# IAQ and ventilation criteria

The environmental quality

- Thermal comfort
- Indoor Air Quality
- Noise control
- Visual comfort

Health, comfort and people productivity

2

#### **EUROPEAN DIRECTIVE EPBD (Art.1)**

The objective of the European Energy Directive for Buildings is to promote the improvement of the energy performance of buildings within the Community, taking into account outdoor climatic and local conditions, as well as indoor climate requirements and cost-effectiveness.

## **INDOOR - OUTDOOR**

3

- · The highest exposure: indoor environment
- People spend ~90 % of the time indoor (work, travel, home)



#### Average intake for one person per day:





Increasing the energy costs by 20% leads to +0.2% of overall costs Increasing efficiency of people by 5% leads to -4.3% of overall costs

# IAQ: health and comfort

- Pathogenic aspects health – Acute
  - Long term
- Disturb (Perceived Air Quality PAQ) comfort
  - Odor
  - Irritation

# Too much enphasis on IEQ?

#### Sick Building Syndrome





- ✓ Irfritated eyes
- ✓ Headaches
- ✓ Breathe heavily
- ✓ Nausea, vertigo
- ✓ Fadigie, lethargy
- ✓ Sore throat
- ✓ Memory problems



7

#### What is ventilation?

The process of supplying outdoor air to or removing indoor air from a dwelling in order to control the pollutant levels, humidity or temperature (Standard ASHRAE 62)



#### Why is it necessary to ventilate?

To supply fresh air to limit the concentration of pollutants due to different sources

The time spent indoor influences the exposure to a certain pollutant

Exposure = Concentration x Time

The exposure risk is well established for some chemicals.

The exposure risk is particularly susceptible (children, elderly, asthmatic, chronic desease, immunosuppressed).

#### **Usual contaminant sources**

✓ emissions from building materials ✓ emissions from forniture  $\checkmark$  from finishing materials (paintings, tapestry) Pollutants from ✓ VOC building/ ✓ formaldehyde environment ✓ asbestos ✓ radon ✓ microorganisms ✓ produced by HVAC system ✓ produced by electric applainces Pollutants from  $\checkmark$  combustion products (CO, CO2, NO<sub>x</sub>, O<sub>3</sub>, ...) plants and ✓ VOC machines ✓ microorganisms ✓ vapour

**Indoor Air Quality (IAQ)** 

Air with known contaminants below dangerous concentrations (as established by local authorities) and with the majority of exposed persons satisified (PD < 20%).

## How much air?

Recommended values I/(s person) I/(s area) air changes per hour (ACH), air change rate (ACR)

#### What is the air change rate (ACR or ACH)?



# **Effect of air on human being**

ACR = 150/300 = 0.5 h<sup>-1</sup>



The best indicator for the indoor pollution is the nose (Nobel prize 2004 Richard Axel e Linda B. Buck for their research in the field of «odorant receptor and the olfactory system»)





# **Reference values**



In Italy the reference standard was the <u>UNI 10339</u> which indicated <u>10 I/(s px)</u> as suggested flow rate. <u>Usually the lowest</u> <u>limit is 6 I/(s px)</u>

# **Adapted persons**

- The previous values consider external persons who evaluate the environment by means of olfactory analysis
- There are rooms where the olfactory analysis has to be done by persons living inside the room (namely adapted persons)
- In this case the reference value can be considered 1/3 of the previous suggested values

# **Approximate reference values**



#### **Pollutant concentration in rooms**

The concentration of a pollution in a limited space as a room, container, tank etc. depends on:

- pollution rate in the room  $(q_{gen})$
- amount of fresh supply air (Q)
- initial concentration in the room (C<sub>0</sub>)
- outdoor concentration (C<sub>e</sub>)



Q: fresh air flow rate  $[m^3/h]$  ( q<sub>gen</sub>: contamination rate [l/h] (

- C<sub>0</sub>: initial concentration [ppm]
- C<sub>e</sub> : outdoor concentration [ppm]

$$C(\tau) = C_{e} + 10^{3} \frac{q_{gen}}{Q} + \left[ C_{0} - C_{e} - 10^{3} \frac{q_{gen}}{Q} \right] e^{-(n \tau)}$$

Steady state conditions

Dynamic term

$$\frac{q_{gen}}{Q} = 10^3 \frac{[l/h]}{[m^3/h]} \qquad [ppm]$$

In steady state conditions:

$$C - C_{e} = 10^{3} \frac{q_{gen}}{Q}$$

$$q_{gen} = \frac{12 I_{CO2} / (h \text{ px}) \text{ in rest}}{18 I_{CO2} / (h \text{ px}) \text{ in sedentary activity}}$$

