
Knowledge representation and learning
3. Decision procedure

Luciano Serafini

Fondazione Bruno Kessler, Trento, Italy

March 13, 2023

Luciano Serafini Knowledge representation and learning

Decision procedures

Four tipes of questions

Model Checking(I, φ): I
?

|= φ. What is the truth value of φ
in I, or equivalently, does I satisfy φ or does it not satisfy φ.

Satisfiability(φ):
?
∃I . I |= φ Is there a model I that satisfies

φ?

Validity(φ):
?

|= φ. Is φ satisfied by all the models I?

Logical consequence(Γ, φ): Γ
?

|= φ Is φ satisfied by all the
models I, that satisfies all the formulas in Γ?

Luciano Serafini Knowledge representation and learning

Model Checking

Model checking decision procedure

A model checking decision procedure, MCDP is an algorithm that
checks if a formula φ is satisfied by an interpretation I. Namely

MCDP(φ, I) = true if and only if I |= φ

MCDP(φ, I) = false if and only if I 6|= φ

Observations

The procedure of model checking returns for all inputs either true
or false since for all models I and for all formulas φ, we have that
either I |= φ or I 6|= φ.

Luciano Serafini Knowledge representation and learning

A naive algorithm for model checking

b

A simple way to check if I |= φ

(1) Replace each occurrence of a propositional variables in φ with
the truth value assigned by I. I.e. replace each p with I(p) (2)
Recursively apply the following reduction rules for connectives:

true ∧ true = true
true ∧ false = false
false ∧ true = false
false ∧ false = false

true ∨ true = true
true ∨ false = true
false ∨ true = true
false ∨ false = false

¬true = false
¬false = true

true → true = true
true → false = false
false → true = true
false → false = true

true ≡ true = true
true ≡ false = false
false ≡ true = false
false ≡ false = true

Luciano Serafini Knowledge representation and learning

A naive algorithm for model checking (example)

Example

φ = p ∨ (q → r)

I = I(p) = false, I(q) = false, I(r) = true

To check if I |= p ∨ (q → r) we:

(1) replace, p, q, and r in φ with I(p), I(q) and I(r), obtaining

false ∨ (false → true)

(2) recursively apply the reduction rules

false ∨ (false → true)
false ∨ true
true

Luciano Serafini Knowledge representation and learning

A simple optimization of MCDP

MCDP(I, φ) with lazy evaluation

Idea: When you evaluate a conjunction, if the first conjunct is
evaluated to false, then you can jump to the conclusion that the
whole conjunction is false, without evaluating the second conjunct.
Similar idea can be applied to the connectives ∨ and →. This
leads to the following optimized rewriting rules:

> ∧> ⇒ > > ∨ ∗ ⇒ > ∗ → > ⇒ >
∗ ∧ ⊥ ⇒ ⊥ ∗ ∨ > ⇒ > > → ⊥ ⇒ ⊥
⊥ ∧ ∗ ⇒ ⊥ ⊥ ∨⊥ ⇒ ⊥ ⊥ → ∗ ⇒ >

where “∗” denotes either > or ⊥ and therefore the corresponding
expression does not need to be evaluated.

Luciano Serafini Knowledge representation and learning

Satisfiability

Satisfiability decision procedure

A satisfiability decision procedure SDP is an algorithm that takes
in input a formula φ and checks if φ is (un)satisfiable. Namely

SDP(φ) = Satisfiable if and only if I |= φ for some I
SDP(φ) = Unsatisfiable if and only if I 6|= φ for all I

When SDP(φ) = satisfiable, SDP can return a (model) I, that
satisfies φ. Notice that it return one model, amond all the possible
models of φ.

Luciano Serafini Knowledge representation and learning

Validity

Validity decision procedure

A decision procedure for Validity VDC, is an algorithm that checks
whether a formula φ is valid.
A VDP can be obtained by using an SDP and exploiting the
equivalence:

φ is valid ⇐⇒ ¬φ is not satisfiable

def VDP(φ):
if SDP(¬φ) == Unsatisfiable:

Return valid
else:

Return not valid

When SDP(¬φ) returns an interpretation I, this interpretation is
a counter-model for φ.

