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In this paper, we are concerned with an open-loop Nash diferential game. Te necessary conditions for an open-loop Nash
equilibrium solution are obtained, also the existence for the solution of the dynamical system of the diferential game is studied.
Picard method is used to fnd an approximate solution, and the uniform convergence is proved. Finally, we constructed fgures
for the analysis of the diferential game. Tese results can be applied between economic and fnancial frms as well as
industrial frms.

1. Introduction

Diferential equations have a great importance in our life and
many applications in physics and engineering felds [1].
Diferential equations help us in describing all the phe-
nomena in which there are rates of change and provide a
description of the way this change works, for example,
population growth, chemical reactions, launching rockets
into space, the spread of diseases, and climate changes. Te
diferential game is a direct application of a diferential
equation and game theory. Te game theory is an important
feld in mathematics [2]. It has applications in almost all
felds of social science, as well as in logic, system science, and
computer science. It has an important role in Economics.
John Forbes Nash is one of the mathematicians who made
fundamental contributions to the game theory. Nash pro-
posed a solution of a noncooperative game including two or
more players in which every player is assumed to know the
equilibrium strategies of the players. No one can change the
strategy or move without the other players knowing that the
players have the same strategies. In the game theory, dif-
ferential games are a group of problems related to the
modeling and analysis of confict (competition) expressed as
a dynamical system [3]. It means here a state variable evolves
over time according to a diferential equation. A state
variable is one of the set of variables that are used to describe

the mathematical “state” of a dynamical system. Te state of
a system describes enough about the system to determine its
future behaviour in the absence of any external forces af-
fecting the system. Tere are many applications of difer-
ential game in our life and it is an important case ([4–8]).

In [9], Hemeda introduced an integral iterative method
(IIM) as a modifcation for PM to solve nonlinear inte-
grodiferential and systems of nonlinear integrodiferential
equations.

In [10], Joseph presented a duopolistic market problem
in which two frms sell the same product competitively in a
certain time. Each frm has its own market share and the
strategy here is one for the two frms, that is, the advertising
eforts. Kristina solved the diferential game by using the
maximum principle with a general inequality constraints
theorem. She used a numerical method for fnding the
solutions. In this work, we used another method and a
theorem for fnding the necessary conditions for an open-
loop Nash equilibrium diferential game. We found the
approximate solutions using the Picard method, constructed
graphs for the solutions, and making comparisons to the two
frms simultaneously. We illustrated those comparisons with
each graph.

Te rest of the paper is organized as the following: In
Section 2, the dynamical system of the problem, its payof
functionals, and the necessary conditions for an open-loop
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Nash equilibrium are presented. Te aim of Section 3 is to
fnd an approximate solution using the Picard method.
Section 4 is preserved for the discussion of the results. Fi-
nally, Section 5 contains a conclusion.

2. Problem Formulation

In this section, frst we explain the dynamical system of the
problem, the payof functionals, and the open-loop Nash
equilibrium.

2.1. Te Dynamical System. We consider two frms, Firm 1
and Firm 2. Te two frms sell the same product in the
market competitively [10], where x(t) is the market share of
Firm 1 at time t, 1 − x(t) is the market share of Firm 2 at
time t. u1(t) and u2(t) are the controls which defned as
follows: u1(t) is the advertising eforts of Firm 1 at time t,
and u2(t) is the advertising eforts of Firm 2 at time t.

In Firm 1, its number of customers increases by its
advertising eforts. Te advertising eforts of Firm 2 take
away the customers of Firm 1. Terefore, the system dy-
namics can be expressed as the following:

dx

dt
� u1(t)(1 − x(t)) − u2(t)x(t),

x(0) � x0,

t ∈ [0, T],

(1)

with constraints given by

0≤x(t)≤ 1. (2)

As we are concerned with a diferential game with two
players, then we have the following defnition.

