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Abstract. In this paper, we consider a general form of linear-quadratic Stack-

elberg deterministic differential game model, which consists of one leader and
one follower. Each of their utility functions includes all possible squared terms,

cross terms and single terms of states and controls of the two players, and

constant terms. The time-consistent state feedback form of Stackelberg equi-
librium strategy is obtained. Its explicit expression is in terms of the solutions

of three decoupled symmetric Riccati differential equations. These decoupled

symmetric Riccati differential equations are independent of the state and can
be solved backward in time one by one. The proposed model and theory are

applied to some classical Stackelberg games.

1. Introduction. The Stackelberg game model is originally proposed by Stackel-
berg in 1934 [19], which involves players with asymmetric roles, one leading (called
the leader) and the other following (called the follower). In the Stackelberg game,
the leader announces the policy first, and the follower reacts it. In fact, the leader
knows the objective function of the follower and aims to minimize his own objective
function, taking into account the follower’s optimal response made based on the
leader’s optimal strategy being announced.

Compared with the classical Nash equilibrium non-cooperative game, the Stack-
elberg game, captures more real characteristics in many practical problems. To
date, the Stackelberg game model has been widely used in various fields, especially
in the study of operational management, marketing channels [10, 16], and water re-
source management [17]. In addition, Stackelberg games are important in the field
of optimization, because they can be regarded as bi-level optimization problems
[3, 7].

For some Stackelberg games that are uncertain or governed by stochastic process
with appropriate distribution function, they can be transformed into determinis-
tic problems [6, 14, 15]. The linear-quadratic Stackelberg stochastic differential
game model is studied in [25], where the corresponding Riccati differential equa-
tions for the follower is a backward stochastic differential equation. To obtain the
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follower-based feedback strategy, it is necessary to solve an two-point boundary
value problem governed by the coupled system of forward stochastic differential
equations and backward stochastic differential equations. The state feedback form
of the Stackelberg equilibrium strategy in terms of the solutions of these two sto-
chastic differential equations is given. However, the expression of the utility function
of each of the two players does not involve the cross terms of the state and control
of the two players. Furthermore, they do not contain the control of the other player.
In addition, no practical computational method is developed to solve the resulting
two-point boundary value problem. In [4], the corresponding maximum principles
are derived for open-loop and closed-loop Stackelberg stochastic differential games.
In particular, for the linear quadratic Stackelberg game model, due to the two differ-
ent information structures, their respective maximum principles are also different.
In addition, in this linear quadratic Stackelberg game model, the expression of the
utility function of each of the two the players does not involve the cross terms of
the states and controls of both players. Also, they do not contain the control of the
other player. As for the case considered in [25], no practical computational method
is developed to solve the resulting two-point boundary value problem.

For the linear-quadratic Stackelberg deterministic differential game model, the
sufficient and/or necessary conditions for the existence and uniqueness of equilib-
rium strategy and are obtained by using various methods in the existing literatures,
for example, see [1, 2, 8, 9, 12, 18, 20, 24]. On the other hand, in order to obtain
the solution of each of the problems mentioned above, it is necessary to solve the
corresponding two-point boundary value problem governed by three coupled asym-
metric Riccati differential equations. However, no practical effective computational
method has been developed. In [23], by introducing a new costate, the Stackel-
berg strategy, which is expressed in terms of three decoupled symmetric Riccati
differential equations, is obtained for a two-player game in discrete-time dynamic
setting. Later, this idea is applied to the study of the two-person linear-quadratic
Stackelberg game of time delay discrete time model and the continuous time model
in [22]. However, their utility functions do not involve cross terms. In addition, for
each case, the expression of the Stackelberg strategy involves the transition matrix
and its inverse at each time point in [22].

In [11], the focus is on the development of differential game theory and numerical
methods in economic and management applications. It is pointed out that the
linear-quadratic model involving time-dependent parameters and the interaction
between the controls and between the controls and states of the players, can be
a good approximation to a more general non-linear model. For example, if the
market demand is affected by the retail price, then the utility function of each
of the two players will include the product of the wholesale price and the retail
price. In general, the wholesale price is determined by the supplier as the leader,
and the retail price is determined by the retailer as the follower. In addition, the
differential game problem involving only one state variable, is can be solved by using
the Hamilton-Jacobi-Bellman (HJB) approach.

The main contributions of this paper are threefold:

(i) A general linear-quadratic Stackelberg game model is presented, in which the
utility function of each of the two players contains all the quadratic terms,
including cross terms and individual terms of the players’ controls and the
states. All parameters can be time-dependent.
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(ii) Due to reformulating the leader’s optimal control as a new linear-quadratic
optimal control problem, the expression of the equilibrium strategy contains
only four variables which can be solved backward in time one by one. In other
words, for the Stackelberg game model, there is no need to solve the two-point
boundary value problem anymore.

(iii) The existence and uniqueness of the game equilibrium strategy are analyzed.
And the Stackelberg equilibrium strategy in the form of time-consistent state
feedback is presented.

In addition, to demonstrate the applicability of the proposed model and theory,
some classical examples are considered.