Luciano Serafini Knowledge representation and learning

Logical consequence

Logical consequence decision procedure

A decision procedure for logical consequence LCDP is an algorithm
that cheks whether a formula φ is a logical consequence of a finite
set of formulas Γ = {γ1, . . . , γn}. LCDP can be implemented on
the basis of satisfiability decision procedure by exploiting the
property

Γ |= φ if and only if Γ ∪ {¬φ} is unsatisfiable

LCDP(Γ, φ) = true if and only if SDP(γ1 ∧ · · · ∧ γn ∧ ¬φ) = Unatisfiable

LCDP(Γ, φ) = false if and only if SDP(γ1 ∧ · · · ∧ γn ∧ ¬φ) = Satisfiable

When SDP(γ1 ∧ · · · ∧ γn ∧ ¬φ) returns an interpretation I, this
interpretation is a model for Γ and a counter-model for φ.

Luciano Serafini Knowledge representation and learning

Proof of the previous property

Theorem

Γ |= φ if and only if Γ ∪ {¬φ} is unsatisfiable

Proof.

⇒ Suppose that Γ |= φ, this means that every interpretation I
that satisfies Γ, it does satisfy φ, and therefore I 6|= ¬φ. This
implies that there is no interpretations that satisfies together
Γ and ¬φ.

⇐ Suppose that I |= Γ, let us prove that I |= φ, Since
Γ ∪ {¬phi} is not satisfiable, then I 6|= ¬φ and therefore
I |= φ.

Luciano Serafini Knowledge representation and learning

Davis-Putnam (DP) Algorithm

In 1960, Davis and Putnam published a SAT algorithm.
Davis, Putnam. A Computing Procedure for Quantifica-
tion Theory. Journal of the ACM, 7(3):2012̆013215, 1960.

In 1962, Davis, Logemann, and Loveland improved the DP
algorithm.
Davis, Logemann, Loveland. A Machine Program
for Theorem-Proving. Communications of the ACM,
5(7):3942̆013397, 1962.

The DP algorithm is often confused with the more popular
DLL algorithm. In the literature you often find the acronym
DPLL.

Basic framework for most current SAT solvers.

We consider the DP algorithm . . .

Luciano Serafini Knowledge representation and learning

Negated Normal form (NNF)

A literal is either an atomic formula or the negation of an
atomic formula.

Examples of literals are p, q, ¬p, ¬q.

A positive literal is antom (without negation in front)

A negative literal is a literal with negation in front.

Definition (Negation Normal Form)

A formula is in negation normal form (NNF) if negation connective
(¬) occurs only in literals; or equivalently if the negation
connective occurs only in front of atomic formulas.

Luciano Serafini Knowledge representation and learning

Reduction to NNF

Any formula can be transformed into an equivalent formula in
NNF, by applying the following set of rule that pushes the negation
operator inwards

¬¬φ⇒ φ

¬(φ ∧ ψ)⇒ ¬φ ∨ ¬ψ
¬(φ ∨ ψ)⇒ ¬φ ∧ ¬ψ (1)

¬(φ→ ψ)⇒ φ ∧ ¬ψ
¬(φ ≡ ψ)⇒ (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)

Proposition

For every rule φ⇒ φ′ in (1), φ and φ′ are equivalent.

Proof.

To prove the property we have to shoe that for every
transoformation φ⇒ φ′ in (1) we have that φ and φ′ are
equivalent.

Luciano Serafini Knowledge representation and learning

Conjunctive Normal Form

Definition

A literal is either a propositional variable or the negation of a
propositional variable.

p, ¬q

A clause is a disjunction of literals.

(a ∨ ¬b ∨ c)

we also admit the clause with no literals, called the empty clause
denoted by ⊥

Luciano Serafini Knowledge representation and learning

Satisfiability of a clause

I |= C if there is a literal li s.t., I |= li

I never satisfies the empty clause I 6|= ⊥
a unit clauses is a clause with one single literal

Empty clauses and unit clauses play an important role in the
satisfiability checking procedure,

Luciano Serafini Knowledge representation and learning

Conjunctive normal form

A formula is in conjunctive normal form, if it is a conjunction of
clauses.

