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Abstract

We study non-linear Markov perfect equilibria in a two agent linear quadratic differential

game. In contrast to the literature owing to Tsutsui and Mino [1990. Nonlinear strategies in

dynamic duopolistic competition with sticky prices. Journal of Economic Theory 52, 136–161],

we do not associate endogenous subsets of the state space with candidate solutions. Instead,

we use the ‘catching up optimality’ criterion to address the possibility of infinitely valued value

functions. Applying sufficiency conditions for existence based on those in Dockner et al. [2000.

Differential Games in Economics and Management Science. Cambridge University Press,

Cambridge] yields the familiar linear MPE and a condition under which a continuum of

non-linear MPEs exists. These include, as their limit, a previously unreported piecewise linear

MPE. The condition relaxes with increasing patience, allowing more efficient steady states,

thus suggesting a Folk Theorem for differential games. As the lower state and control bounds

go to �1, the non-linear strategies are eliminated.
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1. Introduction

This paper analyses non-linear strategies in a linear quadratic differential game
(LQDG) played by two identical agents whose controls are bounded below by zero.
Its theoretical motivation is a desire to address a concern dating back to Tsutsui and
Mino (1990), who first treated non-linear strategies in this environment. Practically,
the model is motivated by a greenhouse gas emissions problem.

A differential game is a game played in continuous time in which agents’ choices
cause a state variable to evolve according to a differential equation. The standard
solution concept, the Markov perfect equilibrium (MPE), allows application of
optimal control techniques to the game. Thus, differential games extend static
games, repeated games and optimal control problems.

The workhorse of this literature has been the LQDG. Its name derives from the
two equations defining a differential game, the state variable’s equation of motion,
and agents’ instantaneous utility functions. In LQDG the former is a linear function
of agents’ controls and the state variable; the latter are quadratic in the same.1 Not
only do LQDG therefore seem to capture some of the spirit of many economic
problems,2 but they are known, under fairly mild conditions, to yield linear
solutions, unique within the class of linear functions.

In the absence of further constraints, however, there is no reason to find
these singular solutions more appealing than other ones. This observation
has generated an interest in non-linear MPE in LQDG dating back to Tsutsui
and Mino (1990). In their paper, duopolies chose output levels of a homo-
geneous good, causing a sticky price to evolve over time. In addition to the well
known linear MPE, they found a continuum of implicitly defined non-linear ones.
Economically, these were of particular interest when the steady state of a non-linear
MPE was that of the first best – a version of the Folk Theorem for differential
games.

Their finding has become the standard reference in papers on multiple equilibria
and non-linear strategies in LQDG, and has been applied to a variety of settings,
including environmental economics (q.v. Dockner and Long, 1993; Wirl and
Dockner, 1995; Mäler et al., 2003), industrial organisation (q.v. Karp, 1996;
Vencatachellum, 1998b) and the economics of the family (q.v. Feichtinger and Wirl,
1993).

At the same time, the paper generated disquiet by endogenising the domain over
which strategies were defined, and their performance assessed. The differential
equation derived in solving the Bellman’s equation produced an infinite number of
solutions. For each solution, the associated play lay in the interior of the action space
only over a sub-domain of the state space. Tsutsui and Mino (1990) then evaluated
play, and deviations, over these sub-domains.
1In an affine quadratic game, the equation of motion also includes a constant term. Both specifications

will be referred to here as ‘linear quadratic’ games. This is less precise, but more concise.
2Fudenberg and Tirole (1991, 13.3.3) also note the hope that LQDG represent ‘good Taylor

approximation[s] to more general games’.
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This endogenisation has serious implications: for a particular strategy to support a
Nash equilibrium an agent must regard that strategy as yielding a superior payoff to
any other admissible strategy – including those strategies specifying corner play, or
causing the state variable to leave the endogenous sub-domain. By preventing their
consideration, this approach ruled out the sort of calculation that underlies the Nash
concept.

Possibly reflecting these concerns, a leading text on differential games does not
include the non-linear solutions cited above (Bas-ar and Olsder, 1999). In finite
horizon affine quadratic games, without state or control bounds, the authors present
the possibility of non-linear solutions as an ‘unresolved problem’ (Bas-ar and Olsder,
1999, Remark 6.16). The results they present as the horizon becomes infinite are the
limits of the finite horizon affine strategies.

This paper revisits the question of non-linear strategies. It does so in two steps.
First, it presents a sufficiency result for the existence of MPE based on results in
Dockner et al. (2000). The result is applicable well beyond LQDG. More specifically,
it applies to infinite horizon differential games in which the value function may be
unbounded below and may not be continuously differentiable.