The remainder of the paper is organized as follows. In the next section, we
present the description of our model. Section 3 is devoted to the study of the
follower’s optimal control problem with the leader’s strategy being given. The cor-
responding symmetric Riccati differential equation is obtained. The leader’s optimal
control problem is discussed in Section 4. The state feedback form of Stackelberg
equilibrium strategy is given, which is expressed in terms of the solutions of three
decoupled symmetric Riccati differential equations and one ordinary differential
equations. The three decoupled symmetric Riccati differential equations are inde-
pendent of the state variable x, and they can be solved backward in time from t = T
to t = 0 one by one. Thus, the time-consistent state feedback form of Stackelberg
equilibrium strategy is obtained. In Section 5, some classical Stackelberg games are
presented. Section 6 concludes the paper.

2. Problem formulation. We consider a linear-quadratic Stackelberg game in-
volving two players labeled as the follower and the leader. The underlying dynam-
ical system is described by the following system of differential equations.

dx(t)

dt
= f(t, x(t), u1(t), u2(t)), t ∈ (0, T ],

x(0) = xo,
(1)

where

x(t) =
[
x1(t), · · · , xn(t)

]⊤ ∈ Rn,

is the state vector, and for i = 1, 2

ui(t) =
[
ui1(t), · · · , uimi

(t)
]⊤ ∈ Rmi ,

are the follower’s (respectively, leader’s) control vector at time t ∈ [0, T ], xo ∈ Rn

is a given vector, and n,mi ∈ N+, i = 1, 2, while

f(t, x, u1, u2) = A(t)x+B1(t)u
1(t) +B2(t)u

2(t) + c(t)

with A(t) ∈ Rn×n, Bi(t) ∈ Rn×mi for i = 1, 2, and c(t) ∈ Rn.
To proceed further, x(t) is abbreviated as x when no confusion can arise. Similar

abbreviations are applied to all other notations throughout.
For the follower and the leader, their respective objective functions are given by

JF (u
1, u2) = e−ρTΦ1(x(T )) +

∫ T

0

e−ρtL1(t, x(t), u
1(t), u2(t))dt, (2)

and

JL(u
1, u2) = e−ρTΦ2(x(T )) +

∫ T

0

e−ρtL2(t, x(t), u
1(t), u2(t))dt, (3)
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where ρ is a given depreciation constant, for i, j = 1, 2, i ̸= j,

Li(t, x, u
1, u2) =

1

2
x⊤Qix+

1

2
(ui)⊤Riiu

i + x⊤Siu
i + x⊤ωi + (ui)⊤µi

+
1

2
(uj)⊤Riju

j + (ui)⊤R̃iu
j + x⊤S̃iu

j + (uj)⊤µ̃i + βi,

Φi(x) =
1

2
x⊤Gix+ x⊤αi,

and

Qi = Q⊤
i ∈ Rn×n, Rii = R⊤

ii ∈ Rmi×mi , Si ∈ Rn×mi , ωi ∈ Rn, µi ∈ Rmi ,

Rij = R⊤
ij ∈ Rmj×mj , R̃i ∈ Rmi×mj , S̃i ∈ Rn×mj , µ̃i ∈ Rmj , βi ∈ R,

Gi = G⊤
i ∈ Rn×n, αi ∈ Rn.

Furthermore, let E, O, and 0 denote, respectively, the identity matrix, zero matrix
and zero vector with appropriate dimension.

In Stackelberg game, the leader aims to minimize his own objective function,
taking into account the follower’s optimal response made based on the leader’s
optimal strategy being announced. The optimal strategy of the leader and the
optimal reaction of the followers are called Stackelberg equilibrium or Stackelberg
solution. The mathematical expression, which can be found in [2, 16], is stated as
a definition given below.

Definition 2.1. A pair of strategies (u1,∗(·), u2,∗(·)) is called a Stackelberg equi-
librium if u2,∗(·) is the minimum solution of the leader’s optimal control problem
given below

inf
u2(·)

JL(ū(u
2(·)), u2(·))

subject to

ū(u2(·)) = arg inf
u1(·)

JF (u
1(·), u2(·))

such that u1,∗(·) = ū(u2,∗(·)).

Let this problem be referred to as Problem (PS), for which the Stackelberg
equilibrium strategy in feedback form is given in Theorem 4.3 and its computational
procedure is detailed in Algorithm (PS) in Section 4.

To obtain these results, we need to obtain the follower’s optimal control with
reference to the given leader’s strategy in Section 3. Then, the leader’s optimal
control problem is reformulated as a new linear quadratic optimal problem in Section
4.

3. Optimal control for the follower. Suppose that the leader’s strategy

u2(·) = û2(·) =
{
û2(t) : t ∈ [0, T ]

}
is given. Then, the follower’s optimal control problem is: Subject to the dynamical
system (1) with u2(·) taken as û2(·), find a u1(·) such that the follower’s objective
function

JF (u
1(·), û2(·)) (4)

is minimized. Let this problem be referred to as Problem (PF ).
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Theorem 3.1. Consider Problem (PF ) and assume that R11 is a symmetric positive
definite matrix. Then the follower’s optimal strategy is given by

u1,∗ = ū(û2(·)) = R−1
11

(
− (S1 + P1B1)

⊤x−B⊤
1 φ

1 − R̃1û
2 − µ1

)
, (5)

where P1 = P⊤
1 ∈ Rn×n and φ1 ∈ Rn are such that the following systems of

differential equations are satisfied:
dP1

dt
= −Q1 −A⊤P1 − P1A+ ρP1

+(S1 + P1B1)R
−1
11 (S1 + P⊤

1 B1)
⊤,

P1(T ) = G1,

(6)

and 

dφ1

dt
= −

(
A−B1R

−1
11 (S1 + P1B1)

⊤ − ρE
)⊤
φ1

−
(
S̃1 + P1B2 − (S1 + P1B1)R

−1
11 R̃1

)
û2

−(ω1 + P1c) + (S1 + P1B1)R
−1
11 µ

1,

φ1(T ) = α1.

