains 2n elements. �

The second question one should answer is the following: given an arbitrary
function f : {0, 1}n → {0, 1} is there a formula on the set P of n propositional
fariables such that fφ is equal to f?. The answer is yes, and it is stated in the
following proposition.

Proposition 1.2. For every function f : {0, 1}n → {0, 1}, there is a formula
φ with at most n propositional variables, such that fφ is equal to f .

Proof. Let p1, . . . , pn be n distinct propositional variables. We define the
formula φ as follows: For every x ∈ {0, 1}n let us define the formula φx as the
conjunction of pi if xi = 1 and ¬pi if xi = 0. We can then define the formula

φ =
∨

f(x)=1

φx

Notice that the formula φ is satisfied by the assignments Ix such that f(x) = 1
and it is not satisfied by the assignments in which f(x) = 0. Given the definition
of fφ we can easily see that fφ and f coincides. �

2. Satisfiability checking

The propositional satisfiability problem (often called SAT) is the problem of
determining whether a set of sentences in Propositional Logic is satisfiable. The
problem is significant both because the question of satisfiability is important in its
own right and because many other questions in Propositional Logic can be reduced
to that of propositional satisfiability. In practice, many automated reasoning prob-
lems in Propositional Logic are first reduced to satisfiability problems and then by
using a satisfiability solver. Today, SAT solvers are commonly used in hardware
design, software analysis, planning, mathematics, security analysis, and many other
areas.

1For every set S, |S| indicates the number of elements of S, aka, the cardinality of S

8 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

2.1. Truth tables.

Example 1.2. Let

Γ = {p ∨ q, p ∨ ¬q,¬p ∨ q,¬p ∨ ¬q ∨ ¬r,¬p ∨ r}

We want to determine whether Γ is satisfiable. So, we build a truth table for this
case.

p q r p ∨ q p ∨ ¬q ¬p ∨ q ¬p ∨ ¬q ∨ ¬r ¬p ∨ r Γ
0 0 0 0 1 1 1 0 0
0 0 1 0 1 1 1 1 0
0 1 0 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0
1 0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 1 0
1 1 0 1 1 1 1 0 0
1 1 1 1 1 1 0 1 0

In a truth table there is one row for each possible truth assignment. For each truth
assignment, each of the sentences in Γ is evaluated. If any sentence evaluates to
0, then Γ as a whole is not satisfied by the truth assignment. If a satisfying truth
assignment is found, then Γ is determined to be satisfiable. If no satisfying truth
assignment is found, then Γ is unsatisfiable. In this example, every row ends with
Γ not satisfied. So the truth table method concludes that Γ is unsatisfiable (not
satisfiable).

The truth table method is complete because every truth assignment is checked.
However, the method is impractical for all but very small problem instances. In
our example with 3 propositional variables, there are 23 = 8 rows. For a problem
instance with 10 propositional variables, there are 210 = 1024 rows - still quite
small for a modern computer. But as the number of propositions grow, the number
of rows quickly overwhelms even the fastest computers. A more efficient method is
needed.

3. Normal forms

The methods to check satisfiability that are more efficient that truth tables
require that the input (set of) formula(s) have a specific structure. The description
of such a structure is also called Normal Form. A normal form is a pattern for
the structure of a formulas. A formula is in a specific normal form if its structure
matches the pattern of the normal form. An important property of normal forms is
that every formula can be transformed in an equivalent formula which is in normal
form. This property is important since the semantics of the formula should be
preserved by the transformation in normal form. There are many possible normal
forms, e.g., negated normal form, conjunctive normal form, disjunctive normal form,
deterministic disjunctive normal form . . . , each of which is suitable for solving a
specific problem. In this chapter, we introduce two normal forms, namely: Negated
Normal Form and Conjunctive Normal Form, which are normal forms suitable
for checking satisfiability. Further normal forms will be introduced in successive
chapter where we will consider other problems such as for instance model counting
and weighted model counting.

3. NORMAL FORMS 9

Let us first introduce some terminology. A literal is either an atomic formula or
the negation of an atomic formula. Examples of literals are p, q, ¬p, ¬q. A literal
is positive if it is an antom; a literal is negative if it is the negation of an atom.

3.1. Negation Normal Form (NNF).

Definition 1.2 (Negation Normal Form). A formula is in negation normal
form (NNF) if negation connective (¬) occurs only in literals; or equivalently if the
negation connective occurs only in front of atomic formulas.

Example 1.3. p ∧ ¬q is in NNF, ¬(p ∧ q) is not in NNF.

Any formula can be transformed into an equivalent formula in NNF. by push-
ing the negation operator inwards, applying the following transformations that
preserves the semantics.

¬¬φ⇒ φ

¬(φ ∧ ψ)⇒ ¬φ ∨ ¬ψ
¬(φ ∨ ψ)⇒ ¬φ ∧ ¬ψ(1)

¬(φ→ ψ)⇒ φ ∧ ¬ψ
¬(φ↔ ψ)⇒ (φ ∨ ψ) ∧ (¬φ ∨ ¬ψ)

Proposition 1.3. If φ′ is obtained by applying any sequence of transofmration
rules in (1) to φ, then φ is equivalent to φ′.

Proof. Recall that φ is equivalent to φ′ if and only if for every ionterpretation
I of the propositional variables in φ and φ′, I |= φ if and only if I |= φ′. Let us
start with the first rule:

I |= ¬¬φ iff I 6|= ¬φ iff I |= φ

I |= ¬(φ ∧ ψ) iff I 6|= φ ∧ ψ iff either I 6|= φ or I 6|= ψ

iff either I |= ¬φ or I |= ¬ψ iff I |= ¬φ ∨ ¬ψ

I |= ¬(φ ∨ ψ) iff I 6|= φ ∧ ψ iff I 6|= φ and I 6|= ψ

iff I |= ¬φ and I |= ¬ψ iff I |= ¬φ ∧ ¬ψ

I |= ¬(φ→ ψ) iff I 6|= φ→ ψ iff I |= φ and I 6|= ψ

iff I |= φ and I |= ¬ψ iff I |= φ ∧ ¬ψ

I |= ¬(φ↔ ψ) iff I 6|= φ ≡ ψ
iff either I |= φ and I 6|= ψ or I 6|= φ and I |= ψ

iff either I |= φ and I |= ¬ψ or I |= ¬φ and I |= ψ

iff either I |= φ ∧ ¬ψ or I |= ¬φ ∧ ψ
iff I |= (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)

iff I |= (φ ∨ ψ) ∧ (¬φ ∨ ¬ψ)

�

10 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

Notice that the presence of the ↔ connective in the formula makes its negated
normal form to to exponentially increase in the size. For instance the NNF of

¬(p↔ ¬(q ↔ r))

is equal to

(¬p ∧ (p↔ r)) ∨ (p ∧ ((q ∧ ¬r) ∨ (¬q ∧ r)))
One final observation about Negated Normal Form concerns the fact that the “neg-
ative information” present in a NNF formula is not encoded exclusively by negative
literals. For instance, an implication of the form p → q encodes some negative
information despite the absence of negative literals. Indeed, when q is evaluated
to false, p should also be false. This can be also seen by the fact that p → q is
equivalent to ¬p ∨ q. For this reason NNF is usally combined with other normal
forms which remove the → and ↔ connective by restriting φ → ψ as ¬φ ∨ ψ and
φ↔ ψ as (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ).