Each of these latter two features introduces technical complications for sufficiency
conditions. Generalised gradients are required at the non-differentiable points in the
domain of a candidate value function. The larger problem, and that responsible for
concerns about the existing literature, is the unbounded below value function. Over
the infinite horizon, integrals associated with control paths may not converge. This,
in turn, may require comparison of infinite payoffs. A standard solution to this has
been to impose parameter constraints, or Uzawa conditions, to ensure finite
valuation. The role of the endogenous sub-domains in Tsutsui and Mino (1990) and
its successors is similar: a bounded domain bounds instantaneous utility; with
impatience, this ensures finite valuation.

Rather than imposing parameter bounds, we follow a literature dating back to
Ramsey (1928) which tries to handle infinite values directly. Rejecting discounting of
utility as an ‘ethically indefensible . . . weakness of the imagination’, Ramsey
assumed satiation at finite levels of consumption. When actual consumption
approached this level, the undiscounted series defined by the shortfall between
instantaneous utility fell and ‘bliss’ was convergent.

To address situations without satiation, von Weizsäcker (1965) and Atsumi (1965)
introduced what became known as the ‘overtaking’ criterion for comparing
programmes with infinite value: a feasible programme is optimal under this criterion
if its payoff stream (weakly) exceeds that of any other for all finite horizons beyond
some finite T.3

As optimal programmes may not exist under this criterion, weaker criteria have
also been introduced. Best known among these is the ‘catching up’ criterion of Gale
3Although introduced in the same journal issue, later writers have often unambiguously ascribed the

criterion to one author or the other. I am grateful to Jim Mirrlees for suggesting that the criteria were

independently defined.
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(1967). This stands in the same relation to the overtaking criterion as an
�-equilibrium does to a standard equilibrium.4

As such criteria have not been widely applied to games, no consensus exists on
their applicability. The sufficiency conditions presented by Dockner et al. (2000) use
catching up optimality as their baseline criterion. As the sufficiency result presented
here assembles a number of theirs, we also adopt this criterion.5

The paper’s second step is to apply the sufficiency conditions to the solutions of
the Bellman’s equation generated by a standard LQDG. The specific model analysed
here is closer to that in Dockner and Long (1993) in both form and motivation than
it is to Tsutsui and Mino (1990). This has no analytical consequence: the techniques
and results presented here are applicable not only to other LQDG, but to more
general differential games. Outside of the LQDG framework, singular solutions need
not be linear.

Unsurprisingly, we again explicitly derive the standard linear MPE. For the
continuum of non-linear candidates, first reported by Tsutsui and Mino (1990), we
present necessary and sufficient conditions for any of the non-linear candidates to be
a MPE.6 These conditions also apply to a piecewise linear strategy formed from the
standard linear MPE and another singular solution to the differential equation.
Although this strategy is a natural limit to the non-linear strategies, it has yet to be
reported.

When non-linear MPE exist (including the piecewise linear MPE), their steady
states are more conservative than that of the linear MPE, so may thus be closer to
that of the first best. When the non-linear MPE do not exist, the steady state of the
linear MPE is itself more conservative than that of the first best. Thus,
underexploitation of the communal resource, as noted by Dutta and Sundaram
(1993), may not be unusual. (Wirl (2005) argues that whether over or under-
exploitation occurs depends on a condition on agents’ elasticities of marginal utility
in their own action.)

The condition for the existence of non-linear MPE loosens as agents become more
patient; once patience exceeds a threshold, the continuum of non-linear MPE grows
continuously. As this threshold depends on other model parameters, even perfect
patience may not suffice to attain it. Coupled with the result that non-linear steady
states are closer to that of the first best, this suggests a form of Folk Theorem for
differential games, whereby patience allows attainment of the efficient outcome.
4Seierstad and Sydsæter (1977) and Dockner et al. (2000) review these criteria, and a weaker one yet,

‘sporadically catching up’. Stern (1984) adds a further five criteria.
5As instantaneous utility is only unbounded below here, and as a negative infinite payoff is dominated

by any finite one, these criteria may seem unnecessarily complicated. Their role becomes clearer when

noting that either agent can set a control to ensure its opponent negative infinite payoffs. Under the

standard criterion, any play by the opponent is weakly optimal. The standard criterion therefore admits as

equilibria any pair of controls in which each agent ensures the other negative infinite payoffs.
6An earlier version of this paper (Rowat, 2000) and Rubio and Casino (2002) have both identified this

condition, but neither substantiated it properly: Rowat (2000) did not recognise and address the problem

of unbounded below value functions; Rubio and Casino (2002) did not require strategies to be defined over

the whole of the state space.
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Although multiple equilibria may arise, they are consistent with the unique optima
found in the optimal growth literature with unbounded returns (q.v. Le Van and
Morhaim, 2002, in discrete time): given any fixed play by the second agent, a single
optimal control is derived for the first. Multiple equilibria thus result not from
multiple best responses to given play, but to multiple (symmetric) fixed points.7 As
the lower bounds on the state space and on agents’ controls goes to �1, the non-
linear candidates are eliminated, leaving the standard linear MPE.