(7)

Proof. The proof of this theorem is similar to that of Theorem 4.1, and so only the
proof of Theorem 4.1 will be given.

Remark 1. The differential equations (6) are the symmetric Riccati differential
equations, the existence and uniqueness of these equations are well-known.

4. Optimal control for the leader. Recall that the follower’s optimal response
ū is given by (5). Then, substituting ū for u1 in the dynamical system (1) and JL,
the leader’s optimal control problem, which is referred to as Problem (PL), can be
described as follows: Given the dynamical system

d

dt

[
x
φ1

]
=

[
A11 A12

O A22

] [
x
φ1

]
+

[
B1

B2

]
u2 +

[
C1

C2

]
(8)

with x(0) = xo and φ1(T ) = α1, find a u2(·) such that the leader’s objective function

e−ρTΦ(x(T ), φ1(T )) +

∫ T

0

e−ρtL(t, x(t), φ1(t), u2(t)) ds

is minimized, where

L =
1

2

[
x
φ1

]⊤ [
Q11 Q12

Q⊤
12 Q22

] [
x
φ1

]
+

1

2
(u2)⊤Ru2

+

[
x
φ1

]⊤ [
S1

S2

]
u2 +

[
x
φ1

]⊤ [
W1

W2

]
+ (u2)

⊤K +D,

Φ =
1

2

[
x
φ1

]⊤ [
G2 O
O O

] [
x
φ1

]
+

[
x
φ1

]⊤ [
α2

0

]
,

and

A11 = A−B1R
−1
11 (S1 + P⊤

1 B1)
⊤, A12 = −B1R

−1
11 B

⊤
1 ,

A22 = −A⊤ + (S1 + P1B1)R
−1
11 B

⊤
1 + ρE,

B1 = B2 −B1R
−1
11 R̃1, B2 = −S̃1 + S1R

−1
11 R̃1 − P1B1,

C1 = c−B1R
−1
11 µ

1, C2 = −ω1 + S1R
−1
11 µ

1 − P1C1,
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Q11 = Q2 +
(
(S1 + P1B1)R

−1
11 R21 − 2S̃2

)
R−1

11 (S1 + P⊤
1 B1)

⊤,

Q12 =
(
(S1 + P1B1)R

−1
11 R21 − S̃2

)
R−1

11 B
⊤
1 ,

Q22 = B1R
−1
11 R21R

−1
11 B

⊤
1 ,

R = R22 + (R̃⊤
1 R

−1
11 R21 − 2R̃2)R

−1
11 R̃1,

S1 = S2 − S̃2R
−1
11 R̃1 + (S1 + P1B1)R

−1
11 (R21R

−1
11 R̃1 − R̃⊤

2 ),

S2 = B1R
−1
11 (R21R

−1
11 R̃1 − R̃⊤

2 ),

W1 = ω2 − S̃2R
−1
11 µ

1 − (S1 + P1B1)R
−1
11 (R21R

−1
11 µ

1 + µ̃2),

W2 = −B1R
−1
11 (R21R

−1
11 µ

1 + µ̃2),

K = µ2 − R̃2R
−1
11 µ

1 − R̃⊤
1 R

−1
11 (R21R

−1
11 µ

1 + µ̃2),

D = β2 +
1

2
(µ1)⊤R−1

11 (R21R
−1
11 µ

1 − 2µ̃2).

Theorem 4.1. Consider Problem (PL) and assume that R is a symmetric positive
definite matrix. Then, the leader’s optimal strategy u2,∗ is given by

u2,∗ = R−1
(
− B⊤

1

[
φ1

φ2

]
+ B⊤

2

[
λ2

x

]
−K

)
, (9)

where [
φ1

φ2

]
,

[
λ2

x

]
∈ R2n

are such that the following systems of differential equations are satisfied:

d

dt

[
φ1

φ2

]
= A1

[
φ1

φ2

]
+ B2u

2,∗ + C2
, (10)

d

dt

[
λ2

x

]
= A2

[
φ1

φ2

]
−A⊤

1

[
λ2

x

]
+ B1u

2,∗ + C1
+ ρ

[
λ2

x

]
(11)

with [
φ1(T )
φ2(T )

]
=

[
α1

α2

]
,

[
λ2(0)
x(0)

]
=

[
0
xo

]
, (12)

and

A1 =

[
A22 O

−P2A12 −Q12 −A⊤
11 + ρE

]
, A2 = A⊤

2 =

[
Q22 A⊤

12

A12 O

]
,

B1 =

[
S2

B1

]
, B2 =

[
B2

−P2B1 − S1

]
, C1

=

[
W2

C1

]
, C2

=

[
C2

−P2C1 −W1

]
,

R =
R+R⊤

2
.