3.2. Conjunctive Normal Form (CNF). Conjunctive Normal Form (CNF)
is one of the most common form taken in input by algorithm for satisfiability
checking. CNF is more specific than NNF (therefore every formula in CNF is also
in NNF) and uses only the connectives ∨, ∧ and ¬. We introduce the notion of
clause.

A clause is a formula of the form l1 ∨ l2 ∨ · · · ∨ ln where li are literals. An
example of clause is

a ∨ ¬b ∨ c
An interpretation I satisfies a clause l1∨· · ·∨ln if there is a literal li that is satisfied
by I. We also admit clauses that are composed of zero literals, which is called empty
clause. By applying the same criteria for satisfiability of a clause, we have that an
interpretation never satisfies the empty clause. For this reason the empty clasue
can be consistently denoted by the ⊥ symbol, representing the proposition that is
always false. The clauses that contains only one literal nare called unit clauses. An
interpretation satisfies a unit clause if and only if it assign to true (resp. false) the
positive (resp. negative) literal it contains. Empty clauses and unit clauses play an
important role in the satisfiability checking procedure, this is why they received a
special name.

Definition 1.3 (Conjunctive normal form). A formula is in conjunctive nor-
mal form if if is the conjunction clauses.

Example 1.4. The formula

(p ∨ ¬q ∨ r) ∧ (q ∨ ¬r) ∧ (¬p ∨ ¬q) ∧ r

is in CNF; it is composed by the following four clauses:

C1 = p ∨ ¬q ∨ r
C2 = q ∨ ¬r
C3 = ¬p ∨ ¬q
C4 = r

that contains 3, 3, 2, and 1 literal respectively.

3. NORMAL FORMS 11

The following is a procedure for reducing a formula in CNF can be
obtained by applying
the following steps

(1) transform the implications→ and the equivalence↔ with
equivalent formulas using ¬, ∧ and ∨

A→ B =⇒ ¬A ∨B
A↔ B =⇒ (¬A ∨B) ∧ (¬B ∨A)

(2) push the negation operator ¬ in front of the atomic propo-
sitions (NNF)

¬(A ∨B) =⇒ ¬A ∧ ¬B
¬(A ∧B) =⇒ ¬A ∨ ¬B

(3) Distribute disjunction ∨ over conjunction ∧
A ∨ (B ∧ C) =⇒ (A ∨B) ∧ (A ∨ C)

(A ∧B) ∨ C) =⇒ (A ∨ C) ∧ (B ∨ C)

Figure 1. CNF reduction rules.

Due to the fact that φ ∨ φ and φ ∧ φ are equivalent to φ (identical operand)
and the fact that φ ∨ ψ and φ ∧ ψ are equivalent to ψ ∨ φ ψ ∧ φ (commutativity)
we can consider a clause as a set of literals, and a CNF formula as a set of sets of
literals. For instance the previous example can be seen as the set that contains four
sets (clauses)

{{p,¬q, r}, {q,¬r}, {¬p,¬q}, {r}}

Proposition 1.4. Every formula can be rewritten in an equivalent formula in
CNF.

As for the case of NNF we provide a set of rewriting rules, shown in Figure 1
that preserves the semantics (i.e., a formula is rewritten in an equivalent formula).
To reduce a formula in CNF we therefore define a recursive algorithm CNF that
computes the CNF of a formula φ by, first recursively compute the CNF of the
sub-formulas of φ and then combine the results

Example 1.5. Let us transform the following formula in CNF

(p→ q) ∧ ¬q → ¬p =⇒ ((p→ q) ∧ ¬q)→ ¬p explicit the scope of connectives

=⇒ ¬((¬p ∨ q) ∧ ¬q) ∨ ¬p rewrite → in terms of ¬ and ∨
=⇒ ((p ∧ ¬q) ∨ q) ∨ ¬p move ¬ in front of atomic formulas

=⇒ ((p ∨ ¬q) ∧ (¬q ∨ q) ∨ ¬p distribute ∨ over ∧
=⇒ ((p ∨ ¬q ∨ ¬p) ∧ (¬q ∨ q ∨ ¬p) distribute ∨ over ∧

Proposition 1.5. CNF terminates for every input φ.

Proof. Notice that each rules (1), (2) and (3) can be applied only a finite
number of times. �

After proving termination we also have to show that the transformation in CNF
do not change the semantics of the formula, i.e., CNF(φ) and φ are equivalent.

12 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

Proposition 1.6. φ is equivalent to CNF(φ).

Proof. This is a consequence of the fact that every transformation applied by
the procedure for reduction to CNF tranform a formula into an equivalent formula.

�

An interpretation I satisfies a formula in CNF, or equivalently, a set of clauses
{C1, . . . , Cn}, if I satisfies at least on literal lij ∈ Ci for every clause Ci. This
means that to check satisfiability of a set of clauses we have to find a truth assign-
ment such that for every clauses it select one literal negative and assign 0 or 1 to
the corresponding propositional variables depending on the fact that the literal is
negative or positive.