#### Example 1: Steady state in an office

Office: 4 m x 4 m x 3 m (height) = 48 m<sup>3</sup> Occupants: 4 px  $CO_2$  emitted: 18  $I_{CO2}/(h px) = 4 x 18 = 72 I_{CO2}/h$   $C - C_e = 10^3 \frac{q_{gen}}{Q}$   $Q = 36 \text{ m}^{3}/(h px)$ :  $C - C_e = 10^3 \frac{72}{(36 x 4)} = 500 \text{ ppm}$  n = 36 x 4 / 48 = 3 ACH  $Q = 16 \text{ m}^{3}/(h px)$ :  $C - C_e = 10^3 \frac{72}{(16 x 4)} = 1'125 \text{ ppm}$ n = 16 x 4 / 48 = 1.33 ACH

#### Example 2: steady state in a home

Home: 9.5 m x 10 m x 2.7 m (height) = 256 m<sup>3</sup>

Occupants: 4 px CO<sub>2</sub> emitted: 15  $I_{CO2}/(h px) = 4 x 15 = 60 I_{CO2}/h$ 

| n = 0.5 Vol/h | Q = 0.5 x V = 0.5 x 256 = 128 m <sup>3</sup> /h     |
|---------------|-----------------------------------------------------|
| n = 0.3 Vol/h | Q = 0.3 x V = 0.3 x 256 = 77 m <sup>3</sup> /h      |
| Q = 128 m³/h  | $C - C_e = 10^3 \frac{60}{128} = 469 \text{ ppm}$   |
| Q = 77 m³/h   | C - C <sub>e</sub> = $10^3 \frac{60}{77}$ = 779 ppm |

## Example 3: dynamic (increase)

$$C(\tau) - C_{e} = 10^{3} \frac{q_{gen}}{Q} + \left[ C_{0} - C_{e} - 10^{3} \frac{q_{gen}}{Q} \right] e^{-(n \tau)}$$

Office 48 m<sup>3</sup>, 4 occupants (72  $I_{CO2}/h$ ) entering with C<sub>0</sub> = C<sub>e</sub>



# Example 4: dynamic (decrease)

$$C(\tau) - C_e = 10^3 \frac{q_{gen}}{Q} + \left[ C_0 - C_e - 10^3 \frac{q_{gen}}{Q} \right] e^{-(n \tau)}$$

Example 2 (256 m<sup>3</sup>) when the occupants leave their home  $C_0 - C_e = 469$  (if n = 0.50 ACH),  $C_0 - C_e = 779$  (if n = 0.30 ACH)



#### Standard EN 16798-1

- Replaces the standard EN 15251 of 2006
- Energy and IEQ evaluation need to be assessed at the same time
- Definition of IEQ parameters in 4 categories:

| Category | Level of expectation |
|----------|----------------------|
| IEQ      | High                 |
| IEQII    | Medium               |
| IEQIII   | Moderate             |
| IEQIV    | Low                  |

- These categoriues define both indoor parameters (temperatures, CO<sub>2</sub> livels, PD, humidity, etc.) and design parameters (ventilation flow rates)
- To use in both calculations (design) and operation (monitoring activity)

#### **Comfort levels EN 16798-1**

| Category | Thermal state of the body as a whole             | Thermal state of the body as a whole |  |  |  |
|----------|--------------------------------------------------|--------------------------------------|--|--|--|
|          | Predicted Percentage of Dissatisfied<br>PPD<br>% | Predicted Mean Vote<br>PMV           |  |  |  |
| I        | < 6                                              | -0,2 < PMV < + 0,2                   |  |  |  |
| П        | < 10                                             | -0,5 < PMV < + 0,5                   |  |  |  |
| III      | < 15                                             | -0,7 < PMV < + 0,7                   |  |  |  |
| IV       | < 25                                             | -1,0 < PMV < + 1,0                   |  |  |  |

#### IAQ levels EN 16798-1

| Category | Corresponding CO2 concentration<br>above outdoors in PPM for non-<br>adapted persons |
|----------|--------------------------------------------------------------------------------------|
| I        | 550 (10)                                                                             |
| II       | 800 (7)                                                                              |
| III      | 1 350 (4)                                                                            |
| IV       | 1 350 (4)                                                                            |

#### IAQ levels in previous examples:

| Office with 36 m <sup>3</sup> /(h px) = 500 ppm | LEVEL 1 |
|-------------------------------------------------|---------|
| Office with 16 m³/(h px) = 1'125 ppm            | LEVEL 3 |
| Home with 0.5 ACH = 469 ppm                     | LEVEL 1 |
| Home with 0.3 ACH = 779 ppm                     | LEVEL 2 |