Moreover, P2 = P⊤
2 ∈ Rn×n satisfies
dP2

dt
= −Q11 +Q⊤

11

2
−A⊤

11P2 − P2A11 + ρP2,

P2(T ) = G2.
(13)

Proof. Define

H(t, x, φ1, λ1, λ2, u2) =

[
λ1

λ2

]⊤ ([
A11 A12

O A22

] [
x
φ1

]
+

[
B1

B2

]
u2 +

[
C1

C2

])
− L,

where λ1, λ2 ∈ Rn.
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To apply the necessary conditions for optimality:

∂H(t, x(t), φ1(t), λ1(t), λ2(t), u2(t))

∂u2
= 0,

we obtain

B⊤
1 λ

1 + B⊤
2 λ

2 − R+R⊤

2
u2 − S⊤

1 x− S⊤
2 φ

1 −K = 0 (14)

on [0, T ], where λ1 and λ2 are such that the following systems of differential equa-
tions

dλ1

dt
= −∂H

∂x
+ ρλ1,

dλ2

dt
= − ∂H

∂φ1
+ ρλ2 (15)

are satisfied with λ1(T ) = −G2x(T )− α2 and λ2(0) = 0.
Using the backward sweep method [5, 21], we set

λ1 = −P2x− φ2. (16)

Then, we have P2(T ) = G2 and φ2(T ) = α2. Now, according to

dλ1

dt
+
dP2

dt
x+ P2

dx

dt
+
dφ2

dt
= 0, (17)

we can get (
A⊤

11P2 +
Q11 +Q⊤

11

2
− ρP2 +

dP2

dt
+ P2A11

)
x

+A⊤
11φ

2 +Q12φ
1 + S1u

2 +W1 − ρφ2

+ P2

(
A12φ

1 + B1u
2 + C1

)
+
dφ2

dt
= 0.

(18)

Thus, (13) holds. Using (13) and (16), we rearrange equations (8), (15), and (18)
to get

d

dt

[
φ1

φ2

]
= A1

[
φ1

φ2

]
+ B2u

2 + C2
, (19)

d

dt

[
λ2

x

]
= (−A⊤

1 + ρE)

[
λ2

x

]
+A2

[
φ1

φ2

]
+ B1u

2 + C1
. (20)

From (14) and (16), it follows that

R+R⊤

2
u2 =

[
B2

−P2B1 − S1

]⊤ [
λ2

x

]
+

[
−S2

−B1

]⊤ [
φ1

φ2

]
−K, (21)

i.e.,

u2 = R−1
(
− B⊤

1

[
φ1

φ2

]
+ B⊤

2

[
λ2

x

]
−K

)
. (22)

Substituting the expression of u2 given by (22) into (19) and (20), the validity of
(10) and (11) is established. This completes the proof.

Remark 2. In Theorem 4.1, unlike the results obtained in [23], there is no second-
order term in Riccati differential equation of P2 given by (13) in our model. Problem
(PL) is transformed into system (9)-(11) with boundary conditions (12). In fact,
the differential equation (13) is Lyapunov differential equation, of which the unique
solution is shown to exist in [2] (Corollary 1.1.6.).
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Next, the leader’s optimal control problem can be reformulated as a new linear-
quadratic optimal control problem, which is referred to as Problem (PL), as given
below: Given system (19) with initial condition[

φ1(0)
φ2(0)

]
= φo, (23)

find a u2 such that the following objective function

e−ρTΦ(φ1(T ), φ2(T )) +

∫ T

0

e−ρtL(t, φ1(t), φ2(t), u2(t)) ds

is minimized, where

L =
1

2

[
φ1

φ2

]⊤
A2

[
φ1

φ2

]
+

1

2
(u2)⊤Ru2 +

[
φ1

φ2

]⊤
B1u

2

+

[
φ1

φ2

]⊤
C1

+ (u2)⊤K,

Φ =
1

2

[
φ1(T )
φ2(T )

]⊤
G
[
φ1(T )
φ2(T )

]
+

[
φ1(T )
φ2(T )

]⊤
α,

G =G⊤ ∈ R2n×2n, α ∈ R2n, φo ∈ R2n.

In other words, [
φ1

φ2

]
and

[
λ2

x

]
are considered as the state vector and the co-state vector, respectively.

Next, we will show how to construct G, α, and φo such that (12) holds. Using
the backward sweep method, we set[

λ2

x

]
= −P

[
φ1

φ2

]
− φ, (24)

so P ∈ R2n×2n and φ ∈ R2n can be solved with the initial conditions

P(0) = O and φ(0) = −
[
0
xo

]
. (25)

Thus, [
λ2(0)
x(0)

]
=

[
0
xo

]
. (26)

Next, we note that
[
(φ1)⊤, (φ2)⊤

]⊤
can be obtained through solving (10) and (24)

with the boundary conditions [
φ1(T )
φ2(T )

]
=

[
α1

α2

]
. (27)

Thus, by setting

G = P(T ), α = φ(T ), φo =

[
φ1(0)
φ2(0)

]
,

Problem (PL) is equivalent to Problem (PL).
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Theorem 4.2. For a symmetric matrix Ψ ∈ R2n×2n and a vector ψ ∈ R2n such
that [

φ1

φ2

]
= Ψ

[
λ2

x

]
+ ψ. (28)

Then, Ψ and ψ satisfy

dΨ

dt
=B2R

−1B⊤
2 − ρΨ+

(
A1 − B2R

−1B⊤
1

)
Ψ

+Ψ
(
A⊤

1 − B1R
−1B⊤

2

)
−Ψ

(
A2 − B1R

−1B⊤
1

)
Ψ

(29)

with Ψ(T ) = O, and

dψ

dt
=−Ψ

(
A2 − B1R

−1B⊤
1

)
ψ +

(
A1 − B2R

−1B⊤
1

)
ψ

−Ψ
(
C1 − B1R

−1K
)
+

(
C2 − B2R

−1K
) (30)

with

ψ(T ) =

[
α1

α2

]
, (31)

respectively.