Example 1.6. Consider the previous set of clauses

{{p,¬q, r}, {q,¬r}, {¬p,¬q}, {r}}(2)

An interpretation that satisfies (2) should satisfy at least one literal per clause.
Since the last clause contains only one literal (i.e. r) there is no other choice than
satisfying it by setting I(r) = True. This choice would also be a good one for the
first clause, since it contains also r which is satisfied by I, therefore we have to
take care only of the two remaining clauses:

{q,¬r}, {¬p,¬q}
Considering the first of the above two clauses, one can see that the literal ¬r is
already falsified by our previous (obliged) choice of I(r) = True. Therefore, to
satisfy the first clause, the only choice is to set I(q) = True. We ore now left with
one last clause:

{¬p,¬q}

Since I(q) = True, the second literal cannot be satisfied; therefore we should satisfy
¬p by setting I(p) = False. In conclusion, we have the interpretation

I(p) = False I(q) = True I(r) = True

A graphical representation of the interpretation that we have found is the following:

p ¬q r

C1

q ¬r

C2

¬p ¬q

C3

r

C4

¬p q r

literals satisfied by I

3.3. Tseytin Transformation. Checking satisfiability/validity of a formula
in CNF is easier. But there is a price in terms of the size of formulas. Indeed due the
restriction imposed by CNF, representing some complex proposition in a CNF form
can require an exponentially larger formula than by representing it with the full
propositional language. As an intuitive example consider the formula p↔ q which

3. NORMAL FORMS 13

in CNF double its size becoming (¬p ∨ q) ∧ (¬q ∨ p). Another example, happens
when the formul ais a disjunction of conjunct (instead of a conjuction of disjunct)
e.g., the formula (a∧ b)∨ (c∧d) expands into (a∨ c)∧ (a∨d)∧ (b∨ c)∧ (b∨d) which
is twice the size of the original formula. When these patterns are nested, you can
easily immagine that the explosion is of the order of 2n where n iis the maximum
nesting. Let us consider an example.

Example 1.7 (Exponential explosion). The CNF of the formula p ↔ (q ↔
(r ↔ s)) is composed by the following clauses

(¬r,¬s,¬q, p) (r, s,¬q, p) (¬s, r, q, p) (¬r, s, q, p)
(¬r,¬s, q,¬p) (r, s, q,¬p) (¬s, r,¬q,¬p) (¬r, s,¬q,¬p)

If we add an extra equivalence and compute the CNF of

p↔ (q ↔ (r ↔ (s↔ t)))

we obtain twice the number of clauses

(¬s,¬t,¬r,¬q, p) (s, t,¬r,¬q, p) (¬t, s, r,¬q, p) (¬s, t, r,¬q, p)
(¬s,¬t, r, q, p) (s, t, r, q, p) (¬t, s,¬r, q, p) (¬s, t,¬r, q, p)

(¬s,¬t,¬r, q,¬p) (s, t,¬r, q,¬p) (¬t, s, r, q,¬p) (¬s, t, r, q,¬p)
(¬s,¬t, r,¬q,¬p) (s, t, r,¬q,¬p) (¬t, s,¬r,¬q,¬p) (¬s, t,¬r,¬q,¬p)

The exponential explosion of the CNF transformation can be contrasted by
avoiding to do multiple time the same CNF expansion. To this aim, G. Tseytin in
Tseytin 1966 proposed the following procedure:

(1) for a subformula ψ of φ which is not a literal, introducing new proposi-
tional variables p;

(2) (ii) replace all the occurrences of ψ with the p, and
(3) add a new conjunction stating that p and φ are equivlent i.e ψ ↔ p.

In short we apply this transformation:

φ⇒ φ[ψ/p] ∧ p↔ ψ(3)

where p is a “fresh” propositional variable, i.e., a propositional variable that do
not appear in φ, and the notation φ[ψ/p] indicates the formula φ obtained by
replacing each occurrences of the subformula ψ with the propositional variable p.
This transformation has the advantage that the exponential blow up of the “CNF-
ization” of ψ happens only onece instead the number of occurrences of ψ in φ.

The transformation (3) however does not preserve the semantics of the formula,
i.e., the resulting formula is not equivalent to the original formula. For instance
the formula (a → b) → (c → (a → b)) is not equivalent to the formula (p →
(c → p)) ∧ (p ↔ (a → b)), obtained by replacing the subformula a → b with
p. Indeed there are interpretations of the first formulas which do not satisfy the
second. For instance the interpretation with I(p) = true and I(a) = True and
I(b) = False satisfies the first formula but not the second. This does not constitute
a serious problem, since we are interesting in checking satisfiability. For this task
it is sufficient that the original formula is satisfiable if and only if the resulting
formula is also satisfiable.

We therefore inroduce a weaker notion than equvalence, which is enough for
checking satisfiability.

14 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

Definition 1.4 (Equi-satisfiable formulas). Two formulas φ and φ′ are equi-
satisfiable if, φ is satisfiable if and only if φ′ is satisfiable

Equi-satisfiability is weaker than equivalence; indeed it is easy to find pairs of
equi-satisfiable formulas that are not equivalent. For instance any pair of atomic
formulas p and q are equisatisfiable (indeed they are both satisfiable) but they are
not equivalent, Since they are satisfied by different interpretations. Let us now
prove that the transformation 3 preserves satisfiability. One can see the difference
between equivalent and equi-satisfiability by looking at their formal definition:

φ and ψ are equivalent ∀I. I |= φ⇔ I |= ψ

φ and ψ are equi-satisfiable ∃I. I |= φ⇔ ∃J . J |= ψ

Proposition 1.7. For every formula φ and avery propositional variable p not
occurring in φ, φ and φ[ψ/p] ∧ p↔ ψ are equisatisfiable.

Proof. Suppose that φ is satisfiable by an interpretation I let I ′ be the in-
terpretation obtained from I by setting

I ′(p) =

{
True if I |= ψ

False Otherwise

By construction I ′ |= p ↔ ψ, To show that I ′ |= φ[ψ/p] we have to proceed by
induction.

• Base case: φ is equal to ψ. Then I |= φ implies that I ′ |= p and since
φ[ψ/p] is equal to p, we have that I ′ |= φ[ψ/p]. If instead ψ is not a
subformula of φ then φ[ψ/p] = φ and since φ does not contain p, it has
the same truth value w.r.t., I ′ and I, and therefore I ′ |= φ[ψ/p].

• Step case: Suppose that φ is φ1 ∨ φ2, We have that I |= φi for some
i = 1, 2. By the induction hypothesis we have that I ′ |= φi[ψ/p] Since
φ[ψ/p] is equal to φ1[ψ/p] ∨ φ2[ψ/p], we can conclude that I ′ |= φ[ψ/p].

• . . . Do the other cases by exercize.

�

The Tseytin transformation introduced in Tseytin 1966 applies the (3) rule in
a sistematic way, This correspond to the following procedure that can be applied
to any formula φ (not necessariliy in CNF).

(1) let ψ1, . . . , ψn all the subformulas of φ, including φ itself and excluding
those that are literals2: make sure that if ψi is a subformula of ψj then
j ≥ i;

(2) let x1, . . . , xn a set of propositional variables not occurring in φ.
(3) for i = 1, . . . , n apply the following transformation:

φ⇒ φ[ψi/xi] ∧ (xi ↔ ψi)

(4) apply CNF to the resulting formula.

Example 1.8. Let us consider the formula

(p ∧ q) ∨ ¬(¬p ∧ (q ∨ ¬r))
With the following parse tree and subformulas

2In the original formulation also negative literal were included.