Defnition 1 (2-players diferential game). In the diferential
game of two players on the time interval [t0, tf], we have the
following:

(1) A set of players N � 1, 2
(2) For each player i ∈ N, there is a vector of controls

ui(t) ∈ Ui ∈ Rni , where Ui is the set of admissible
control values for player i

(3) A vector of state variables x ∈ X ⊂ Rn, where X is the
set of admissible states

(4) A strategy set Ψi, where the strategy ψi ∈ Ψi is a
decision rule that defnes the control ui(t) ∈ Ui as a
function of the information available at time t

2.2. Payof Functionals and Open-Loop Nash Equilibrium.
We consider the state equation which describes the state of
the game and the payof functionals as the following:

dx

dt
� f x(t), u1(t), u2(t), t( 􏼁, (3)

Ji u1(t), u2(t)( 􏼁 � 􏽚
tf

t0

Ii x(t), u1(t), u2(t), t( 􏼁dt; i � 1, 2.

(4)

Since the information structure is open-loop, then the
equilibrium strategy of player i will be u∗i (t), t ∈ [t0, tf], i �

1, 2.
For obtaining these strategies, we have Hamiltonian’s

function for each player i.

Hi(λi, x, u1, u2, t) � Ii(x(t), u1(t), u2(t), t) + λT
i f(x, u1, u2,

t); t ∈ [t0, tf], i � 1, 2, where λi is the costate vector for
player i.

Defnition 2. In the 2-players diferential game given by
Defnition 1 of a duration [t0, tf], we say that player i,s

information structure is open-loop; if at time t, the only
information available to player i is the initial state of the
game x0; hence, his strategy set can be written as Ψi(t) �

x0, t ∈ [t0, tf].

Defnition 3. If J1(u1(t), u2(t)) and J2(u1(t), u2(t)) are cost
functionals for players 1, 2, respectively, then an ordered pair
control (u∗1 , u∗2 ) is a Nash equilibrium strategy if for each
i � 1, 2, we have

Ji u
∗
1 , u
∗
2( 􏼁≤ Ji u1, u

∗
2( 􏼁. (5)

For simplicity, the Nash equilibrium concept means
that if one player tries to change his strategy from his own
side, he cannot improve his own optimization criterion.

Now, we can defne the payof functionals of the two
frms of our problem (1) and (2) as the following:

J1 � 􏽚
T

0
e

− r1t ϕ1x(t) − c1u1(t)􏼂 􏼃dt,

J2 � 􏽚
T

0
e

− r2t ϕ2(1 − x(t)) − c2u2(t)􏼂 􏼃dt,

(6)

such that [t0, tf] � [0, T], ri is the interest rate of Firm i, ϕi is
the fractional revenue potential of Firm i, and ci(s) is the
advertising cost function of the two frms.

Assuming that ci(s) � kis
2/2; where ki is a positive

constant and

f x(t), u1(t), u2(t), t( 􏼁 � u1(t)(1 − x(t)) − u2(t)x(t),

I1 x(t), u1(t), u2(t), t( 􏼁 � ϕ1x(t) − c1 u1(t)( 􏼁,

I2 x(t), u1(t), u2(t), t( 􏼁 � ϕ2(1 − x(t)) − c2 u2(t)( 􏼁.

(7)

Te Hamiltonian function of player 1 is
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H1 λ1, x, u1, u2, t( 􏼁 � ϕ1x(t) −
k1u

2
1

2
+ λ1 u1(t)(1 − x(t)) − u2(t)x(t)􏼂 􏼃. (8)

Te Hamiltonian function of player 2 is

H2 λ2, x, u1, u2, t( 􏼁 � ϕ2(1 − x(t)) −
k2u

2
2

2
+ λ2 u1(t)(1 − x(t)) − u2(t)x(t)􏼂 􏼃. (9)