Proof. Since system (11)-(10) with boundary conditions (12) has a unique solution,
it follows from (12) that [

φ1(T )
φ2(T )

]
= O

[
λ2(T )
x(T )

]
+

[
α1

α2

]
,

where O is a zero matrix. Recall (28) as follows:[
φ1

φ2

]
= Ψ

[
λ2

x

]
+ ψ. (32)

Then

Φ(T ) = O, ψ(T ) =

[
α1

α2

]
,

and
d

dt

[
φ1

φ2

]
=
dΨ

dt

[
λ2

x

]
+Ψ

d

dt

[
λ2

x

]
+
dψ

dt
, (33)

which implies (29) and (30). This completes the proof.

Note that λ2(0) = 0. Then, by (5) and (9), the optimal controls in feedback form
are given, respectively, by

u1,∗(xo, u2) =R−1
11

([
O

−S1 − P1B1

]⊤
+

[
−B1

O

]⊤
Ψ
)[

0
xo

]
−R−1

11 R̃1u
2 +R−1

11

([
−B1

O

]⊤
ψ − µ1

) (34)

and

u2,∗(xo) = R−1
(
B⊤
2 − B⊤

1 Ψ
)[

0
xo

]
+R−1

(
− B⊤

1 ψ −K
)
. (35)

We may now summarize the computational procedure to compute the optimal
control strategies u1,∗ and u2,∗ in feedback form as detailed by Algorithm (PS).
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Algorithm (PS) for Problem (PS)

1. Compute P1 through solving the symmetric Riccati differential equation (6)
with P1(T ) = G1;

2. Compute P2 through solving the symmetric Riccati differential equation (13)
with P2(T ) = G2;

3. Compute Ψ through solving the symmetric Riccati differential equation (29)
with Ψ(T ) = O;

4. Compute ψ through solving the ODEs (30) with ψ(T ) =

[
α1

α2

]
;

5. Compute u1,∗(xo, u2) and u2,∗(xo) using (34) and (35).

Remark 3. Note that in the above algorithm, the dynamics governing the four sets
of variables P1, P2, Ψ and ψ are independent of x, and hence they can be solved in
sequence from t = T to t = 0 successively. Furthermore, we note that λ2(t) = 0 for
any t ∈ [0, T ]. Thus, the expression of the equilibrium strategy contains only P1(t),
P2(t), Ψ(t), ψ(t), and x(t). Therefore, the optimal control strategies (34) and (35)
are time-consistent and in feedback form.

Summarizing the above results, we have the following theorem.

Theorem 4.3. Consider Problem (PS). Suppose that R11, R are both symmetric
positive definite matrixes, and that the three decoupled matrix differential equa-
tions (6), (13), (29), and the ordinary differential equations (30) can be solved
uniquely. Then, the time-consistent state feedback Stackelberg equilibrium strategy
(u1,∗(xo, u2), u2,∗(xo)) is given by (34) and (35).

Remark 4. Consider the case as in [1, 2, 9, 18], where only the following terms

A(t), Bi(t), Qi(t), Rii(t), Rij(t), Gi, i, j = 1, 2, i ̸= j,

are considered and ρ = 0. Then our results reduce to

u1,∗(t) = −R−1
11 (t)B

⊤
1 (t)

(
P1(t) + Ψ12(t)

)
x(t), (36)

u2,∗(t) = −R−1
22 (t)B

⊤
2 (t)

(
P2(t) + Ψ22(t)

)
x(t), (37)

where

Ψ(t) =

[
Ψ11(t) Ψ12(t)
Ψ⊤

12(t) Ψ22(t)

]
, Ψij(t) ∈ Rn×n, i, j = 1, 2,

and

dP1

dt
=−Q1 −A⊤P1 − P1A+ P1U1P1,

dP2

dt
=−

(
Q2 + P1U21P1

)
−
(
A− U1P1

)⊤
P2 − P2

(
A− U1P1

)
,

dΨ

dt
=

[
−A⊤ + P1U1 P1U2

P2U1 − P1U21 −A⊤ + P1U1 + P2U2

]
Ψ

+Ψ

[
−A⊤ + P1U1 P1U2

P2U1 − P1U21 −A⊤ + P1U1 + P2U2

]⊤
−Ψ

[
U21 −U1

−U1 −U2

]
Ψ+

[
P1

P2

]
U2

[
P1

P2

]⊤
,
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dx

dt
=
(
A− U1(P1 +Ψ12)− U2(P2 +Ψ22)

)
x

with

P1(T ) = G1, P2(T ) = G2, Ψ(T ) = O,

U1 = B1R
−1
11 B

⊤
1 , U2 = B2R

−1
22 B

⊤
2 , U21 = B1R

−1
11 R21R

−1
11 B

⊤
1 .