4. DAVIS-PUTNAM-LOGEMANN-LOVELAND PROCEDURE (DPLL) 15

∨ x1

∧ x2

p q

¬ x2

∧ x4

¬

p

∨ x5

q ¬

r

The Tseytin’s transformation introduces 5 additional variable x1, . . . , x5 since the
formula has 5 subformuls which are not literals. In the following table, we provide
the definition of each xi in terms of it’s direct subformulas, and the corresponding
transformation in CNF.

x1 ↔ x2 ∨ x3 ↔ {¬x1, x2, x3}, {¬x2, x1}, {¬x3, x1}
x2 ↔ p ∧ q ↔ {¬x2, p}, {¬x2, q}, {¬p,¬q, x2}
x3 ↔ ¬x4 ↔ {¬x3,¬x4}, {x3, x4}
x4 ↔ x5 ∧ ¬p ↔ {¬x4, x5}, {¬x5, x4}
x5 ↔ q ∨ ¬r ↔ {¬x5, q,¬r}, {¬q, x5}, {r, x5}

To check if the initial formula is satisfiable it is sufficent to check if x1 (which is the
auxiliary variable that encodes the formula itself) and all the CNF provided above
are satisfiable.

Tseytin’s tranformation transform a formula φ into a set of clauses that contains
at most three literals as all the formula that are given in input to CNF are of the
form xi ↔ (l1 ◦ l2) or xi ↔ ¬xj , where ◦ is some binary connective in {∧,∨,→,↔}.
The connective that generates the largest number of clauses is ↔, and they are
4. Indeed, CNF(a ↔ (b ↔ c)) contains four clauses, namely: {a, b, c}, {a,¬b,¬c},
{¬a, b,¬c} and {¬a,¬b, c}. This means that if a formula φ contains n connectives
its Tseytin tranformed contains at most 4×n clauses each of which contains at most
3 literals. Therefore the size of the CNF obtained with the Tseytin tranformation
is linear w.r.t., the number of connectives of the original formula. This is clearly
a good news for the deciding satisfiability but this reduction comes with the price
of introducing n new propositional variable, for which the satisfiability d decision
procedure has to produce a truth assignment.

4. Davis-Putnam-Logemann-Loveland Procedure (DPLL)

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm Davis and Putnam
1960; Davis, Logemann, and Loveland 1962 is a procedure that combines search
and deduction to decide satisfiability of CNF formulas. This algorithm underlies
most modern SAT solvers. While the basic procedure itself has been developed
in the 60’s, practical DPLL-based SAT solvers only started to appear from the
mid 1990s as a result of enhancements such as clause learning, non-chronological

16 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

backtracking, branching heuristics, restart strategies, and lazy data structures. The
DPLL algorithm is based around backtrack search for a satisfying valuation.

Before introducing the DPLL algorithm, we need to provide some notation
and a key subruting exploited by DPLL, called Unit Propagation that deals with
the unit clauses. A partial interpretation is a truth assignment for a subset of
the propositional variables of a formula. As we have seen in the section of model
checking, partial assignments in some cases can fully determine the truth value of
some formulas. For instance if p is assigned to True by a partial interpretation then
any formula of the form p ∨ φ will be evaluated to true, independently from the
truth value of φ. A partial evaluation can be seen as a set of literals. We will use
the same notation for interpretations and partial interpretations. p ∈ I means that
I(p) = True ¬p ∈ I means that I(p) = False. We also use the notation l̄ to denote
the opposite of the literal l. I.e., p̄ is ¬p and ¬p is p. Similar definition can be
defined also in sets of literals C. C̄ = {l̄ | l ∈ C}.

Given a partial assignment I, we can attempt to evaluate a clause C.

• A clause C is true under I if one of its literals is true, i.e if I ∩ C 6= ∅
• A clause C is false under I if all its literal are set to false by I, i.e. C ⊆ Ī.
• therwise C is undefined (or ”unresolved”) in I.

When a clause is unresolved in an assignment I we can simplify it by evaluating
the literals that are assigned by I, For a clause C and a literal l the semplification
of C w.r.t., l, denoted by C|l denotes the clause obtained by evaluating C w.r.t.,
the partial evaluation that assigns the literal l to true (i.e. l ∈ I). C|l is obtained
from C by the following two operations:

• removing all the clauses that contains l;
• remove l̄ (if present) from C,

For any CNF formula φ, φ|l = {C|l | C ∈ φ}. For a set of literals {l1, . . . , ln},
Cl1,...,ln is equal to (. . . (C|l1) |l2 . . .) |ln Notice that the order and the repetitions
does not affect the result , and therefore we can use the notation φ|I where I is a
set of literal for denotign φ|l1,...,ln , where I = {l1, . . . , ln}.

The subruting that is used by DPLL is called unit propagation and is applied
when a CNF formula contains some unit clause. If φ contains unit clause {l} then,
to satisfy φ we have to satisfy {l} and therefore the literal l must be evaluated to
True. As a consequence φ can be simplified using the procedure called UnitProp-
agation. The procedure is shown in algorithm ??.

Algorithm 1 Unitpropagation(φ : CNF, I : Partial assignment)

1: while φ contains a unit clause {l} do
2: I, φ← I ∪ {l}, φ|l
3: if {} ∈ φ then
4: return I, φ
5: end if
6: end while
7: return I, φ

The basic DPLL algorithm is shown in Figure 1. DPLL algorithm incrementally
build a a partial interpretation that satisfies the input CNF-formula by depth-first
search. At any time the state of the algorithm is a pair (I, φ), where I is a partial

4. DAVIS-PUTNAM-LOGEMANN-LOVELAND PROCEDURE (DPLL) 17

truth assignment and φ is the set of clauses that are undecided by I. This means
that I must be extended in order to satisfy all the remaining clauses which are in
φ.

Algorithm 2 DPLL(φ : CNF, I : Partial assignment)

1: I, φ← UnitPropagation(I, φ)
2: if {} ∈ φ then
3: return Unsatisfiable
4: end if
5: if φ = {} then
6: return I
7: else
8: select a l from some clause C ∈ φ
9: I = DPLL(φ|l, I ∪ {l})

10: if I 6= Unsatisfiable then
11: return I
12: else
13: I ← DPLL(φ|l̄, I ∪ {l̄})
14: return I
15: end if
16: end if

Example 1.9. Let us consider a concrete example and look at how DPLL be-
haves on the following CNF φ.