Theorem 1. Let f(x(t), u1(t), u2(t), t) and Ii(x(t),

u1(t), u2(t), t), i � 1, 2 be continuously diferentiable on Rn

i.e., f(x(t), u1(t), u2(t), t): Rn × Rs × [0, T]⟶ R,

f ∈ C1, s � ΣNj�1sj, i≠ j, Ii(x(t), u1(t), u2(t), t): Rn × Rs×

[0, T]⟶ R, Ii ∈ C1, i � 1, 2. If u∗i (t), t0 ≤ t≤ tf is an open-
loop Nash-equilibrium solution and x∗(t), t0 ≤ t≤ tf be the
corresponding state trajectory, then there exists 2 costate
vectors λi: [t0, tf]⟶ Rn, and 2-Hamiltonian functions
Hi(λi, x, u1, u2, t) � Ii(x(t), u1(t), u2(t), t) + λT

i f(x, u1, u2,

t) such that the following conditions are satisfed:

dx
∗

dt
� f x

∗
(t), u
∗
1(t), u

∗
2(t), t( 􏼁, x

∗
(0) � x0,

dλi(t)

dt
� −

zHi λi, x
∗
, u
∗
1 , u
∗
2 , t( 􏼁

zx
, i � 1, 2,

zH1 λ1, x
∗
, u
∗
1 , u
∗
2 , t( 􏼁

zu1
� 0,

zH2 λ2, x
∗
, u
∗
1 , u
∗
2 , t( 􏼁

zu2
� 0,

(10)

with boundary conditions,

x
∗
(0) � x0,

λi tf􏼐 􏼑 � 0,

i � 1, 2,

(11)

where u∗i , i � 1, 2, is an open-loop Nash equilibrium
strategy, and x∗ is the corresponding equilibrium state
trajectory.

Te proof of the thereom is proved in [11].

3. The Approximate Solution by Using the
Picard Method

Te purpose of this section is to fnd the existence and
convergence of the solution for the problem.

3.1. Existence and Convergence of the Solution. Now, we
study the existence of the solution for the problem (10)–(11)
(see [12, 13]) and we apply the Picard method for fnding an
approximate solution and studying the convergence of this
solution.

Consider the following system after reducing the nec-
essary conditions of an open-loop Nash diferential game as
the following:

dx

dt
� f1 x, λ1, λ2, t( 􏼁,

dλ1
dt

� f2 x, λ1, λ2, t( 􏼁 + ϕ1,

dλ2
dt

� f3 x, λ1, λ2, t( 􏼁 − ϕ2,

x(0) � x0,

λ1(T) � 0,

λ2(T) � 0.

(12)

Assume these assumptions for our problem.

(1) fi(x(t), λ1(t), λ2(t), t): Rn × Rn × Rn × [0, T]⟶ R

are continuous and there are positive constants Mi

s.t |fi|≤Mi, i � 1, 2, 3.
(2) fi satisfes Lipschitz condition with Lipschitz con-

stants Li, 0<Li < 1, i � 1, 2, 3 such that

f1 x, λ1, λ2, t( 􏼁 − f1 y, λ1, λ2, t( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L1|x − y|,

f2 x, λ1, λ2, t( 􏼁 − f2 x, p1, λ2, t( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L2 λ1 − p1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

f3 x, λ1, λ2, t( 􏼁 − f3 x, λ1, p2, t( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L3 λ2 − p2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(13)

We prove the existence of the solution of system (12),
then we have to integrate the diferential equation in (12), we
get

x(t) � x0 + 􏽚
t

0
f1 x, λ1, λ2, t( 􏼁dt, (14)

λ1(t) � ϕ1(t − T) + 􏽚
t

T
f2 x, λ1, λ2, t( 􏼁dt, (15)

λ2(t) � − ϕ1(t − T) + 􏽚
t

T
f3 x, λ1, λ2, t( 􏼁dt. (16)

By diferentiating the integral equations (14)–(16) with
respect to t, we have
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dx

dt
� f1 x, λ1, λ2, t( 􏼁,

dλ1
dt

� f2 x, λ1, λ2, t( 􏼁 + ϕ1,

dλ2
dt

� f3 x, λ1, λ2, t( 􏼁 − ϕ2.

(17)

Substituting t � 0 in (14), t � T in (15) and (16), we
obtain

x(0) � x0 + 􏽚
0

0
f1 x, λ1, λ2dt, t( 􏼁 � x0,

λ1(T) � ϕ1(T − T) + 􏽚
T

T
f2 x, λ1, λ2, t( 􏼁dt � 0,

λ2(T) � − ϕ1(T − T) + 􏽚
T

T
f3 x, λ1, λ2dt, t( 􏼁 � 0.