The linear quadratic model is presented in Section 2. Section 3 presents and
solves its associated Hamilton–Jacobi–Bellman (HJB) equation. This produces a
family of candidate MPE, which are assessed in Section 4. (Section 4.3 extends the
results to generalised lower bounds.) Section 5 concludes. Appendix A presents the
sufficiency conditions for equilibrium based on Dockner et al. (2000). These are
weaker than required for our present application but should facilitate analysis
of more general differential games. The definitions throughout also follow Dockner
et al. (2000).
2. The linear quadratic model

Consider a symmetric, stationary differential game. There are two identical agents,
i 2 f1; 2g; refer to the agent other than i by �i. At each instant in time, t, each selects
a control, uiðtÞ, from its feasible set. With the play of the other, f�i, this influences
the evolution of a state variable, x. Each seeks to maximise the present value,
discounted at rate r 2 Rþþ, of its utility stream.

The game thus outlined, Gðx0; 0Þ, may be formalised as

max Ji
f�i ðu

ið�ÞÞ ¼ max

Z 1
0

e�rtF ðxðtÞ; uiðtÞ;f�i
ðxðtÞÞÞdt ð1Þ

s:t: _x ¼ f ðxðtÞ; uiðtÞ;f�i
ðxðtÞÞÞ, ð2Þ

xð0Þ ¼ x0 2 X , ð3Þ

uiðtÞ 2 UðxðtÞ;f�i
ðxðtÞÞÞ. ð4Þ

The game is symmetric as: agents’ instantaneous payoff functions and feasible sets
take the same form; their ability to influence the state’s evolution is identical.

It is stationary as the instantaneous payoffs, feasible sets and the equation of
motion are not explicitly dependent on time. The second argument of Gðx0; 0Þ refers
to the time at which play begins. As stationary environments may admit non-
stationary solutions, we retain the index to recognise this possibility.

The LQDG considered here restricts the above as follows:

F ðx; ui;f�i
Þ � �ðui � xÞ2 � nðx� zÞ2, (5)

f ðx; ui;f�i
Þ � ui þ f�i

� dx, (6)
7The ‘technology’ in the differential game cannot be classified ex ante as being of constant, increasing or

decreasing returns, as in the optimal growth, as the transition process depends on both agents’ play.
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X � Rþþ,

Uðx;f�i
Þ � Rþ,

where d; n; x and z are positive real constants.8 The parameter restrictions imposed
ensure that instantaneous utility is concave in both control and state.

An attractive property of LQDG is that, when the state and actions spaces are
unbounded, mild conditions ensure the existence of equilibria in which the strategies
are linear functions of the state variable alone, yielding value functions that are
quadratic in the state. These are typically derived from a system of Riccati equations
(Dockner et al., 2000, 7.1.3; Bas-ar and Olsder, 1999, Proposition 6.8). When the
strategy spaces are restricted to affine functions of the state variable, sufficient
conditions for these solutions to be unique are known (Lockwood, 1996).

Under the commons problem interpretation, ui may be thought of as nation i’s
greenhouse gas emissions, produced incidentally to national production (in a fixed
ratio), x the atmospheric stock of greenhouse gasses and d the decay or assimilation
rate. Thus, agents have a production glut point (ui ¼ x) and a climate glut point
(x ¼ z). The former may be consistent with an aggregated neo-classical labour
supply trade off between work and leisure or an optimal capacity utilisation ratio.
The latter allows agents to have some sense of optimal climate including, but not
necessarily, the lunar climate, z ¼ 0.

2.1. Some reference payoffs

Two reference payoffs are presented to provide comparisons for payoffs arising
from play of the game.

The payoff to being at the glut point, ðx; uiÞ ¼ ðz; xÞ, forever is zero. While this is
not attainable as a steady state except when dz ¼ 2x, it does impose a finite upper
bound on payoffs. Thus, any solution to this problem must have a payoff that is
bounded above by zero.