Obviously, P1, P2, Ψ and x can be solved from t = T to t = 0 successively.

5. Classical examples. In this section, the results and the computational algo-
rithm developed, respectively, in Sections 3 and 4 are applied to solve some classical
Stackelberg games. Matlab code can be downloaded from GitHub1.

Example 1 ([18]). Consider the nonzero-sum velocity-controlled pursuit-evasion
game. The performance criteria are

JF (u
1, u2) =

1

2
x(T )2 +

1

2

∫ T

0

1

cp
(u1(t))2 dt,

JL(u
1, u2) = −1

2
x(T )2 +

1

2

∫ T

0

1

ce
(u2(t))2 dt

with 
dx(t)

dt
= u1(t)− u2(t), t ∈ (0, T ],

x(0) = xo,

where u1 and u2 are, respectively, the velocities of the pursuer as the follower and
the evader as leader, x is their relative position, and T = 1, cp > 0, ce > 0, cpce = 1.

By Algorithm (PS), we obtain, for each t ∈ [0, 1],

P1(t) =
1/cp

1 + 1/cp − t
, P2(t) = −P1(t)

2, ψ(t) =

[
0
0

]
,

and Ψ(t) satisfies

dΨ

dt
=Ψ

[
cpP1 cpP2

ceP1 cpP1 + ceP2

]
+

[
cpP1 ceP1

cpP2 cpP1 + ceP2

]
Ψ

−Ψ

[
0 −cp

−cp −ce

]
Ψ+ ce

[
P1P1 P1P2

P1P2 P2P2

] (38)

with

Ψ(1) =

[
0 0
0 0

]
.

The optimal controls in feedback form are given by

u1(t) = −cp
(
P1(t) + Ψ12(t)

)
x(t), u2(t) = ce

(
P2(t) + Ψ22(t)

)
x(t).

In Figure 1, we can verify numerically that

u1(0) =
−cp

(1 + cp)− ce/(1 + cp)
xo, u2(0) =

−ce/(1 + cp)

(1 + cp)− ce/(1 + cp)
xo,

as in [18]. Note that a two-point boundary-value problem is required to be solved
in [18], where three coupled matrix equations are involved. This is clearly not easy.
On the other hand, only three decoupled symmetric Riccati differential equations
are required to be solved one by one for the approach presented in this paper.

1https://github.com/LiYuTJUFE/Stackelberg-Game.

https://github.com/LiYuTJUFE/Stackelberg-Game
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Figure 1. ce = 0.5, 1.0, 1.5, 2.0 from left to right and from up to
down.

In the above example, there is no cross terms involved in each player’s objective
function, and the parameters are time invariant. A more general cases are considered
in Examples 2 and 3.

Example 2 ([13]). Consider a supply chain composed of a supplier and a retailer.
The supply chain faces time-dependent endogenous demand that depends on the
retail price.

The retailer as the follower must decide on the retail price p(t) and the order
quantity u(t). The supplier as the leader, on the other hand, decides the wholesale
price w(t) only. This Stackelberg game is played over a season of length T , which
includes a short promotional period [ts, tf ). The performance criteria are

JF (u, p, w) = −
∫ T

0

(
p(t)(a(t)− b(t)p(t))− cru(t)− w(t)u(t)− h(x(t), u(t))

)
dt,

and

JL(u, p, w) = −
∫ T

0

(
w(t)u(t)− csu(t)

)
dt,
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while the governing dynamical system is:
dx(t)

dt
= u(t)−

(
a(t)− b(t)p(t)

)
, t ∈ (0, T ],

x(0) = 0,

where x(t) denotes the inventory level at time t.

a(t) =

{
a1, if t < ts and t ≥ tf

a2, if ts ≤ t < tf ,
, a1 ≤ a2,

b(t) =

{
b1, if t < ts and t ≥ tf

b2, if ts ≤ t < tf ,
, b1 ≤ b2,

h(x, u) =
1

2
γ1x

2 +
1

2
γ2u

2,

and

12/5 a1 = a2 = 6000, 3 b1 = b2 = 30, γ1 = γ2 = 0.01,

2 cr = cs = 60, ts = 100, tf = 300, T = 1000.

t
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Figure 2. The optimal polices under promotion.

For this example, it was assumed in [13] that the supplier is restricted to set a
constant wholesale price w1 in the regular periods and w2 ≤ w1 in the promotion
period [ts, tf ). However, this assumption is not imposed using our approach. Inter-
estingly, the optimal solutions obtained, which are depicted in Figure 2, turn out
to be in the form as specified in this assumption. From Figure 3, we observe that
the retailer starts to lower the price even before the promotion starts, at the time
when it is out of stock. This outcome is consistent with the sketch shown in Figure
4.6 in [13]. In addition, there will be a surplus in the inventory level towards the
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Figure 3. Zoom in at ts and tf .

end of the promotion period. The above conclusions are also shared in the study
reported in [13] (Chapter 4.3).

In the next example, the model considered in [13] is extended to include three
state variables. The solution obtained clearly shows that our algorithm can handle
cases involving multi state variables.