(18)

Hence, the existence is proved from the equivalence
between the system (12) and the integral equations
((14)–(16)). Terefore, there is a solution for our system.

Now, we apply the Picard method to fnd the solutions of
the integral equations (14)–(16). Te solution is constructed
by the sequences,

xn(t) � x0 + 􏽚
t

0
f1 xn− 1, λ1( 􏼁n− 1, λ2( 􏼁n− 1, t( 􏼁dt,

x(0) � x0,

λ1(t)( 􏼁n � ϕ1(t − T) + 􏽚
t

T
f2 xn− 1, λ1( 􏼁n− 1, λ2( 􏼁n− 1, t( 􏼁dt,

λ1( 􏼁0 � 0,

λ2(t)( 􏼁n � − ϕ2(t − T) + 􏽚
t

T
f3 xn− 1, λ1( 􏼁n− 1, λ2( 􏼁n− 1, t( 􏼁dt,

λ2( 􏼁0 � 0, n � 1, 2, 3, . . . .

(19)
xn(t), (λ1(t))n, (λ2(t))n can be written as the following:

xn(t) � x0 + 􏽘
n

j�1
xj − xj− 1􏼐 􏼑,

λ1(t)( 􏼁n � ϕ1(t − T) + 􏽘
n

j�1
λ1( 􏼁j − λ1( 􏼁j− 1􏼐 􏼑,

λ2(t)( 􏼁n � − ϕ2(t − T) + 􏽘
n

j�1
λ2( 􏼁j − λ2( 􏼁j− 1􏼐 􏼑.

(20)

If xn, (λ1)n, and (λ2)n are convergent, then the infnite
series 􏽐(xj − xj− 1), 􏽐((λ1)j − (λ1)j− 1) and
􏽐((λ2)j − (λ2)j− 1) are convergent, and the solution will be
x, λ1, and λ2, where

x(t) � lim
n⟶∞

xn,

λ1(t) � lim
n⟶∞

λ1( 􏼁n,

λ2(t) � lim
n⟶∞

λ2( 􏼁n.

(21)

If the three series are converged, then the three se-
quences xn, (λ1)n and (λ2)n will be converged, respectively,
to x(t), λ1(t) and λ2(t). For proving the uniform conver-
gence of xn, (λ1)n and (λ2)n, we have to consider the three
associated series,

􏽘

∞

n�1
xn − xn− 1( 􏼁,

􏽘

∞

n�1
λ1( 􏼁n − λ1( 􏼁n− 1( 􏼁,

􏽘

∞

n�1
λ2( 􏼁n − λ2( 􏼁n− 1( 􏼁.

(22)

For n � 1, we get

x1 − x0 � 􏽚
t

0
f1 x0, λ1( 􏼁0, λ2( 􏼁0, t( 􏼁dt,

x1 − x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
t

0
f1 x0, λ1( 􏼁0, λ2( 􏼁0, t( 􏼁dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

x1 − x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M1T,

λ1( 􏼁1 − λ1( 􏼁0 � ϕ1(t − T) + 􏽚
t

T
f2 x0, λ1( 􏼁0, λ2( 􏼁0, t( 􏼁dt,

λ1( 􏼁1 − λ1( 􏼁0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϕ1 + M2( 􏼁|t − T|,

λ1( 􏼁1 − λ1( 􏼁0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϕ1 + M2( 􏼁T,

λ2( 􏼁1 − λ2( 􏼁0 � − ϕ2(t − T) + 􏽚
t

T
f3 x0, λ1( 􏼁0, λ2( 􏼁0, t( 􏼁dt,

λ2( 􏼁1 − λ2( 􏼁0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϕ2 + M3( 􏼁|t − T|,

λ2( 􏼁1 − λ2( 􏼁0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϕ2 + M3( 􏼁T.