(p ∨ ¬q ∨ r) ∧ (q ∨ r) ∧ (¬p ∨ ¬q) ∧ r

Luciano Serafini Knowledge representation and learning

Conjunctive Normal form

Conjunctive Normal form

A formula in conjunctive normal form has the following shape:

(l11 ∨ · · · ∨ l1n1) ∧ . . . ∧ (lm1 ∨ · · · ∨ lmnm)

equivalently written as

m∧
i=1

 nj∨
j=1

lij


where lij is the j-th literal of the i-th clause composing φ

Example

(p ∨ ¬q) ∧ (r ∨ p ∨ ¬r) ∧ (p ∨ p) p ∨ q
p ∧ q, p ∧ ¬q ∧ (r ∨ s)

Luciano Serafini Knowledge representation and learning

Properties of ∧ and ∨

Commutativity of ∧: φ ∧ ψ ≡ ψ ∧ φ
Commutativity of ∨: φ ∨ ψ ≡ ψ ∨ φ
Absorption of ∧: φ ∧ φ ≡ φ
Absorption of ∨: φ ∨ φ ≡ φ

Luciano Serafini Knowledge representation and learning

Properties of clauses

Order of literals does not matter

If a clause C is obtained by reordering the literals of a clause C ′ then the two
clauses are equivalent.

(p ∨ q ∨ r ∨ ¬r) ≡ (¬r ∨ q ∨ p ∨ r)

Multiple literals can be merged

If a clause contains more than one occurrence of the same literal then it is
equivalent to the close obtained by deleting all but one of these occurrences:

(p ∨ q ∨ r ∨ q ∨ ¬r) ≡ (p ∨ q ∨ r ∨ ¬r)

Clauses as set of literals

From these properties we can represent a clause as a set of literals, by living
disjunction implicit and by ignoring replication and order of literals

(p ∨ q ∨ r ∨ ¬r) is represented by the set {p, q, r ,¬r}
Luciano Serafini Knowledge representation and learning

Properties of formulas in CNF

Order of claused does not matter

If a clause C is obtained by reordering the literals of a clause C ′ then the two
clauses are equivalent.

(a ∨ b) ∧ (c ∨ ¬b) ∧ (¬b) ≡ (c ∨ ¬b) ∧ (¬b) ∧ (a ∨ b)

Multiple clauses can be merged

If a CNF formula contains more than one occurrence of the same clause then it
is equivalent to the formula obtained by deleting all but one of the duplicated
occurrences:

(a ∨ b) ∧ (c ∨ ¬b) ∧ (a ∨ b) ≡ (a ∨ b) ∧ (c ∨ ¬b)

a CNF formula as a set of sets of literals

From the props. of clauses and of CNF formulas, we can represent a CNF
formula as a set of sets of literals.

(a ∨ b)∧(c ∨ ¬b)∧(¬b) is represented by the set of sets {{a, b}, {c,¬b}, {¬b}}

Luciano Serafini Knowledge representation and learning

Proposition

existence Every formula can be reduced into CNF

equivalence |= CNF(φ) ≡ φ

Luciano Serafini Knowledge representation and learning

Existence of CNF(φ)

A procedure for reducing a formula in CNF can be obtained by
applying the following steps

1 transform the implications → and the equivalence ↔ with
equivalent formulas using ¬, ∧ and ∨

A→ B =⇒ ¬A ∨ B

A↔ B =⇒ (¬A ∨ B) ∧ (¬B ∨ A)

2 push the negation operator ¬ in front of the atomic
propositions (NNF)

¬(A ∨ B) =⇒ ¬A ∧ ¬B
¬(A ∧ B) =⇒ ¬A ∨ ¬B

3 Distribute disjunction ∨ over conjunction ∧

A ∨ (B ∧ C) =⇒ (A ∨ B) ∧ (A ∨ C)

(A ∧ B) ∨ C) =⇒ (A ∨ C) ∧ (B ∨ C)

Luciano Serafini Knowledge representation and learning

Termination of CNF

Proposition

CNF terminates for every input φ.

Proposition

φ is equivalent to CNF(φ).