{A,B}(4)

{B,C}(5)

{¬A,¬X,Y }(6)

{¬A,X,Z}(7)

{¬A,¬Y,Z}(8)

{¬A,X,¬Z}(9)

{¬A,¬Y,¬Z}(10)

Figure 2 shows the execution trace of DPLL algorithm on the set of clauses (4)–(10).
The input set of clauses do not contain a unit clauses therefore unit propagation is
not applied, furthermore I is not Unsatisfiable and and the set of clauses φ are not
empty. Therefore DPLL goes to line 2 and select the literal A. Then it recursively
apply DPLL to φ|A and I = {A}. The recursive calls proceeds similarly by selecting
first the literal B and then X; At this point DPLL is called with input φ|A,B,X and
I = {A,B, x}. Since φA,B,X contains a unit clause {Y } then Y then the unit
propagation is called. This procedure executes two steps by first propagating Y and
then propagating Y , returning the set of clauses that containt the empty clause.
At this point DPLL returns Unsatisfiable and backtrack (shown in dashed lines)
at the most recent choice, which is on the literal X. Therefore, it analize the
case of the negative literal ¬X, calling DPLL on φA,B,¬X and I = {A,B,¬X}.
But also in this case DPLL after calling unit propagation returns Unsatisfiable,
Therfore, DPLL backtrack to the upper literal that has been choosen which is B

18 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

φ =

{A,B}, {B,C}, {¬A,¬X,Y }{¬A,X,Z}, {¬A,¬Y,Z}
{¬A,X,¬Z}, {¬A,¬Y,¬Z}

φ|A =

{B,C}, {¬X,Y }{X,Z}, {¬Y,Z}
{X,¬Z}, {¬Y,¬Z}

φ|A,B =

{¬X,Y }, {X,Z}{¬Y, Z}, {X,¬Z}
{¬Y,¬Z}

φ|A,B,X =

{
{Y }, {¬Y, Z},
{¬Y,¬Z}

}

φ|A,B,X,Y =
{
{Z}, {¬Z}

}

φ|A,B,X,Y,Z = {{}}

I = {A,B,X, Y, Z}

I = {A,B,X, Y }

I = {A,B,X}

φ =

{
{Z}, {¬Y,Z}
{¬Z}, {¬Y,¬Z}

}

φ =
{
{}, {¬Y }

}
I = {A,B,¬X,Z}

I = {A,B,¬X}

I = {A,B}

φ|A,¬B =

{C}, {¬X,Y }{X,Z}, {¬Y,Z}
{X,¬Z}, {¬Y,¬Z}

φ|A,¬B,C =

{¬X,Y }, {X,Z}{¬Y,Z}, {X,¬Z},
{¬Y,¬Z}

φ|A,¬B,C,X =

{Y },{¬Y, Z},
{¬Y,¬Z}

φ|A,¬B,C,X,Y =
{
{Z}, {¬Z}

}

φ|A,¬B,C,X,Y,Z =
{
{}
}

I = {A,¬B,C,X, Y, Z}

I = {A,¬B,C,X, Y }

I = {A,¬B,C,X}

φ|A,¬B,C,¬X =

{Z}, {¬Z}{¬Y, Z}
{¬Y,¬Z}

φ|A,¬B,C,¬X,Z =
{
{}, {¬Y }

}
I = {A,¬B,C,¬X,Z}

I = {A,¬B,C,¬X}

I = {A,¬B,C}

I = {A,¬B}

I = {A}

φ =

{
{B}
{B,C}

}

{}

I = {¬A,B}

I = {¬A}

Figure 2. The execution trace of DPLL algorithm on the set of
clauses (4)–(10).

.

and explores the case with ¬B. As one can see from the trace also in this case
all the branches leads to a set of unsatisfiable clauses (empty clause). Therfore
DPLL backtrack to the initial choiche, which was on the literal A, and attemst with
the assignment I = {¬A}. This leads after a unit propoatation to the emtpy set
of clauses, and tDPLL returns the partial assignment {¬A,B}, and therefore the
initial set of clauses are satisfiable, by all the assignments that agree with the partial
assignment returned by DPLL.

5. SAT SOLVERS 19

5. Sat Solvers

Most of of the satate-of-the-art implementation of sat solvers are available
through Python interface. In this section we summarize the main features offered
by PySAT. Before introducing the library, we introduce a format for representation
of CNF, called DIMACS.

5.1. DIMACS CNF. The DIMACS CNF format is a textual representation of a
formula in conjunctive normal form. A formula in conjunctive normal form is a
conjunction (logical and) of a set of clauses. Each clause is a disjunction (logical
or) of a set of literals. A literal is a variable or a negation of a variable. DIMACS

CNF uses positive integers to represent variables and their negation to represent
the corresponding negated variable. This convention is also used for all textual
input and output in Varisat.

There are several variations and extensions of the DIMACS CNF format. Varisat
tries to accept any variation commonly found. Currently no extensions are sup-
ported.

DIMACS CNF is a textual format. Any line that begins with the character c is
considered a comment. Some other parsers require comments to start with c and/or
support comments only at the beginning of a file. Varisat supports them anywhere
in the file.

A DIMACS file begins with a header line of the form p cnf ¡variables¿ ¡clauses¿.
Where ¡variables¿ and ¡clauses¿ are replaced with decimal numbers indicating the
number of variables and clauses in the formula.

Varisat does not require a header line. If it is missing, it will infer the number
of clauses and variables. If a header line is present, though, the formula must have
the exact number of clauses and may not use variables represented by a number
larger than indicated.

Following the header line are the clauses of the formula. The clauses are en-
coded as a sequence of decimal numbers separated by spaces and newlines. For
each clause the contained literals are listed followed by a 0. Usually each clause is
listed on a separate line, using spaces between each of the literals and the final zero.
Sometimes long clauses use multiple lines. Varisat will accept any combination of
spaces and newlines as separators, including multiple clauses on the same line.

Example 1.10. As an example the formula (x ∨ y ∨ ¬z) ∧ (¬y ∨ z) could be
encoded as this:

p cnf 3 2

1 2 -3 0

-2 3 0

The first line “p cnf 3 2” states that this file specifies a problem in cnf with 3

propositional variables and 2 clauses. The other two lines specify the clauses (every
clause ends with a 0).

5.2. Problem solving with Sat Solvers. In this section we describe how
to compute a solution of a problem that you have specified in terms of a set of
propositional formula Γ that uses the set of propositional variables P. Usually P
contains propositional variable with some “human readable” name. For instance we
can use the the propositional variable happy(John) to remind us that it represents
the proposition that John is happy.

20 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

5.2.1. Encoding and Decoding propositinal variables. The first operation that
you have to perfomr is to define an function (encoding) that maps each p ∈ P into
a natural number. i.e, the function

Encode : P −→ [n]

where [n] = {1, 2, . . . , n} and n is the number of peropositional variables which
are present in P. The function Encode cannot associate the same integer to two
different propositional variables, i.e., Encode is injective. This property allows us
to define the Decode function from [n] to P as the inverse of Encode.