(23)

Now, we shall get an estimation for xn − xn− 1,
(λ1)n − (λ1)n− 1, and (λ2)n − (λ2)n− 1
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xn − xn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
t

0
f1 xn− 1, λ1( 􏼁n− 1, λ2( 􏼁n− 1, t( 􏼁dt − 􏽚

t

0
f1 xn− 2, λ1( 􏼁n− 2, λ2( 􏼁n− 2, t( 􏼁dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

xn − xn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L1T xn− 1 − xn− 2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

λ1( 􏼁n − λ1( 􏼁n− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
t

T
f2 xn− 1, λ1( 􏼁n− 1, λ2( 􏼁n− 1, t( 􏼁dt − 􏽚

t

T
f2 xn− 2, λ1( 􏼁n− 2, λ2( 􏼁n− 2, t( 􏼁dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

λ1( 􏼁n − λ1( 􏼁n− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L2T λ1( 􏼁n− 1 − λ1( 􏼁n− 2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

λ2( 􏼁n − λ2( 􏼁n− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
t

T
f3 xn− 1, λ1( 􏼁n− 1, λ2( 􏼁n− 1, t( 􏼁dt − 􏽚

t

T
f3 xn− 2, λ1( 􏼁n− 2, λ2( 􏼁n− 2, t( 􏼁dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

λ2( 􏼁n − λ2( 􏼁n− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L3T λ2( 􏼁n− 1 − λ2( 􏼁n− 2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(24)

By using the frst estimation in (24) and putting n � 2, we
get

x2 − x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L1T x1 − x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

x2 − x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L1M1T
2
.

(25)

At n � 3, we have

x3 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L1T x2 − x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

x3 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L
2
1M1T

3
,

(26)

and so on

xn − xn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L
n− 1
1 M1T

n
. (27)

By using the second estimation in (24), we have at n � 2

λ1( 􏼁2 − λ1( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L2T λ1( 􏼁1 − λ1( 􏼁0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

λ1( 􏼁2 − λ1( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L2 ϕ1 + M2( 􏼁T
2
.

(28)

At n � 3

λ1( 􏼁3 − λ1( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L
2
2 ϕ1 + M2( 􏼁T

3
, (29)

and so on

λ1( 􏼁n − λ1( 􏼁n− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L
n− 1
2 ϕ1 + M2( 􏼁T

n
. (30)

By using the third estimation in (24), we get at n � 2

λ2( 􏼁2 − λ2( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L3T λ2( 􏼁1 − λ2( 􏼁0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

λ2( 􏼁2 − λ2( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L3 ϕ2 + M3( 􏼁T
2
.

(31)

At n � 3,

λ2( 􏼁3 − λ2( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L
2
3 ϕ2 + M3( 􏼁T

3
, (32)

and so on

λ2( 􏼁n − λ2( 􏼁n− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L
n− 1
3 ϕ2 + M3( 􏼁T

n
. (33)

Since Li < 1 such that i � 1, 2, 3 and T< 1, then
􏽐
∞
n�1(xn − xn− 1), 􏽐

∞
n�1((λ1)n − (λ1)n− 1) and 􏽐

∞
n�1((λ2)n−

(λ2)n− 1) are uniformly convergent, and thus the sequences
xn(t), (λ1(t))n and (λ2(t))n are uniformly convergent.

Now, we can apply the Picard method to obtain an
approximate solution for our problem.

FromTeorem 1, we get the system of the problem as the
following:

dx

dt
� u1(1 − x) − u2x,

dλ1
dt

� − λ1u1 − λ1u2 + ϕ1,

λ2
dt

� − λ2u1 − λ2u2 − ϕ2,

u1 �
λ1
k1

(1 − x),

u2 �
− λ2
k2

x,

x(0) � x0,

λ1(T) � 0,

λ2(T) � 0.

(34)

After reducing these equations, we obtain

dx

dt
�
λ1
k1

(1 − x)
2

+
λ2
k2

x
2
,

dλ1
dt

�
− λ21
k1

(1 − x) +
λ1λ2
k2

x + ϕ1,

dλ2
dt

� −
λ1λ2
k1

(1 − x) +
− λ22
k2

x − ϕ2,

x(0) � x0,

λ1(T) � 0,

λ2(T) � 0.