Luciano Serafini Knowledge representation and learning

Termination of CNF

Exercise 1:

Thransform the following formula in CNF

1 (p → q) ∧ ¬q → ¬p
2 (p → q)→ (p → ¬q)

3 (p ∨ q → r) ∨ p ∨ q

4 (p ∨ q) ∧ (p → r ∧ q) ∧ (q → ¬r ∧ p)

5 (p → (q → r))→ ((p → q)→ (p → r))

6 (p ∨ q) ∧ (¬q ∧ ¬p)

7 (¬p → q) ∨ ((p ∧ ¬r) ≡ q)

8 (p → q) ∧ (p → ¬q)

9 (p → (q ∨ r)) ∨ (r → ¬p)

Luciano Serafini Knowledge representation and learning

Satisfying a CNF

I |= {C1, . . . ,Cn}, if I satisfies at least on literal for every Ci

Example

{{p,¬q, r}, {q,¬r}, {¬p,¬q}, {r}} (2)

p ¬q r

C1

q ¬r

C2

¬p ¬q

C3

r

C4

¬p q r

literals satisfied by I

Luciano Serafini Knowledge representation and learning

CNF transformation

Cost of CNF

CNF is a normal form, it is simpler since it uses only 3 connective
(e.g., ∧, ∨ and ¬) in a very specific form. Checking
satisfiability/validity of a formula in CNF is easier. But there is a
price: . . .

Example (Exponential explosion)

Compute the CNF of

p1 ≡ (p2 ≡ (p3 ≡ (p4 ≡ (p5 ≡ p6)))).

The first step yields:

CNF(p1→ (p2 ≡ (p3 ≡ (p4 ≡ (p5 ≡ p6)))))∧
CNF((p2 ≡ (p3 ≡ (p4 ≡ (p5 ≡ p6))))→ p1)

If we continue, the formula will grow exponentially.

Luciano Serafini Knowledge representation and learning

CND: Exponential explosion

CNF(p ≡ (q ≡ (r ≡ s)))

result in 8 clauses

(¬r ,¬s,¬q, p) (r , s,¬q, p) (¬s, r , q, p) (¬r , s, q, p)

(¬r ,¬s, q,¬p) (r , s, q,¬p) (¬s, r ,¬q,¬p) (¬r , s,¬q,¬p)

Luciano Serafini Knowledge representation and learning

CNF: Exponential explosion

p ≡ (q ≡ (r ≡ (s ≡ t)))

result in 8 · 2 = 16 clauses

(¬s,¬t,¬r ,¬q, p) (s, t,¬r ,¬q, p) (¬t, s, r ,¬q, p) (¬s, t, r ,¬q, p)

(¬s,¬t, r , q, p) (s, t, r , q, p) (¬t, s,¬r , q, p) (¬s, t,¬r , q, p)

(¬s,¬t,¬r , q,¬p) (s, t,¬r , q,¬p) (¬t, s, r , q,¬p) (¬s, t, r , q,¬p)

(¬s,¬t, r ,¬q,¬p) (s, t, r ,¬q,¬p) (¬t, s,¬r ,¬q,¬p) (¬s, t,¬r ,¬q,¬p)

Luciano Serafini Knowledge representation and learning

Contrasting exponential explosion

Replace subformulas

p1 ≡ (p2 ≡ (p3 ≡ (p4 ≡ (p5 ≡ p6))))

by names:
n5 ≡ (p5 ≡ p6)

p1 ≡ (p2 ≡ (p3 ≡ (p4 ≡ n1)))

After several steps

p1 ≡ (p2 ≡ n3) n3 ≡ (p3 ≡ n4)
n4 ≡ (p4 ≡ n5) n5 ≡ (p5 ≡ p6)

The resulting formula is different from (and not equivalent to) the
initial one. But they are equi-satisfiable,

Luciano Serafini Knowledge representation and learning

Equi-Satisfiability

Two formulas φ and φ′ are equisatisfiable iff:

φ is satisfiable if and only if φ′ is satisfiable

If two formulas are equi-satisfiable, are they equivalent? No!

Example: Any pair of atomic formulas p and q are
equi-satisfiable, but not equivalent (i.e., p ≡ q is not valid)

Another example: Introducing names for subformulas The
formula a ∧ b → c is equi-satisfiable to the formula
(n ≡ a ∧ b) ∧ (n→ c), but the two formulas

(a ∧ b)→ c (a ∧ b ≡ n) ∧ (n→ c)

are not equivalent.

Equisatisfiability is a much weaker notion than equivalence.
But useful if all we want to do is determine satisfiability.