The steady state of the first best when agents are identical and equally weighted by
the social planner may also be calculated. The current value Hamiltonian is

H ¼ �ðu1 � xÞ2 � ðu2 � xÞ2 � 2nðx� zÞ2 þmðu1 þ u2 � dxÞ,

where mðtÞ is the current value Lagrangian multiplier, with first order conditions

mðtÞ ¼ 2½uiðtÞ � x�,

_mðtÞ � ðdþ rÞmðtÞ ¼ 4n½xðtÞ � z�.

These imply a system of differential equations.9 Rather than solving the full trajectories
note that, in the steady state, uiðtÞ ¼ ðd=2ÞxðtÞ and mðtÞ ¼ �4nðxðtÞ � zÞ=ðdþ rÞ.
8The LQDG presented here is a special case: more general quadratic functions may include quadratic

terms in u�i and cross terms in ui ;f�i and x. Consideration of this simpler case merely facilitates

expositional clarity.
9The dynamic programming approach does not give any clearer an expression for the dynamics. Its

differential equation
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Combined with the first order conditions these yield the steady state

ðx̄; ūiÞ ¼ 2
ðdþ rÞxþ 2nz
dðdþ rÞ þ 4n

; d
ðdþ rÞxþ 2nz
dðdþ rÞ þ 4n

� �
. (7)

When

z
x
p

2

d
(A1)

the first best stock level exceeds the climate glut level; first best output falls below the
product glut level. As this is the first best, though, it is optimal by definition and cannot
be considered a ‘tragedy’ result.

As condition (A1) recurs throughout the paper we adopt it as an assumption in
what follows. For now, we motivate the assumption on strictly expositional grounds,
but it will be seen to determine whether the singular solution under or overprovides
relative to the first best in steady state.
3. The Hamiltonian–Jacobi–Bellman equation

As the solution to equation of motion (6) depends on agents’ play, restrictions on
play are necessary to ensure a unique solution, xðtÞ. We impose regularity conditions
to ensure this not out of concern that multiple solutions may preclude a maximum
solution (q.v. Burton and Whyburn, 1952) but in order to allow agents to associate
payoffs to their strategies.

Therefore, following the convention in Dockner et al. (2000) whereby ½0;Ti is read
as ½0;1Þ when T is infinite and ½0;T � otherwise:

Definition 1 (Dockner et al., 2000, 3.1). A control path ui : ½0;Ti7!R is feasible for
Gðx0; 0Þ if the initial value problem defined by Eqs. (2) and (3) has a unique,
absolutely continuous solution xð�Þ such that the constraints xðtÞ 2 X and uiðtÞ 2

UðxðtÞ;f�i
Þ hold for all t and the integral in Eq. (1) is well defined.

Feasibility may also be referred to as admissibility (Dockner and Sorger,
1996). As in a generalised game (Debreu, 1952), the feasible set for agent i therefore
depends on the actions taken by other agents. We shall see that feasible controls
are consistent with multiple equilibria; each, however, induces a unique xðtÞ. See
Bas-ar and Olsder (1999, pp. 226–227) or Dockner et al. (2000, p. 40) for further
discussion.
(footnote continued)

w0ðxÞ ¼
ðdþ rÞwðxÞ þ 4nðx� zÞ

2x� dxþ w

(where wðxÞ is the derivative of the candidate value function, W ðxÞ, and subscripts index agents) has an

unwieldy implicit solution.
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As the game is stationary, we focus on equilibria supported by stationary
strategies. There may also be equilibria supported by non-stationary strategies.10

Definition 2 (Dockner et al., 2000, p. 97). A stationary Markov strategy is a mapping,
fi : X 7!Ui, so that the time path of the control uiðtÞ ¼ fi

ðxðtÞÞ.

Thus, while the payoff-relevant state space may be very large, Markov strategies
are functions of the current state alone.

Then:

Definition 3. A pair of functions fi : X 7!R; i 2 f1; 2g is a stationary Markov Nash

equilibrium if, for each i 2 f1; 2g, an optimal control of problem 1 with constraints
(2)–(4) exists and is given by the stationary Markov strategy uiðtÞ ¼ fi

ðxðtÞÞ.

The following restricts the more general definition to stationary games:

Definition 4 (Dockner et al., 2000, 4.4). Let ðf1;f2
Þ be a Markov Nash equilibrium

of Gðx0; 0Þ. The equilibrium is a MPE if, for each ðx; tÞ 2 X � ½0;Ti, the subgame
Gðx; tÞ admits a Markov Nash equilibrium ðc1;c2

Þ such that ci
ðy; sÞ ¼ fi

ðy; sÞ for all
i 2 f1; 2g and all ðy; sÞ 2 X � ½t;Ti.