(35)

By integrating the diferential equations in (35), we have
the following system:

x(t) � x0 + 􏽚
t

0

λ1
k1

−
2λ1
k1

x +
λ1
k1

+
λ2
k2

􏼠 􏼡x
2

􏼢 􏼣dt, (36)

λ1(t) � 􏽚
t

T

− λ21
k1

+
λ21
k1

x +
λ1λ2
k2

x + ϕ1􏼢 􏼣dt, (37)
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λ2(t) � 􏽚
t

T
−
λ1λ2
k1

+
λ1λ2
k1

x +
λ22
k2

x − ϕ2􏼢 􏼣dt. (38)
By applying the Picard method to equations (36)–(38),

we have

xn(t) � x0 + 􏽚
t

0

λ1( 􏼁n− 1
k1

−
2 λ1( 􏼁n− 1

k1
xn− 1 +

λ1( 􏼁n− 1
k1

+
λ2( 􏼁n− 1
k2

􏼠 􏼡x
2
n− 1􏼢 􏼣dt,

λ1(t)( 􏼁n � 􏽚
t

T

− λ1( 􏼁
2
n− 1

k1
+

λ1( 􏼁
2
n− 1

k1
xn− 1 +

λ1( 􏼁n− 1 λ2( 􏼁n− 1
k2

xn− 1 + ϕ1􏼢 􏼣dt,

λ2(t)( 􏼁n � 􏽚
t

T
−

λ1( 􏼁n− 1 λ2( 􏼁n− 1
k1

+
λ1( 􏼁n− 1 λ2( 􏼁n− 1

k1
xn− 1 +

λ2( 􏼁
2
n− 1

k2
xn− 1 − ϕ2􏼢 􏼣dt,

x(0) � x0,

λ1( 􏼁0 � 0,

λ2( 􏼁0 � 0.

(39)

For n � 1, we have

x1(t) � x0 + 􏽚
t

0

λ1( 􏼁0
k1

−
2 λ1( 􏼁0

k1
x0 +

λ1( 􏼁0
k1

+
λ2( 􏼁0
k2

􏼠 􏼡x
2
0􏼢 􏼣dt,

λ1(t)( 􏼁1 � 􏽚
t

T

− λ1( 􏼁
2
0

k1
+

λ1( 􏼁
2
0

k1
x0 +

λ1( 􏼁0 λ2( 􏼁0
k2

x0 + ϕ1􏼢 􏼣dt,

λ2(t)( 􏼁1 � 􏽚
t

T
−

λ1( 􏼁0 λ1( 􏼁0
k1

+
λ1( 􏼁0 λ2( 􏼁0

k1
x0 +

λ2( 􏼁
2
0

k2
x0 − ϕ2􏼢 􏼣dt,

x(0) � x0,

λ1( 􏼁0 � 0,

λ2( 􏼁0 � 0.

(40)

Terefore, the frst approximation for x, λ1 and λ2 is the
following:

x1(t) � x0,

λ1(t)( 􏼁1 � 􏽚
t

T
ϕ1dt � ϕ1(t − T),

λ2(t)( 􏼁1 � 􏽚
t

T
− ϕ2dt � ϕ2(t − T).

(41)

Hence, the frst approximation of u1, u2, c1, and c2 is the
following:

u1( 􏼁1 �
ϕ1(t − T)

k1
1 − x0( 􏼁,

u2( 􏼁1 �
− ϕ2(t − T)

k2
1 − x0( 􏼁,

c1( 􏼁1 �
k1

2
ϕ1(t − T)

k1
1 − x0( 􏼁􏼠 􏼡

2

,

c2( 􏼁1 �
k2

2
− ϕ2(t − T)

k2
1 − x0( 􏼁􏼠 􏼡

2

.