Luciano Serafini Knowledge representation and learning

Tseitin’s Transformation

Tseitin’s transformation

converts formula φ to equisatisfiable formula φ′ in CNF with only a
linear increase in size.

Luciano Serafini Knowledge representation and learning

Tseitin’s transformation procedure I

Step 1: Introduce a new variable pψ for every subformula ψ of
φ (unless ψ is a literal.

For instance, if φ = ψ1 ∧ ψ2, introduce two variables pψ1 and
pψ2 representing ψ1 and ψ2 respectively.

pψ1 is said to be representative of ψ1 and pψ2 is is
representative of ψ2.

Luciano Serafini Knowledge representation and learning

Tseitin’s transformation procedure II

Step 2: Consider each subformula ψ ≡ ψ1 ◦ ψ2 (◦ is an
arbitrary boolean connective)

Stipulate representative of ψ is equivalent to representative of
ψ1 ◦ ψ2

pψ ≡ pψ1 ◦ pψ2

Step 3: Convert pψ ≡ pψ1 ◦ pψ2 to equivalent CNF

Observe: Since pψ ≡ pψ1 ◦ pψ2 contains at most three
propositional variables and exactly two connectives, size of
this formula in CNF is bound by a constant.

Luciano Serafini Knowledge representation and learning

Tseitin’s transformation procedure III

Given a formula φ, let pφ be its representative and let subf (φ)
be the set of all subformulas of φ (including φ itself).

Consider the formula

pφ ∧
∧

ψ1◦ψ2∈subf (φ)

CNF(pψ1◦ψ2 ≡ pψ1 ◦ pψ2) (3)

(3) is in CNF

Claim: it is equisatisfiable to φ.

The proof is by standard induction; left as homework exercise.

Luciano Serafini Knowledge representation and learning

Tseitin’s Transformation and Size

Using this transformation, we converted φ to an
equisatisfiable CNF formula φ′.

What about the size of φ′?

pφ ∧
∧

ψ1◦ψ2∈subf (φ)

CNF(pψ1◦ψ2 ≡ pψ1 ◦ pψ2)

|subf (φ)| is the bound by the number of connectives in φ.

Each formula CNF(pψ ≡ pψ1 ◦ pψ2) has constant size.

Thus, trasformation causes only linear increase in formula size.

More precisely, the size of resulting formula is bound by
3n + 2 where n is size of original formula

Luciano Serafini Knowledge representation and learning

Tseitin’s Transformation

Example

Convert te formula φ equal to p ∨ q → p ∧ ¬r to equisatisfiable
CNF formula.

1 For each subformula, introduce new variables:
x1 for φ, x2 for p ∨ q, x3 for p ∧ ¬r , and x4 for ¬r .

2 Stipulate equivalences and convert them to CNF:

x1 ≡ (x2 → x3) ⇒ φ1 : (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x1) ∧ (¬x3 ∨ x1)

x2 ≡ (p ∨ q) ⇒ φ2 : (¬x2 ∨ p ∨ q) ∧ (¬p ∨ x2) ∧ (¬q ∨ x2)

x3 ≡ (p ∧ x4) ⇒ φ3 : (¬x3 ∨ p) ∧ (¬x3 ∨ x4) ∧ (¬p ∨ ¬x4 ∨ x3)

x4 ≡ ¬r ⇒ φ4 : (¬x4 ∨ ¬r) ∧ (x4 ∨ r)

3 The formula is equisatisfiable to φ and is in CNF.

x1 ∧ φ1 ∧ φ2 ∧ φ3 ∧ φ4

Luciano Serafini Knowledge representation and learning

Satisfiability of a set of clauses

Let N = C1, . . . ,Cn = CNF (φ)

I |= φ if and only if I |= Ci for all i = 1..n;

I |= Ci if and only if for some l ∈ C , I |= l

p ¬q r

C1

q ¬r

C2

¬p ¬q

C3

r

C4

¬p q r

literals satisfied by I

Luciano Serafini Knowledge representation and learning

Paertial evaluation

To check if a model I satisfies N we do not need to know the
truth values that I assigns to all the literals appearing in N.

For instance, if I(p) = true and I(q) = false, we can say that
I |= {{p, q,¬r}, {¬q, s, q}}, without considering the
evaluations of I(r) and I(s).