Decode : [n] −→ P
is such that Decode(i) = Encode−1(i).

5.2.2. Generating the DIMACS code. To generate the DIMACS code we have first
to generate the first line, which is

p CNF |P| |Γ|
that means that this is a cnf problem on |P| proposition and Γ clauses. Then for
every clause γ = {l1, . . . , lk} ∈ Γ we cenerate the line Encode(p) if li is a positive
literal p and −Encode(p) if li is a negative literal ¬p.

5.2.3. Decoding solution. We then call the sat solver on the encoding that we
have generated. The sat solver can return either UNSATISFIABLE or SATISFIABLE.
In the latter case we can ask the solver to return a mnodel. The sat solver return
a model codified in a sequence of positive and negative integers.

r = [±1,±2, . . . ,±n]

where n is the total number of propositional variables. The list encodes the following
interpretation: for every p ∈ P

Ir(p) =

{
True if Encode(p) ∈ r
False if −Encode(p) ∈ r

5.2.4. Additional solutions. If we want to obtain additional models we have to
add to the initial set of clauses that fact that we want a model different from Ir.
A model of Γ is different from Ir if at least one proposition takes a truth value
different from the one assigned by Ir. We can therefore add the clause∨

Ir(p)=True

¬p ∨
∨

Ir(p)=False

p

which can be codified in the sequence −r = [−i | i ∈ r].

5.3. PySAT. see website https://pysathq.github.io/

6. Exercises

Exercise 1:

Explain why φ |= ψ holds if and only if {φ,¬ψ} is not satisfiable.

Exercise 2:

How many conjunctive normal forms formulas can you build with n proposi-
tional variables? Remember that a conjunctive normal form can be seen as a set
of set of literals.

https://pysathq.github.io/

6. EXERCISES 21

Solution A CNF formula is a set of clauses. A clause is a set of literals. With
n propositional variables we can build 2n literals, i.e., the positive literals, which
coincide with the propositional variables, and the negative literals, which are the
negation of propositional variables. A clause is any set of literals, Therefore we can

build 22n clauses. A CNF formula is a set of clauses, therefore we can build 222n

CNF formulas. �

Exercise 3:

Transform the following formula in CNF

((¬((p→ q) ∧ (p ∨ q → r))→ (p→ r)))

Exercise 4:

Explain the difference between the following two facts: “φ and ψ are equiva-
lent”and “φ and ψ are equisatisfiable”

Solution φ is equivalent to ψ if and only if for all the interpretations I, I |= φ if
and onlyif I |= ψ.

φ and ψ are equisatisfiable if φ is satisfiable if and only if ψ is satisfiable. �

Exercise 5:

Consider the following two formulas:

φ = P → ((Q→ R) ∧ (Q ∨R))

ψ = (¬P → Q)→ R

Does φ logically follow from ψ? or viceversa? Prove it via truth tables.

Solution Let us compute the truth tables for both formulas:

P Q R P → ((Q → R) ∧ (Q ∨ R)) (¬ P → Q) → R
1 T T T T T T T T T T T T F T T T T T
2 T T F T F T F F F T T F F T T T F F
3 T F T T T F T T T F T T F T T F T T
4 T F F T F F T F F F F F F T T F F F
5 F T T F T T T T T T T T T F T T T T
6 F T F F T T F F F T T F T F T T F F
7 F F T F T F T T T F T T T F F F T T
8 F F F F T F T F F F F F T F F F T F

Notice that in all the cases in which φ is true φ is also true, this implies that φ
logically follows from ψ. On the other hand, since there is an assignment for which
φ is true but ψ is false (assignment number 6) ψ is not a logical consequence of φ.
�

Exercise 6:

Convert the following formula

p ∨ q → p ∧ ¬r
into an equisatisfiable CNF formula using the Tseitin’s Transformation.

Exercise 7:

Check the following facts via DPLL (in the exam there could be one of this).

22 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

(1) |= (p→ q) ∧ ¬q → ¬p
(2) |= (p→ q)→ (p→ ¬q)
(3) |= (p ∨ q → r) ∨ p ∨ q
(4) |= (p ∨ q) ∧ (p→ r ∧ q) ∧ (q → ¬r ∧ p)
(5) |= (p→ (q → r))→ ((p→ q)→ (p→ r))
(6) |= (p ∨ q) ∧ (¬q ∧ ¬p)
(7) |= (¬p→ q) ∨ ((p ∧ ¬r) ≡ q)
(8) |= (p ≡ q) ∨ (p ≡ ¬q)
(9) |= (p→ (q ∨ r)) ∨ (r → ¬p)

(10) |= ¬(p ≡ q) ∨ ¬(p ≡ ¬q)
(11) |= (p ≡ q) ∨ (p ≡ ¬q)

SolutionThe solution of some cases are the following:

(1) The expression |= (p → q) ∧ ¬q → ¬p means that (p → q) ∧ ¬q → ¬p is
valid. To check the validity of a formula φ with DPLL we have to check
(un)satisfiability of the negated of φ i.e. ¬φ. Since DPLL requires CNF
we first have to transform in CNF ¬φ.

CNF(¬((p→ q) ∧ ¬q → ¬p)) = CNF((p→ q) ∧ ¬q) ∧ CNF(¬¬p))
= CNF((p→ q)) ∧ CNF(¬q) ∧ CNF(p))

= {¬p, q}, {¬q}, {p}

Now we apply DPLL to {¬p, q}, {¬q}, {p}.
(a) since {¬p, q}, {¬q}, {p} contains unit clauses, we apply unitPropa-

gation.

{{¬p, q}, {¬q}, {p}} I = {} Unit propagation on {p}
{{¬p, q}, {¬q}}|p I = {p}
{{q}{¬q}} I = {p} Unit propagation on {q}
{{¬q}}|q I = {p, q}
{{}} I = {p, q} We have obtained the empty clause, and we return UNSAT

Since we have obtained the empty clauses we return UNSAT. Since
¬((p → q) ∧ ¬q → ¬p) is not satisfiable, it must be that (p →
q) ∧ ¬q → ¬p is valid.

(2) We first compute the CNF of the negation of the formula.