(42)

For n � 2, we have
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x2(t) � x0 + 􏽚
t

0

λ1( 􏼁1
k1

−
2 λ1( 􏼁1

k1
x1 +

λ1( 􏼁1
k1

+
λ2( 􏼁1
k2

􏼠 􏼡x
2
1􏼢 􏼣dt,

λ1(t)( 􏼁2 � 􏽚
t

T

− λ1( 􏼁
2
1

k1
+

λ1( 􏼁
2
1

k1
x1 +

λ1( 􏼁1 λ2( 􏼁1
k2

x1 + ϕ1􏼢 􏼣dt,

λ2(t)( 􏼁2 � 􏽚
t

T
−

λ1( 􏼁1 λ2( 􏼁1
k1

+
λ1( 􏼁1 λ2( 􏼁1

k1
x1 +

λ2( 􏼁
2
1

k2
x1 − ϕ2􏼢 􏼣dt.

(43)

Terefore, the second approximation for x, λ1 and λ2 is
the following:

x2(t) � x0 −
t
2ϕ1
2k1

+
tTϕ1

k1
+

t
2
x
2
0ϕ1

2k1
−

tTx
2
0ϕ1

k1
−

t
2
x
2
0ϕ2

2k2
+

tTx
2
0ϕ2

k2
,

λ1(t)( 􏼁2 �
ϕ1 (1/3)(t − T)

3
k2 − 1 + x0( 􏼁ϕ1 + k1 (t − T)k2 − (1/3)(t − T)

3
x0ϕ2􏼐 􏼑􏼐 􏼑

k1k2
,

λ2(t)( 􏼁2 �
ϕ2 − (1/3)(t − T)

3
k2 − 1 + x0( 􏼁ϕ1 + k1 − tk2 + Tk2 + (1/3)(t − T)

3
x0ϕ2􏼐 􏼑􏼐 􏼑

k1k2
.

(44)

Hence, the second approximation of u1, u2, c1, and c2 is
the following:

u1( 􏼁2 �
ϕ1 (1/3)(t − T)

3
k2 − 1 + x0( 􏼁ϕ1 + k1 (t − T)k2 − (1/3)(t − T)

3
x0ϕ2􏼐 􏼑􏼐 􏼑

k
2
1k2

1 − x0 −
t
2ϕ1
2k1

+
tTϕ1

k1
+

t
2
x
2
0ϕ1

2k1
−

tTx
2
0ϕ1

k1
−

t
2
x
2
0ϕ2

2k2
+

tTx
2
0ϕ2

k2
􏼠 􏼡􏼠 􏼡,

u2( 􏼁2 �
ϕ2 (− 1/3)(t − T)

3
k2 − 1 + x0( 􏼁ϕ1 + k1 − tk2 + Tk2 + (1/3)(t − T)

3
x0ϕ2􏼐 􏼑􏼐 􏼑

k
2
1k2

x0 −
t
2ϕ1
2k1

+
tTϕ1

k1
+

t
2
x
2
0ϕ1

2k1
−

tTx
2
0ϕ1

k1
−

t
2
x
2
0ϕ2

2k2
+

tTx
2
0ϕ2

k2
􏼠 􏼡,

c1( 􏼁2 �
ϕ1 (1/3)(t − T)

3
k2 − 1 + x0( 􏼁ϕ1 + k1 (t − T)k2 − (1/3)(t − T)

3
x0ϕ2􏼐 􏼑􏼐 􏼑

k
2
1k2

1 − x0 −
t
2ϕ1
2k1

+
tTϕ1

k1
+

t
2
x
2
0ϕ1

2k1
−

tTx
2
0ϕ1

k1
−

t
2
x
2
0ϕ2

2k2
+

tTx
2
0ϕ2

k2
􏼠 􏼡􏼠 􏼡⎛⎝ ⎞⎠,

c2( 􏼁2 �
k2

2
−
ϕ2 (− 1/3)(t − T)3k2 − 1 + x0( 􏼁ϕ1 + k1 tk2 + Tk2 + (1/3)(t − T)3x0ϕ2􏼐 􏼑􏼐 􏼑

k1k
2
2

x0 −
t2ϕ1
2k1

+
tTϕ1

k1
+

t2x2
0ϕ1

2k1
−

tTx2
0ϕ1

k1
−

t2x2
0ϕ2

2k2
+

tTx2
0ϕ2

k2
􏼠 􏼡⎛⎝ ⎞⎠

2

.