Partial evaluation

A partial evaluation is a partial function that associates to some
propositional variables of the alphabet P a truth value (either true
or false) and can be undefined for the others.

Luciano Serafini Knowledge representation and learning

Partial Valuation

Partial evaluations allow us to construct models for a set of
clauses N = {C1, . . . ,Cn} incrementally

DPLL starts with an empty valuation (i.e., the truth values of
all propositional letters are not defined) and tries to extend it
step by step to all variables occurring in N = {C1, . . . ,Cn}.
Under a partial valuation I literals and clauses can be true,
false or undefined;

A clause is true under I if one of its literals is true;
A clause is false (or “conflicting”) if all its literals are false
otherwise C it is undefined (or “unresolved”).

Luciano Serafini Knowledge representation and learning

DPLL

Simplification of a formula by an evaluated literal

For any CNF formula φ and atom p, φ|p stands for the formula
obtained from φ by replacing all occurrences of p by > and
simplifying the result by removing

all clauses containing the disjunctive term >, and

the literals ¬> in all remaining clauses

Similarly, φ|¬p is the result of replacing p in φ by ⊥ and simplifying
the result.

Example

For instance,

{{p, q,¬r}, {¬p,¬r}}|¬p = {{q,¬r}}

Luciano Serafini Knowledge representation and learning

DPLL Unit propagation

Unit clause

If a CNF formula φ contains a clause C = {l} that consists of
a single literal, it is a unit clause

If φ contains unit clause {l} then, to satisfy φ we have to
satisfy {l} and therefore the literal l must be evaluated to
True. As a consequence φ can be simplified using the
procedure called UnitPropagation

Unitpropagation(I, φ)

1: while φ contains a unit clause {l} do
2: I, φ← I ∪ {l}, φ|l
3: if {} ∈ φ then
4: return I, φ
5: end if
6: end while
7: return I, φ

Luciano Serafini Knowledge representation and learning

DPLL (cont’d)

Example

UnitPropagation({p}, {¬p,¬q}, {¬q, r}}, I)

{{p}, {¬p,¬q}, {¬q, r}}
{{p}, {¬p,¬q}, {¬q, r}}|p I(p) = true
{{>}, {¬>,¬q}, {¬q, r}}
{{¬q}, {¬q, r}}
{{¬q}, {¬q, r}}
{{¬q}, {¬q, r}}|¬q I(q) = false
{{>}, {>, r}}
{}

Exercise 2:

Use unit propagation to decide whether the formula

p ∧ (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (q ∨ r) ∧ (¬q ∨ ¬r)

is satisfiable.

Luciano Serafini Knowledge representation and learning

DPLL (cont’d)

Remark

Unit propagation is enough to decide the satisfiability problem
when it terminates with the following two results:

{} as in the example above, then the initial formula is
satisfiable, and a satisfying interpretation can be easily
extracted from I.

{. . . {} . . . }, then the initial formula is unatisfiable

There are cases in which UnitPropagation does terminate with
none of the above case, i.e., when there is no unit clauses and the
CNF is not empty and doesn’t contain empty clauses. e.g.,

{{p, q}, {¬q, r}}

In this case we have to do a guess

Luciano Serafini Knowledge representation and learning

DPLL definition

The Davis-Putnam-Logemann-Loveland procedure

1: I, φ← UnitPropagation(I, φ)
2: if {} ∈ φ then
3: return Unsatisfiable
4: end if
5: if φ = {} then
6: return I
7: else
8: select a l from some clause C ∈ φ
9: I = DPLL(φ|l , I ∪ {l})

10: if I 6= Unsatisfiable then
11: return I
12: else
13: I ← DPLL(φ|l̄ , I ∪ {l̄})
14: return I
15: end if
16: end if

where: if l = p, l = ¬p and if l = ¬p then l = p
Luciano Serafini Knowledge representation and learning