CNF(¬((p→ q)→ (p→ ¬q))) = CNF(p→ q) ∧ CNF(¬(p→ ¬q))
= CNF(p→ q) ∧ CNF(p) ∧ CNF(¬¬q)
= {¬p, q}, {p}, {q}

We can now apply DPLL

{{¬p, q}, {p}, {q}} I = {} Unit propagation on {q}
{{¬p, q}}|q, {p}|q{q}|q I = {q}
{{p}} I = {q} Unit propagation on {p}
{{p}}|p I = {q, p}
{} I = {q, p}

6. EXERCISES 23

Since we obtaine the empty set of clauses (all the clauses are eliminated),
then we have that the set of input clauses are satisfiable, I.e., that ¬((p→
q) → (p → ¬q)) is satisfiable, and therefore (p → q) → (p → ¬q) is not
valid. A counter-model, i.e. a model that falsifies it, is returned by the
DPLL and it is equal to I(p) = True and I(q) = True.

6. Let’s compute the CNF of ¬((p ∨ q) ∧ (¬q ∧ ¬p))

CNF(¬((p ∨ q) ∧ (¬q ∧ ¬p))) = CNF(¬(p ∨ q))⊗ CNF(¬(¬q ∧ ¬p))
= (CNF(¬p) ∧ CNF(¬q))⊗ CNF(q ∨ p)
= (¬p ∧ ¬q)⊗ (q ∨ p)
= (¬p ∨ q ∨ p) ∧ (¬q ∨ q ∨ p)
= {¬p, q, p}, {¬q, q, p}

We can now apply DPLL: Since there is no unit clauses, we skip that
block and select a literal

{{¬p, q, p}, {¬q, q, p}} I = {} select the literal p

{{¬p, q, p}, {¬q, q, p}}|p I = {p}
{} I = {p} We have eliminated all the clauses therefore we return SAT

Since the negated of the formula is satisfiable, then the initial formula
cannot be valid.

10. We compute the CNF of the negated formula

CNF(¬(¬(p ≡ q) ∨ ¬(p ≡ ¬q))) = CNF((p ≡ q) ∧ (p ≡ ¬q))
= CNF((p ≡ q)) ∧ CNF(p ≡ ¬q)
= (CNF(p)⊗ CNF(¬q)) ∧ (CNF(¬p)⊗ CNF(q))∧

(CNF(p)⊗ CNF(¬¬q)) ∧ (CNF(¬p)⊗ CNF(¬q))
= {p,¬q}, {¬p, q}, {p, q}, {¬p,¬q}

24 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

Then we apply the DPLL algorithm

{{p,¬q}, {¬p, q}, {p, q}, {¬p,¬q}} I = {} No unit clause. Choose literal p (*)

{{p,¬q}, {¬p, q}, {p, q}, {¬p,¬q}}|p I = {p}
{{q}, {¬q}} I = {p} Apply unit propagation for clause {q}
{{q}, {¬q}}|q I = {p, q}

{{}} I = {p, q} We have derived the empty
clause. So we have backtrack to
the last choosen literal (*) and
choose the opposite one

{{p,¬q}, {¬p, q}, {p, q}, {¬p,¬q}} I = {} Choose literal ¬p
{{p,¬q}, {¬p, q}, {p, q}, {¬p,¬q}}|¬p I = {p}

{{¬q}, {q}} I = {¬p}
{{q}, {¬q}} I = {¬p} Apply unit propagation for clause {q}
{{q}, {¬q}}|q I = {¬p, q}

{{}} I = {¬p, q} We have derived the empty
clause. Since no backtrack are
possible, we stop and return UN-
SAT

Since the negation of the formula is unsatisfiable, then the formula must
be valid.

�

Exercise 8:

Check the following facts via DPLL

|= ((¬A ∨B)→ C) ∨ ((¬B → A)→ C)

Solution To check that a formula φ is valid (i.e., |= φ) with DPLL we have to
tranform ¬φ in CNF and then try to derive the emplty clause. So let’s start with
transforming

¬(((¬A ∨B)→ C) ∨ ((¬B → A)→ C))

in CNF obtaining the following clauses

{¬A,B}, {A,B}, {¬C}
By unit propagation we have that I(C) = False, and we have to compute {A,B}|¬C , {A,¬B}|¬C
which remain unchanged. We can therefore choose an assignment I(B) = True
and we obtaine the empty set of clauses. WHich implies that any assignment with
I with I(C) = False and I(B) = True falsifies the intitial formula, and therefore
the intitial formula is not valid. �

Exercise 9:

Use DPLL to find an assignment that satisfies the clauses of exercise 1.

Solution Let φ be the set of clauses of exercise 1.

(1) no unit propagation (there are not unit clauses in φ)
(2) select the literal K of the first clasue and assign I(K) = True

6. EXERCISES 25

(3) compute φ|K
R ∨ V
¬R ∨ ¬V
¬A ∨R
V
¬H ∨A

(4) apply unit propagation for the clause V setting I(V) = True:

¬R
¬A ∨R
¬H ∨A

(5) apply unit propagation for the clause ¬R setting I(R) = False:

¬A
¬H ∨A

(6) apply unit propagation for the clause ¬A setting I(A) = False:

¬H

(7) apply unit propagation for the clause ¬H setting I(H) = False:
(8) we obtain the empty set of clauses, this implies DPLL exits with SAT

and returns the assignment: I(K) = True, I(V) = True, I(R) = False,
I(A) = False, I(H) = False

that corresponds to the situation where K and V are the only one who are chatting.
Notice that DPLL tells us that this is a situation compatible with the constraints,
but does not guarantee that this is the only one. There could be others. To check
if there are other assighment try to start by assigning false to K and continue with
the DPLL algorithm. �

Exercise 10:

There are N towns each one having a local radio station. We have to assing a
radio frequency out of Q available ones to each radio station. To avoid interferences,
towns closer than 20Km can not use the same frequency. We have a function
Distance(i, j) indicating the distance between town i and j. Is it possible to assign
the frequencies? Express the problem in CNF.

Solution We need the set of propositions {freq(q, t) | t ∈ T, q ∈ Q}, where
freq(q, t) means that the frequency q is assigned to the town t.

• Every town need one frequency∧
t∈T

∨
q∈Q

freq(q, t)

• the same frequency cannot be assigned to closed towns∧
q,q′∈Q
q 6=q′

∧
t,t′∈T

0<Distance(t,t′)≤20Km

¬freq(q, t) ∨ ¬freq(q, t′)

• only one frequency is assigned for every town∧
t∈T

∧
q,q′∈Q
q 6=q′

¬freq(q, t) ∨ ¬freq(q′, t)

26 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

�

Exercise 11:

Suppose that φ has k subformulas φ1, . . . , φk. How many new propositional
variables are introduced by the Tseitin’s transformation? Solution The Tseitin’s

transformation introduces one propositional variable for each non atomic sub-
formula. Therefore, if φ contains m propositional variables, the Tseitin’s trasfor-
mation introduces n−m new propositional variables. �

Exercise 12:

Check if the following formula is valid using DPLL. If it is not valid provide a
counter-model, i.e., an assignment that falsify it.