When Gðx; tÞ is stationary, Gðx; 0Þ ¼ Gðx; tÞ. Thus, all stationary Markov Nash
equilibria are MPE (Dockner et al., 2000, p. 105).

Definition 5. Let the value of game Gðx0; 0Þ to agent i be

ViðxÞ ¼ max
uiX0

Ji
f�i ðu

ið�ÞÞ.

The sufficiency conditions in Theorem 3 require that V i be locally Lipschitz. By
Rademacher’s Theorem, Lipschitz continuous functions are almost everywhere
differentiable (Clarke, 1983, p. 63). Tsutsui and Mino (1990) and Dockner and Long
(1993) require the stronger assumption that Við�Þ 2 C2; this will be seen, in our
environment, to follow automatically at most points for which our Vi are
differentiable. Dockner and Sorger (1996) do not make continuity assumptions;
instead, they derive MPE strategies which are discontinuous but which generate a
continuous V i. Bas-ar and Olsder’s Example 5.2 (Bas-ar and Olsder, 1999) illustrates
the same phenomena in single agent optimisation problems; the optimal control in
their example follows a bang-bang pattern. When the value function is finite, Gota
and Montruccio (1999) present sufficient conditions for the value function to be C1

with Lipschitz continuous derivative in spite of the optimal control only being
interior for a short time interval.

When agent i’s value function is differentiable it solves the HJB equation:

rViðxÞ ¼ max
uiX0
½�ðui � xÞ2 � nðx� zÞ2 þ V i

xðxÞðu
i þ f�i

� dxÞ�, (8)
10See Dockner et al. (2000, Exercise 4.5) for an example.
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given fixed play f�i by agent �i. By Vi
x we mean the derivative of V iðxÞ; later it will

refer to a partial derivative. As the equation of motion makes it impossible that
xðtÞ ¼ 0 if x40 no constraints are imposed on the state space in Eq. (8).

The non-negativity requirement on ui provides a first order necessary condition for
the optimal control:

ui� � fi�
� max 0; xþ

V i
xðxÞ

2

� �
. (9)

As Eq. (8) is concave in its control, the optimal control is unique and a maximiser.
Solutions to the HJB equation (8) are not, however, as they introduce a constant of
integration.

Refer to situations in which fi�
¼ 0 as corner solutions and those in which fi�40

as interior solutions. Call the inequality determining the greater term on the RHS of
Eq. (9) the auxiliary condition.

3.1. The differential equation

Substitute the conditions of Eq. (9) into the HJB equation (8). As the differential
equation generated produces a family of solutions, denote the family of candidate

value functions so generated by W; an individual member of that family is referred to
as W . Therefore Vi 2W. Substitute f2�

¼ f1� into the HJB equation to obtain

rW ðxÞ ¼
�nðx� zÞ2 þW 0ðxÞð2x� dxÞ þ

3W 0ðxÞ2

4
; W 0ðxÞX� 2x

�x2 � nðx� zÞ2 � dxW 0ðxÞ; W 0ðxÞp� 2x

8><
>:

9>=
>;. (10)

Symmetric play has now been imposed. The remainder of the analysis may be broken into
two steps. The first, and standard, solves the two terms of Eq. (10); this occupies the next
subsections. The more difficult and innovative step involves refining W to identify
constants of integration consistent with the requirements of optimal play’s value function.

3.1.1. Corner solutions

Eq. (10) is a linear ODE when W 0ðxÞp� 2x, and thus easily solved:

W ðxÞ ¼ �
x2 þ nz2

r
�

n
2dþ r

x2 þ
2nz
dþ r

xþ cx�r=d,

where c is a constant of integration. The condition on W 0ðxÞ only allows this to hold
for values of x satisfying

2d
r

xþ
nz

dþ r

� �
xðdþrÞ=d �

n
2dþ r

xð2dþrÞ=d
� �

pc. (11)

As the exponent on Eq. (11)’s first term is smaller than that on the second, it
dominates for small values of x. For larger x, though, the second term overpowers it.
Fig. 1, a stylised plot of Eq. (11), illustrates the implications of this for solutions. For
large values of c (e.g. c2 in the figure) the condition for the corner solution is always
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satisfied and fi�
ðxÞ ¼ 0 is a solution to the HJB equation. For smaller values, e.g. c1,

it is satisfied for small x, is then violated, and finally is again satisfied for large values
of x. For all cp0 the condition is violated at small x but eventually comes to hold. It
is expected that, when the corner solutions violate condition (11), the strategy will
continue in the interior.

3.1.2. Interior solutions

The quadratic interior solution, Eq. (10) when W 0ðxÞX� 2x, is solved by
differentiating it again.11 The next lemma demonstrates when this is legitimate.