φ =


{A,B}, {B,C}, {¬A,¬X ,Y }
{¬A,X ,Z}, {¬A,¬Y ,Z}
{¬A,X ,¬Z}, {¬A,¬Y ,¬Z}



φ|A =


{B,C}, {¬X ,Y }
{X ,Z}, {¬Y ,Z}
{X ,¬Z}, {¬Y ,¬Z}



φ|A,B =


{¬X ,Y }, {X ,Z}
{¬Y ,Z}, {X ,¬Z}
{¬Y ,¬Z}



φ|A,B,X =

{
{Y }, {¬Y ,Z},
{¬Y ,¬Z}

}

φ|A,B,X ,Y =
{
{Z}, {¬Z}

}

φ|A,B,X ,Y ,Z = {{}}

I = {A,B,X ,Y ,Z}

I = {A,B,X ,Y }

I = {A,B,X}

φ =

{
{Z}, {¬Y ,Z}
{¬Z}, {¬Y ,¬Z}

}

φ =
{
{}, {¬Y }

}
I = {A,B,¬X ,Z}

I = {A,B,¬X}

I = {A,B}

φ|A,¬B =


{C}, {¬X ,Y }
{X ,Z}, {¬Y ,Z}
{X ,¬Z}, {¬Y ,¬Z}



φ|A,¬B,C =


{¬X ,Y }, {X ,Z}
{¬Y ,Z}, {X ,¬Z},
{¬Y ,¬Z}



φ|A,¬B,C ,X =


{Y },
{¬Y ,Z},
{¬Y ,¬Z}



φ|A,¬B,C ,X ,Y =
{
{Z}, {¬Z}

}

φ|A,¬B,C ,X ,Y ,Z =
{
{}
}

I = {A,¬B,C ,X ,Y ,Z}

I = {A,¬B,C ,X ,Y }

I = {A,¬B,C ,X}

φ|A,¬B,C ,¬X =


{Z}, {¬Z}
{¬Y ,Z}
{¬Y ,¬Z}



φ|A,¬B,C ,¬X ,Z =
{
{}, {¬Y }

}
I = {A,¬B,C ,¬X ,Z}

I = {A,¬B,C ,¬X}

I = {A,¬B,C}

I = {A,¬B}

I = {A}

φ =

{
{B}
{B,C}

}

{}

I = {¬A,B}

I = {¬A}

Luciano Serafini Knowledge representation and learning

Exercizes

Exercise 3:

Check the following facts via DPLL

1 |= (p → q) ∧ ¬q → ¬p
2 |= (p → q)→ (p → ¬q)

3 |= (p ∨ q → r) ∨ p ∨ q

4 |= (p ∨ q) ∧ (p → r ∧ q) ∧ (q → ¬r ∧ p)

5 |= (p → (q → r))→ ((p → q)→ (p → r))

6 |= (p ∨ q) ∧ (¬q ∧ ¬p)

7 |= (¬p → q) ∨ ((p ∧ ¬r) ≡ q)

8 |= (p → q) ∧ (p → ¬q)

9 |= (p → (q ∨ r)) ∨ (r → ¬p)

Luciano Serafini Knowledge representation and learning

Other examples

Exercise 4:

Check the following facts

1 (p → q) |= ¬p → ¬q
2 (p → q) ∧ ¬q |= ¬p
3 p → q ∧ r |= (p → q)→ r

4 p ∨ (¬q ∧ r) |= q ∨ ¬r → p

5 ¬(p ∧ q) ≡ ¬p ∨ ¬q
6 (p ∨ q) ∧ (¬p → ¬q) ≡ q

7 (p ∧ q) ∨ r ≡ (p → ¬q)→ r

8 (p ∨ q) ∧ (¬p → ¬q) ≡ p

9 ((p → q)→ q)→ q ≡ p → q

Luciano Serafini Knowledge representation and learning

MiniSat http://minisat.org

About

MiniSat is a minimalistic, open-source SAT solver, developed to
help researchers and developers alike to get started on SAT. It is
released under the MIT licence, and is currently used in a number
of projects (see ”Links”). On this page you will find binaries,
sources, documentation and projects related to MiniSat,
including the Pseudo-boolean solver MiniSat+ and the CNF
minimizer/preprocessor SatELite.