(p ∧ q) ∨ r ≡ (p→ ¬q)→ r

Solution To show the validity we have to show that the negated of the formula is
not satisfiable. Therefore let us consider the negated of the formula, which is

¬(((p ∧ q) ∨ r) ≡ ((p→ ¬q)→ r))

and transform it in CNF. We use the trnasfromation ¬(A ≡ B) is equivalent ot
(A ∨ B) ∧ (¬A ∨ ¬B), therefore we obtain the following two formulas that can be
transofrmed in CNF independently.

(((p ∧ q) ∨ r) ∨ ((p→ ¬q)→ r))

(¬((p ∧ q) ∨ r) ∨ ¬((p→ ¬q)→ r)

If we tranfrom the first formula we obtain the following clauses

{p, r}
{q, r}

If we transform the second formula we obtain the following clauses

{¬r}
{¬p,¬q}

Therefore the total set of clauses are:

{p, r}
{q, r}
{¬r}

{¬p,¬q}
We can apply unit propagation obtaining

{p}
{q}

{¬p,¬q}

and by other two applications of unit propagation we derive the empty clause {}.
Since we have done no branching, then there is no backtrack possible, and DPLL
terminates returning UNSAT. Therefore the initial formula was Valid, �

6. EXERCISES 27

Exercise 13:

Check the following formulas are valid with DPLL.

(1) (p→ q) |= ¬p→ ¬q
(2) (p→ q) ∧ ¬q |= ¬p
(3) p→ q ∧ r |= (p→ q)→ r
(4) p ∨ (¬q ∧ r) |= q ∨ ¬r → p
(5) ¬(p ∧ q) ≡ ¬p ∨ ¬q
(6) (p ∧ q) ∨ r ≡ (p→ ¬q)→ r
(7) (p ∨ q) ∧ (¬p→ ¬q) ≡ p
(8) ((p→ q)→ q)→ q ≡ p→ q

Exercise 14:

Define a method to transform a propositional formula in a set of formulas of
the form

n∧
i=1

ai →
m∨
j=1

bj(11)

where
∧0
i=1 ai = > and

∨0
j=1Bj = ⊥.

Solution Notice that, since A → B is equivalent to ¬A ∨ B, the formula (11) is
equivalent to

¬
n∧
i=1

ai ∨
m∨
j=1

bj

by pushing the ¬ operator inside the
∧

, we obtain the following equivalent formula
n∨
i=1

¬ai ∨
m∨
j=1

bj(12)

But this form is a clause that contains n negative literals and m positive literals.
Therefore to transform a formula φ in the form (11) one can first transform φ in
CNF, and then transform all the clause of the form (12) in the form (11) by applying
the inverse transformation that has been shown above. If a cluase does not contain
negative literals then it is of the form

m∨
i=1

bi

which is equivalent to

> →
m∨
i=1

bi

with the convention that
∧0
i=1 ai correspond to > then a clause with no negative

literals is transformed in:
0∧
i=1

ai →
m∨
i=1

bi

which is of the form (11). Analogous argument can be done for the clauses that do
not contain positive literals. �

Exercise 15:

28 1. DECISION PROCEDURES IN PROPOSITIONAL LOGIC

Provide the Tseitin’s Transformation of the following formula:

((p ∨ q)→ r) ∨ (r → (p ∨ q))

Solution The Tseitin’s tranformation introduces one new propositional variable

for all the non atomic subformula of the original formula. The set of non atomic
subformulas of ((p ∨ q) → r) ∨ (r → (p ∨ q)) (including itself) with the associated
new propositional variables are:

x1 ((p ∨ q)→ r) ∨ (r → (p ∨ q))
x2 ((p ∨ q)→ r)

x3 (r → (p ∨ q))
x4 (p ∨ q)

We then define the follwong clauses

x1 ≡ x2 ∨ x3

x2 ≡ x4 → r

x3 ≡ r → x4

x4 ≡ p ∨ q

and tranform them in clausal form

(¬x1, x2, x3), (¬x2, x1), (¬x3, x1)

(¬x2,¬x4, r), (x4, x2), (¬r, x2)

(¬x3,¬r, x4), (r, x3), (¬x4, x2)

(¬x4, p, q), (¬p, x4), (¬q, x4)

�

Exercise 16:

Let us consider the formula

φ = ((p ∨ q) ∧ r)→ ¬s(13)

Solution The subformulas of φ involved in the tranformation and the correspond-

ing fresh propositional variables are the following:

((p ∧ q) ∨ r)→ ¬s x1

(p ∧ q) ∨ r x2

p ∧ q x3

we then apply the sequence of rule (13).

x1 ∧ (x1 ↔ ((p ∧ q) ∨ r)→ ¬s)
x1 ∧ (x1 ↔ (x2 → ¬s)) ∧ (x2 ↔ ((p ∧ q) ∨ r))
x1 ∧ (x1 ↔ (x2 → ¬s)) ∧ (x2 ↔ (x3 ∨ r)) ∧ (x3 ↔ (p ∧ q))

We successifely have to tranform the obtained formula in CNF Obtaining the fol-
lowing set of clauses

6. EXERCISES 29

CNF(x1) = {x1}
CNF(x1 ↔ (x2 → ¬s)) = {¬x1,¬x2,¬s}, {x2, x1}, {s, x1}

CNF(x2 ↔ (x3 ∨ r)) = {¬x2, x3, r}, {¬x3, x2}, {¬r, x2}
CNF(x3 ↔ (p ∧ q)) = {x3, p}, {x3, q}, {¬p,¬q, x3}

�

Bibliography

Davis, Martin, George Logemann, and Donald Loveland (1962). “A machine pro-
gram for theorem proving”. In: Communications of the ACM 5.7, pp. 394–397.

Davis, Martin and Hillary Putnam (1960). “A computing procedure for quantifica-
tion theory”. In: Journal of ACM 7, pp. 201–215.

Tseytin, Grigori (Sept. 1966). On the complexity of derivation in propositional cal-
culus. Presented at the Leningrad Seminar on Mathematical Logic. url: http:
//www.decision-procedures.org/handouts/Tseitin70.pdf.

31

http://www.decision-procedures.org/handouts/Tseitin70.pdf
http://www.decision-procedures.org/handouts/Tseitin70.pdf

	Chapter 1. Decision Procedures in Propositional Logic
	1. Model checking
	2. Satisfiability checking
	3. Normal forms
	4. Davis-Putnam-Logemann-Loveland Procedure (DPLL)
	5. Sat Solvers
	6. Exercises

	Bibliography