Lemma 1. When W ðxÞ is defined by Eq. (10) and W 0ðxÞX� 2x;W ðxÞ 2 C1 if

3
2

W 0ðxÞ � dxþ 2xa0. (12)

Proof. Rewrite Eq. (10) when W 0ðxÞX� 2x as

W 0ðxÞ þ 2
3ð2x� dxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3 nðx� zÞ2 þ 4

9ð2x� dxÞ2 þ 4
3 rW ðxÞ

q
.

When this equation is not identically zero, each branch of the right-hand side is a C1

function of ðW ;xÞ. In these cases, equivalent to condition (12), it follows from
standard results on the smooth dependence of solutions with respect to initial
conditions that W ðxÞ 2 C1 on its maximal interval of existence (q.v. Arnol’d, 1992,
Section 7.3).12 The multiplicity of branches has implications for uniqueness, not
smoothness. &

Call the locus of points failing to satisfy inequality (12) the non-invertibility (NI)
locus. The quadratic term in the interior component of Eq. (10) causes this to pass
through the feasible state-action space. On the other hand, when condition (12) is
not violated, the relevant portion of Eq. (10) may be differentiated. For notational
11This approach is also taken by Tsutsui and Mino (1990). Dockner and Sorger (1996) present a case in

which direct integration is possible.
12I am grateful to an anonymous referee for suggesting this proof.
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convenience define wðxÞ �W 0ðxÞ. Therefore

w0ðxÞ ¼
ðdþ rÞwðxÞ þ 2nðx� zÞ

3
2

wðxÞ � dxþ 2x
when xX0. (13)

The denominator cannot equal zero as that would violate the conditions of Lemma 1,
preventing the differentiation performed to reach Eq. (13).

To solve Eq. (13) transform the equation into one that is homogeneous of degree
zero in its variables by defining O � w� a and C � x� b to remove its constant
terms. This requires that

a � 2n
dz� 2x

dðdþ rÞ þ 3n
and (14)

b �
2xðdþ rÞ þ 3nz
dðdþ rÞ þ 3n

40. (15)

These definitions reduce the differential equation to

dO
dC
¼ G

O
C

� �
¼
ðdþ rÞOþ 2nC

3
2
O� dC

¼
ðdþ rÞO=Cþ 2n

3
2
O=C� d

. (16)

To exploit the homogeneity of Eq. (16) define S � O=C. Therefore

½S2 � 2
3 ð2dþ rÞS � 4

3 n�dC ¼ ð
2
3 d� SÞCdS,

which has two constant solutions,

S ¼ fsa; sbg �
1
3

2dþ r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2dþ rÞ2 þ 12n

q� �
, (17)

with sa404sb. These are akin to the algebraic Riccati equations used to derive
linear strategies.

Transforming these back into the original variables produces

fa � xþ 1
2
½aþ saðx� bÞ�, (18)

fb � xþ 1
2½aþ sbðx� bÞ�. (19)

Defining xb as the stock level at which the line fbðxÞ intersects the steady state
locus (SSL), _xðtÞ ¼ 0, yields

xb �
2xþ a� sbb

d� sb

.

Therefore, by direct manipulation of the relevant definitions, including in Eqs. (7)
and (15):

Lemma 2. (Condition (A1)) 3ðap0Þ3ðxbXbXx̄XzÞ.

When Sefsa; sbg, solve

dC
C
¼
ð23d� SÞdS

ðS � saÞðS � sbÞ
¼

ga dS

S � sa

þ
gb dS

S � sb

, (20)
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when ga and gb are determined by the method of partial fractions to be

ga �
r

3ðsb � saÞ
�

1

2
o0 and gb �

�r

3ðsb � saÞ
�

1

2
o0,

so that ga þ gb ¼ �1. Integrating Eq. (20) when Sefsa; sbg then yields

ln jCj ¼ K̂ þ ga ln jS � saj þ gb ln jS � sbj, (21)

where K̂ is a real constant of integration. Exponentiation produces

jCj ¼
1

K
jS � saj

ga jS � sbj
gb , (22)

where K � e�K̂
X0. In terms of x and W 0ðxÞ this becomes

K ¼ jW 0ðxÞ � a� saðx� bÞjga jW 0ðxÞ � a� sbðx� bÞjgb .

Eq. (9) may be used to rewrite this in terms of f1
ðxÞ instead of W 0ðxÞ. Doing so does

not change the form of the equation. The fa and fb solutions identified in Eqs. (18)
and (19) correspond to K ¼ 1 (as ga and gb are negative); thus, each of these
solutions sets one of the right-hand side terms to zero.