(45)

By putting x0 � 0,ϕ1 � 0.1, ϕ2 � 0.3, k1 � 0.25, k2 � 0.5,
and T � 0.5, then we have a comparison between the
obtained approximate solutions of the two frms in our
problem in the following fgures:

Figure 1 indicates the approximated optimal solutions of the
state for our problem. In our example x and 1 − x represented,
respectively, the market share of Firm 1 and Firm 2 at time t,
and from this fgure, we found that themarket share of Firm 1 is
increasing and themarket share of Firm 2 is decreasing with the
time, and notice that Firm 2 has a greater market share than
Firm 1 on the interval t ∈ [0, 0.5].

In Figure 2, we show that the approximated optimal
controls to the problem. In the problem, the controls u1 and

u2 represented, respectively, the advertising eforts of Firm 1
and Firm 2 at time t, and from this fgure, we noticed that the
advertising eforts of Firm 1 is decreasing and the advertising
eforts of Firm 2 increases until it reaches a certain time and
then begins to decrease again. We found that Firm 1 has a
greater advertising efort than Firm 2 on the interval
t ∈ [0, 0.5].

In Figure 3, we explore the approximated solutions of the
advertising cost function to the problem. In the problem, c1
and c2 represented respectively the advertising cost function
of Firm 1 and Firm 2 at time t, and from this fgure we
noticed that the advertising cost function of Firm 1 is de-
creasing and the advertising cost function of Firm 2 is
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marginally increasing. We found that Firm 1 has a greater
advertising cost function than Firm 2 on the interval
t ∈ [0, 0.5].

In Figure 4, we present the approximated optimal so-
lutions of the costate variables to the problem. Te costate
here represents the marginal value of the market share. In
other words, the adjoint for this problem is the rate of
change in the payof for small changes in the market share.
From this fgure we see that in Firm 1, λ1 increases while λ2
decreases in Firm 2 on the time interval t ∈ [0, 0.5].

4. Discussion

In this study, we discussed the competing between two frms
in the market.

(1) Firm 2 is existing in the market and there is no
competitor to it, and its market share is 1 − x(t).
Firm 1 entered the market to compete this frm, and
its market share is x(t).

(2) Firm 1 started to make an advertising campaign by
getting a loan. It earned profts and increased its
sales.

(3) Firm 2 had no advertisements, while the number of
customers of the new frm increased and so, its
market share increased; therefore, the new frm
controlled the market.

(4) Firm 2 started to lose and its sales decreased. It got a
loan for doing advertisements because of its loss.

(5) Te cost of Firm 1 was too much and after increasing
its sales, the cost started to decrease and also the
advertisements started to increase from the negative
value. Tis means that debts decrease with time.
After a specifc time, the advertisements of the old
frm started to increase and this increase is almost
slight, so the cost seems constant.

(6) Finally, we used an iterative method (Picardmethod)
for fnding the solution and proved the convergence
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Figure 1: Market share of frm 1 and frm 2 at time t.
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Figure 2: Te advertising eforts of frm 1 and frm 2 at the time t.
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of the solution. On the other hand, Kristina used a
numerical algorithm for the solution (Forward-
Backward sweep algorithm), but she did not deter-
mine the solution [10].

5. Conclusion

In this paper, we concerned with an open-loop Nash
diferential game. We proved that there is a solution for
the problem, we studied the existence for the solution of
the dynamical system of the diferential game, and we
used the Picard method for fnding an approximate so-
lution. Also, we studied the convergence for the Picard
method to make sure that the approximate solution is
uniformly convergent. Finally, we added the fgures to
compare between the behavior of the two frms in the
problem with respect to market share, the advertising
eforts, the advertising cost function, and the costate
variables. We proved the convergence at T< 1, so we
chose the interval [0, 0.5]. If we reach to T � 1, the so-
lution will be divergent.
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