Example 3. We consider the situation where there are different demand rates

di = ai(t)− bi(t)p(t), i = 1, 2, 3,

for three locations denoted by 1, 2, 3. The retailer will determine the total order
quantity u1 to be delivered the location 1, and allocate v12, v13 from location 1 to
locations 2 and 3, respectively. Here, the price sensitivity bi(t), i = 1, 2, 3, is the
same, but ai(t), i = 1, 2, 3, are different. Specifically,

a1(t) = a2(t) < a3(t), b1(t) = b2(t) = b3(t).

In addition, the retailer as the follower also determines on the retail price p(t)
and the supplier as the leader determines on the wholesale price w(t) only. The
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performance criteria are:

JF (u1, v12, v13, p, w) = −
∫ T

0

( 3∑
i=1

p(t)(ai(t)− bi(t)p(t))

− cru1(t)− cr12v12(t)− cr13v13(t)

− w(t)u1(t)− h(x1(t), x2(t), x3(t), u1(t), v12(t), v13(t))
)
dt,

and

JL(u1, v12, v13, p, w) =−
∫ T

0

(
w(t)u1(t)− csu1(t)

)
dt.

The governing dynamical system is:

dx1(t)

dt
= u1(t)−

(
v12(t) + v13(t)

)
−
(
a1(t)− b1(t)p(t)

)
,

dx2(t)

dt
= v12(t)−

(
a2(t)− b2(t)p(t)

)
,

dx3(t)

dt
= v13(t)−

(
a3(t)− b3(t)p(t)

)
,

x1(0) = x2(0) = x3(0) = 0,

where xi(t), i = 1, 2, 3, denote the respective inventory at location i at time t, and
for i = 1, 2, 3,

ai(t) =

{
ai1, if t < ts and t ≥ tf

ai2, if ts ≤ t < tf
, ai1 ≤ ai2,

bi(t) =

{
bi1, if t < ts and t ≥ tf

bi2, if ts ≤ t < tf
, bi1 ≤ bi1,

h(x1, x2, x3, u1, v12, v13) =
1

2

( 3∑
i=1

αix
2
i + γ1u

2
1 + η12v

2
12 + η13v

2
13

)
,

and

T = 1000, ts = 100, tf = 300,

α1 = α2 = α3 = γ1 = η12 = η13 = 0.01,

8/3 a11 = 8/3 a21 = 2 a31 = a12 = a22 = a32 = 2000,

3 b11 = 3 b21 = 3 b31 = b12 = b22 = b32 = 10,

2 cr1 = 2 cr12 = 2 cr13 = cs1 = 60.

Due to the different the demand rates of the three locations are different, the three
locations react differently during the promotion period. The outcomes are depicted
in Figures 4 and 5. In location 3, due to the increase in the price sensitivity and b31 <
b32, although a31 < a32, the demand rate does not increase but decrease during the
promotion period. For location 1, the demand rate increases substantially.

6. Conclusions. In this paper, we considered a general form of linear-quadratic
Stackelberg deterministic differential game model. The explicit expression of the
Stackelberg equilibrium strategy in feedback form is obtained. A practical effective
computational procedure is developed. The results obtained are applied to some
classical Stackelberg game problems. Some useful managerial insights are drawn.
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Figure 4. The optimal polices under promotion.
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[3] J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, 30, Springer Science
& Business Media, 2013.

[4] A. Bensoussan, S. Chen and S. P. Sethi, The maximum principle for global solutions of

stochastic Stackelberg differential games, SIAM Journal on Control and Optimization, 53
(2015), 1956–1981.

[5] J. A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation and

Control, Taylor & Francis, 1975.
[6] R. Caldentey and M. Haugh, A Cournot-Stackelberg model of supply contracts with financial

hedging and identical retailers, Foundations and Trends® in Technology, Information and

Operations Management, 11 (2017), 124–143.
[7] B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization, Annals of Oper-

ations Research, 153 (2007), 235–256.

http://www.ams.org/mathscinet-getitem?mr=MR811944&return=pdf
http://dx.doi.org/10.1109/TAC.1985.1103886
http://www.ams.org/mathscinet-getitem?mr=MR1997753&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1680111&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3374629&return=pdf
http://dx.doi.org/10.1137/140958906
http://dx.doi.org/10.1137/140958906
http://www.ams.org/mathscinet-getitem?mr=MR0446628&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2555588&return=pdf
http://dx.doi.org/10.1287/opre.1080.0521
http://dx.doi.org/10.1287/opre.1080.0521
http://www.ams.org/mathscinet-getitem?mr=MR2329985&return=pdf
http://dx.doi.org/10.1007/s10479-007-0176-2


A NEW FEEDBACK FORM OF OPEN-LOOP STACKELBERG STRATEGY 17

t

80 90 100 110 120

-50

0

50

100

150

t

280 290 300 310 320

-50

0

50

100

150 x1

x2

x3

t

80 90 100 110 120

0

200

400

600

t

280 290 300 310 320

0

200

400

600
u1

v12

v13

t

80 90 100 110 120

100

120

140

160

180

200

220

t

280 290 300 310 320

100

120

140

160

180

200

220

p

w

Figure 5. Zoom in at ts and tf .

[8] G. Freiling, G. Jank, and H. Abou-Kandil, Discrete time Riccati equations in open loop Nash
and Stackelberg games, European Journal of Control, 5 (1999), 56–66.