To sum up, the solution to differential equation (10) is

K ¼ jW 0ðxÞ � a� saðx� bÞjga jW 0ðxÞ � a� sbðx� bÞjgb (23)

when W 0ðxÞX� 2x and condition (12) holds; and

W ðxÞ ¼ �
x2 þ nz2

r
�

n
2dþ r

x2 þ
2nz
dþ r

xþ cx�r=d (24)

when W 0ðxÞp� 2x. Eq. (23) is still undetermined: integration of W 0ðxÞ will produce
a second constant of integration. We shall see that K, the first constant of
integration, indexes solutions while the second constant adjusts payoffs along given
solution paths.

4. Candidate MPE

The relationship in Eq. (9) allows translation of Eqs. (23) and (24) into the space
of Markov strategies, ðx;fi

Þ. Three classes of solutions can then be seen to exist:
1.
 Corner solutions satisfying Eq. (24), so that fi
ðxÞ ¼ 0. Denote these by f0.
2.
 Singular solutions satisfying Eq. (23) when K ¼ 1. These are explicitly defined in
Eqs. (18) and (19) and denoted by fa and fb, respectively. These intersect at
ðx;fi

Þ ¼ ðb; xþ 1
2
aÞ40, inside the feasible ðx;fi

Þ space. Further, when (A1) holds,
their intersection is above the climate glut point (b4z) and below the product glut
point (xþ 1

2
aox). As there is a non-unique solution to the differential equation

at this intersection, call that point a singularity and the strategies passing through
it singular solutions.
3.
 Non-linear solutions satisfying Eq. (23) when K is finite. As K is arbitrary,
Eq. (23) describes a family of infinitely many solutions. Each of these is a member
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of one of six types of solutions, representatives of which are displayed in Fig. 2;
these are denoted by f1; . . . ;f6.Thus, the f3 solutions are bounded above by the
singular solutions, and the f6 solutions bounded below. The rationale for
distinguishing between f1 and f2 (or f4 and f5) shall become apparent.
In all cases, the arrows in Fig. 2 indicate the variables’ evolution in time. It also
displays the SSL, defined by dx=dt ¼ 0, and the NI locus, along which
dfi=dx ¼ �1. In the present case, these are

fSSL
¼

d
2

x and fNI
¼

d
3

xþ
x
3
,

respectively.
Fig. 2 is equivalent to Fig. 1 in Tsutsui and Mino (1990).13 The diagrams are

oriented differently as Tsutsui and Mino’s diagram presents the transformed control
variable along the vertical axis while that here presents the control variable itself.
Thus, their upper bound, y ¼ ðp� cÞ=s, is the present fi

¼ 0.
By the HJB equation’s first order condition, Eq. (9), W 0ðxÞo0 when fiox,

implying that increases in the initial stock, x, always reduce the value of the game
when agent i plays at less than the product glut level. This may seem particularly
surprising when xoz and above the SSL as x increases in time towards the climate
glut point. This benefit is apparently balanced by a loss in the product term and, in
some cases, a moving more quickly in time beyond the climate glut point.
3Cf. also Fig. 1 in Dockner and Long (1993) and in Vencatachellum (1998a). Use Lemma 2 to redraw

. 2 when assumption (A1) is violated as follows: fa and fb intersect below the SSL; as fa is steeper than

SSL, fað0Þo0.
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Candidate strategies must be able to map from any element of the state space, X.
The f6 family of strategies, f0 and fa (when it does not intersect the horizontal axis)
already do so. The interior solutions fb;f3 and fa (when it does intersect the
horizontal axis) are extended by f0 when they trigger the auxiliary condition,
W 0ðxÞ ¼ �2x; denote these extensions by a caret so that f̂p � maxf0;fpg, where
p indexes solution families.

Finally, although the candidate strategies will generally be kinked at the corner
extension, this is consistent with the requirement that V i be locally Lipschitz.

4.1. Refining the candidate strategy set

A solution to differential equation (10), W ðxÞ, is still two steps removed from
describing payoffs under MPE play. First, it must be demonstrated that
W ðxÞ ¼ ViðxÞ, that the candidate value function is a value function. We refine the
candidate set against this requirement with two tests: do they define functions; are
those functions bounded above? Second, we test the remaining candidates against
the sufficiency conditions of Theorem 3 in Appendix A.

Lemma 3. Members of the f1;f2;f4 and f5 families of solutions to differential

equation (10) cannot form candidate MPE strategies.