Luciano Serafini Knowledge representation and learning

How to use MiniSat

Input format

MiniSat, like most SAT solvers, accepts its input in a simplified ”DIMACS
CNF” format, which is a simple text format. Every line beginning “c” is a
comment. The first non-comment line must be of the form:

p cnf NUMBER OF VARIABLES NUMBER OF CLAUSES

Each of the non-comment lines afterwards defines a clause. Each of these lines
is a space-separated list of variables; a positive value means that corresponding
variable (so 4 means x4), and a negative value means the negation of that
variable (so -5 means -x5). Each line must end in a space and the number 0.

c Here is a comment

p cnf 5 3

1 -5 4 0

-1 5 3 4 0

-3 -4 0

is the representation of the CNF

{{x1,¬x5, x4}, {¬x1, x5, x3, x4}, {¬x3,¬x4}}

Luciano Serafini Knowledge representation and learning

Invoking MiniSat

MiniSAT’s usage is:

minisat [options] [INPUT-FILE [RESULT-OUTPUT-FILE]]

Luciano Serafini Knowledge representation and learning

MiniSat output format

When run, miniSAT sends to standard error a number of different
statistics about its execution. It will output to standard output either
”SATISFIABLE” or ”UNSATISFIABLE” (without the quote marks),
depending on whether or not the expression is satisfiable or not.

If you give it a RESULT-OUTPUT-FILE, MiniSat will write text to the file.
The first line will be ”SAT” (if it is satisfiable) or ”UNSAT” (if it is not). If
it is SAT, the second line will be set of assignments to the boolean
variables that satisfies the expression. (There may be many others; it
simply has to produce one assignment).

for example the output file of the previous example is

SAT

1 2 -3 4 5 0

This means that it is satisfiable, with the model I with
I(x1) = true, I(x2) = true, I(x3) = false, I(x4) = true and I(x5) = true.

Luciano Serafini Knowledge representation and learning

Translating CNF into MiniSat input format

Example

{{A,¬B,¬D}, {¬A,¬B,¬C}, {¬A,C ,¬D}, {¬A,B,C}}
c A -> 1, B -> 2, C -> 3, D -> 4

p cnf 4 4

1 -2 -4 0

-1 -2 -3 0

-1 3 -4 0

-1 2 3 0

Luciano Serafini Knowledge representation and learning

Translating CNF into MiniSat input format

Example

{{A,B,C}, {¬B,¬C}, {¬B,¬A}, {¬A,B,C}, {A,B}
{A,C}, {B,¬A,¬C}}

c A -> 1, B -> 2, C -> 3

p CNF 3 7

1 2 3 0

-2 -3 0

-1 -2 0

-1 2 3 0

1 2 0

1 3 0

-1 2 -3 0

Luciano Serafini Knowledge representation and learning

Translating CNF into MiniSat input format

exercise

Rewrite in MiniSat input format (DIMACS) the following set of
clauses:

{{¬A,B}, {¬C ,D}, {¬E ,¬F}, {F ,¬E ,¬B}}

Luciano Serafini Knowledge representation and learning

Obtaining more than one assignment from MiniSat

MiniSat searches for one assignment that satisfies a CNF,
and if there is one, it is returned.

Question: How can I obtain more than one assignment?

Answer: Suppose that MiniSatC1, . . . ,Cn returns l1, . . . , ln.
To check if there is another assignment, different from
l1, . . . , ln we can check if C1, . . . ,Cn ∧ ¬(l1 ∧ · · · ∧ ln) is
satisfiable

Notice that ¬(l1 ∧ · · · ∧ ln) is the clauses ¬l1 ∨ · · · ∨ ¬ln
In practice we can rerun MiniSat on
C1, . . . ,Cn, {¬l1, . . . ,¬ln}

Luciano Serafini Knowledge representation and learning

Satisfiability in Python

install Python 3

$> brew i n s t a l l python

Install python-sat

$> p i p i n s t a l l python−s a t

Check if {¬p, q}, {¬q, r} is consistent (encode p, q, and r in 1, 2, and 3).

> from p y s a t . s o l v e r s i m p o r t M i n i s a t 2 2
> Gamma = M i n i s a t 2 2 ()
> Gamma . a d d c l a u s e ([−1 , 2]) # c n f f o r p −> q
> Gamma . a d d c l a u s e ([−2 , 3]) # c n f f o r $ −> r
> p r i n t (Gamma . s o l v e ())
True
> p r i n t (Gamma . g e t m o d e l ())
[−1 , −2, −3]
> f o r m i n Gamma . enum models () : p r i n t (m)
[−1 , −2, −3]
[−1 , −2, 3]
[−1 , 2 , 3]
[1 , 2 , 3]

Luciano Serafini Knowledge representation and learning