#### Standard EN 16798-1

- Definition of fresh air flow rates to size the ventilation system;
- Minimum flow rate: 4 L/(s person).

| Category | Level of expectation |   |                                                        |
|----------|----------------------|---|--------------------------------------------------------|
| I        | High                 | ⊯ | > High level for specific cases (elderly, sick people) |
| II       | Medium               | ╈ | Medium/average value                                   |
| III      | Moderate             | ➡ | > Lowest admissible value (possible discomfort)        |
| IV       | Low                  |   | > To be avoided. Tollerated for limited time           |

For healthy reasons, **the minimum flow rate** in occupied rooms **should never go below 4 I/(s px)** 



# Example: Design flow rate for residential buildings

There are **3 different methods** <u>as an alternative to one another</u>. We will analyse them and we compare the resulting values in a typical dwelling.





6,5

9,5

4,9

7,1

#### METHOD 1 – Flow rate per specific floor area or as ACR

#### METHOD 2 – Flow rate per person

| Level | Specific flow rates                    |  |  |
|-------|----------------------------------------|--|--|
| I     | 10 l/(s px) - 36 m³/(h px)             |  |  |
| II    | 7 l/(s px) - 25 m³/(h px)              |  |  |
|       | 4 l/(s px) - 14 m <sup>3</sup> /(h px) |  |  |
| IV    | -                                      |  |  |

102

|       | 3 persons 4 persons |     |  |
|-------|---------------------|-----|--|
| Level | m³/h                |     |  |
| I     | 108                 | 144 |  |
| II    | 76                  | 101 |  |
| 111   | 43                  | 58  |  |
| IV    | -                   | -   |  |

70

IV

Remember that: Af = 85 m<sup>2</sup> Volume = 255 m<sup>3</sup>

# **METHOD 3** – Flow rate as a function of perceived air quality for adapted persons

| Level | $Q_n - L/(s px)$ | $Q_{\rm B} - L/(s m^2)$ |
|-------|------------------|-------------------------|
| I     | 3,5              | 0,25                    |
|       | 2,5              | 0,15                    |
| - 111 | 1,5              | 0,1                     |
| IV    | -                | -                       |

Remember that: Af = 85 m<sup>2</sup> Volume = 255 m<sup>3</sup>

| 3 persons | Q <sub>p</sub>      | Q <sub>B</sub> | TOTAL |  |
|-----------|---------------------|----------------|-------|--|
| Level     | m <sup>3</sup> /h   |                |       |  |
| I         | 37,8                | 76,6           | 114   |  |
| II        | 27                  | 46,0           | 73    |  |
| III       | 16,2 30,6 <b>47</b> |                |       |  |
| IV        | -                   | -              |       |  |
|           |                     |                |       |  |

| 4 persons | Q <sub>p</sub> Q <sub>B</sub> |      | ТО | TAL |
|-----------|-------------------------------|------|----|-----|
| Classe    | m³/h                          |      |    |     |
| Ι         | 50,4 76,6                     |      | 1  | 27  |
| =         | 36                            | 46,0 | 8  | 32  |
| Ξ         | 21,6                          | 30,6 | 5  | 52  |
| IV        | -                             | -    |    |     |
|           |                               |      |    |     |

Check: = 4,34 L/(s px) - OK

↓ Check: = 3,63 L/(s px) - NO

|        | Method 1                  |            | Method 2               | Method 3                 |  |
|--------|---------------------------|------------|------------------------|--------------------------|--|
|        | L/(s m <sup>2</sup> ) ach |            | L/(s px)               | <b>Binomial equation</b> |  |
| Classe |                           | m³/h (refe | erred to <b>3 pers</b> | ons)                     |  |
| I      | 150                       | 179        | 108                    | 114                      |  |
| П      | 129                       | 153        | 76                     | 73                       |  |
| III    | 107                       | 128        | 43                     | 47                       |  |
| IV     | 71                        | 102        | -                      | -                        |  |



|        | Method 1                                          |     | Method 2 | Method 3                 |
|--------|---------------------------------------------------|-----|----------|--------------------------|
|        | L/(s m²)                                          | ach | L/(s px) | <b>Binomial equation</b> |
| Classe | m <sup>3</sup> /h (referred to <b>4 persons</b> ) |     |          |                          |
| I      | 150                                               | 179 | 144      | 127                      |
| II     | 129                                               | 153 | 101      | 82                       |
| III    | 107                                               | 128 | 58       | 52                       |
| IV     | 70                                                | 102 |          |                          |