[9] G. Freiling, G. Jank and S. R. Lee, Existence and uniqueness of open-loop Stackelberg equi-
libria in linear-quadratic differential games, Journal of Optimization Theory & Applications,

110 (2001), 515–544.
[10] X. He, A. Prasad, S. P. Sethi and G. J. Gutierrez, A survey of Stackelberg differential game

models in supply and marketing channels, Journal of Systems Science and Systems Engi-

neering, 16 (2007), 385–413.

http://dx.doi.org/10.1016/S0947-3580(99)70139-1
http://dx.doi.org/10.1016/S0947-3580(99)70139-1
http://www.ams.org/mathscinet-getitem?mr=MR1854014&return=pdf
http://dx.doi.org/10.1023/A:1017532210579
http://dx.doi.org/10.1023/A:1017532210579


18 YU LI, KOK LAY TEO AND SHUHUA ZHANG

[11] S. Jørgensen and G. Zaccour, Developments in differential game theory and numerical meth-
ods: economic and management applications, Computational Management Science, 4 (2007),

159–181.

[12] M. Jungers, On linear-quadratic Stackelberg games with time preference rates, IEEE Trans-
actions on Automatic Control, 53 (2008), 621–625.

[13] K. Kogan and C. S. Tapiero, Supply Chain Games: Operations Management and Risk Valu-
ation, Springer US, 2007.

[14] D. Korzhyk, V. Conitzer and R. Parr, Solving Stackelberg games with uncertain observabil-

ity, in The 10th International Conference on Autonomous Agents and Multiagent Systems-
Volume 3, International Foundation for Autonomous Agents and Multiagent Systems, 2011,

1013–1020.

[15] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer and M. Tambe, Stackelberg vs. Nash in
security games: An extended investigation of interchangeability, equivalence, and uniqueness,

Journal of Artificial Intelligence Research, 41 (2011), 297–327.

[16] T. Li and S. P. Sethi, A review of dynamic Stackelberg game models, Discrete and Continuous
Dynamical Systems - Series B, 22 (2016), 125–159.

[17] K. Madani, Game theory and water resources, Journal of Hydrology, 381 (2010), 225–238.

[18] M. Simaan and J. B. Cruz, On the Stackelberg strategy in nonzero-sum games, Journal of
Optimization Theory & Applications, 11 (1973), 533–555.

[19] H. V. Stackelberg, Marktform und Gleichgewicht, Springer, Vienna, 1934.
[20] G. Tecuceanu and C. Popeea, The closed loop implementation of the open loop Stackelberg

solution in the linear quadratic problems, Journal of Applied Mathematics and Mechanics,

78 (1998), 1097–1100.
[21] K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control

Problems, Longman Scientific and Technical, 1991.

[22] J. Xu and H. Zhang, Sufficient and necessary open-loop Stackelberg strategy for two-player
game with time delay, IEEE Transactions on Cybernetics, 46 (2016), 438–449.

[23] J. Xu, H. Zhang and T. Chai, Necessary and sufficient condition for two-player Stackelberg

strategy, IEEE Transactions on Automatic Control, 60 (2015), 1356–1361.
[24] Y. Xu, Stackelberg equilibriums of open-loop differential games, in Proceedings of the 26th

Chinese Control Conference, 2007.

[25] J. Yong, A leader-follower stochastic linear quadratic differential game, SIAM Journal on
Control & Optimization, 41 (2002), 1015–1041.

Received December 2021; 1st revision April 2022; final revision May 2022; early
access June 2022.

E-mail address: liyu@tjufe.edu.cn

E-mail address: K.L.Teo@curtin.edu.au
E-mail address: szhang@tjufe.edu.cn

http://www.ams.org/mathscinet-getitem?mr=MR2300635&return=pdf
http://dx.doi.org/10.1007/s10287-006-0032-x
http://dx.doi.org/10.1007/s10287-006-0032-x
http://www.ams.org/mathscinet-getitem?mr=MR2394404&return=pdf
http://dx.doi.org/10.1109/TAC.2008.917649
http://www.ams.org/mathscinet-getitem?mr=MR2380179&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2863313&return=pdf
http://dx.doi.org/10.1613/jair.3269
http://dx.doi.org/10.1613/jair.3269
http://www.ams.org/mathscinet-getitem?mr=MR3583463&return=pdf
http://dx.doi.org/10.3934/dcdsb.2017007
http://dx.doi.org/10.1016/j.jhydrol.2009.11.045
http://www.ams.org/mathscinet-getitem?mr=MR332207&return=pdf
http://dx.doi.org/10.1007/BF00935665
http://www.ams.org/mathscinet-getitem?mr=MR1690920&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1153024&return=pdf
http://dx.doi.org/10.1109/TCYB.2015.2403262
http://dx.doi.org/10.1109/TCYB.2015.2403262
http://www.ams.org/mathscinet-getitem?mr=MR3351417&return=pdf
http://dx.doi.org/10.1109/TAC.2014.2346460
http://dx.doi.org/10.1109/TAC.2014.2346460
http://www.ams.org/mathscinet-getitem?mr=MR1972501&return=pdf
http://dx.doi.org/10.1137/S0363012901391925
mailto:liyu@tjufe.edu.cn
mailto:K.L.Teo@curtin.edu.au
mailto:szhang@tjufe.edu.cn

	1. Introduction
	2. Problem formulation
	3. Optimal control for the follower
	4. Optimal control for the leader
	5. Classical examples
	6. Conclusions
	Acknowledgments
	REFERENCES