Proof. When members of the f1;f2;f4 and f5 solution families intersect the NI
locus they cease to be functions. If they are to remain under consideration, some
extension to them must be made so that they remain functions over X. They cannot
be extended by f0 as, when they cease to be functions in X, they do not satisfy the
auxiliary condition on W 0ðxÞ. No other extensions are possible. &

It is tempting to consider jumps from one of these solutions to, say, f0. However,
no strategy constructed with jumps like this solves differential equation (10). Now
consider f̂ab � maxf0;minffa;fbgg, created by switching from fa to fb at their
intersection.14 This is not one of the trivial solutions presented in Eq. (17) but it is an
interior solution to ODE (10). That it is not differentiable at x ¼ b does not
disqualify it either: Lemma 1 only applies off the NI locus. The candidate f̂ba ¼

fba � maxffa;fbg may be discarded:

Lemma 4. W ðxÞaV iðxÞ along f̂a; f̂ba and the f6 family of strategies.

Proof. Along f̂a : x!1)W 0ðxÞ ! 1)W ðxÞ ! 1, an impossible integral of
the bounded above instantaneous utility function (5); this applies to f̂ba as well. As
f6ðxÞ4f̂aðxÞ, the f6 family produces the same contradiction. &

The argument that f̂a; f̂ba and the f̂6 family do not provide candidate MPE
strategies may be illustrated by demonstrating a profitable deviation from their play:
as sa4d, there is an x such that _x40 and fi

ðxÞ4x for all greater values of x along
these strategies. An agent can then improve its payoff by capping play at fi

¼ x;
14I am grateful to an anonymous referee for encouraging consideration of this candidate.
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doing so sets the utility loss term in production to zero and slows the climate loss
term’s growth (as compared to playing fi4x).

Discarding f̂a; f̂ba and the f6 family leaves only f0; f̂b; f̂ab and the f̂3 family of
strategies to consider as possible MPE strategies.

Lemma 5. W ðxÞaViðxÞ in any candidate that satisfies fi
ð0Þ ¼ 0 and possesses

constant of integration ca0 in that cornered component.

Proof. By Eq. (24)

lim
x!0

W ðxÞ ¼ �
xþ nz2

r
þ c lim

x!0
x�r=d.

When c40, this unbounded limit again contradicts the bounded above instanta-
neous utility function. As noted in Eq. (11), which provided the condition for the
solution to differential equation (10) to remain in the corner, co0 and fi

ð0Þ ¼ 0 are
contradictory. &

The candidate with c ¼ 0 is not eliminated by Lemma 5; it leaves fi
ð0Þ ¼ 0

immediately.
Again, express this rejection of fi

ð0Þ ¼ 0 in terms of profitable deviations by
considering play at xoz, the glut climate. The cornered strategy requires that agent 1
accept a climate loss as x continues to fall; defection to some small fi40 reduces the
climate loss and provides a production gain.15

Therefore:

Lemma 6. When

a� sabo� 2x, (25)

f̂ab and the f̂3 candidate strategies are eliminated.

Proof. As f̂ab and the f̂3 strategies are bounded above by f̂a, Lemma 5 rules them
out when fað0Þo0; this is equivalent to condition (25). &

Condition (25) parallels that discussed in Rubio and Casino (2002, Section 4).16 It
holds for all n sufficiently small. In the extreme, when n ¼ 0, the remaining singular
15Similar reasoning would also apply to an f̂3 member for which fi
ð0Þ40 but which then declined to

fi
ðxÞ ¼ 0 at some 0oxoz. Eq. (11) reveals that this is an impossibility: the f̂3 path that passes through

ð0; 0Þ, and therefore attains fi
ðxÞ ¼ 0 at the lowest x, is identified by c ¼ 0 along its corner component.

This constant sets fi
ðxÞ ¼ 0 at

x 2 0;
2dþ r

n
xþ

nz
dþ r

� �� �
.

As this second value exceeds z for non-negative parameters, the impossibility is established.
16The equivalent condition in the environment and notation of Tsutsui and Mino (1990) is

b� azaX�
c

s
.

Thus, very sticky prices, s! 0, remove the non-linear candidates from the MPE set.
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candidate reduces to f̂bðxÞ ¼ x: without a stock effect, there is no interaction
between the agents; they statically optimise with respect to production.17

Finally, the following lemma links inequality (25) with the paper’s main
inequality:

Lemma 7. Assumption (A1) is necessary for f̂ab or a f̂3 candidate to be an equilibrium

strategy.

Proof. By Lemma 6, inequality (25) suffices to eliminate f̂ab and the f̂3 candidates.
Thus, the complementary inequality,

z
x
o

2

3

3nþ ðdþ rÞ d� r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2dþ rÞ2 þ 12n

q� �

n rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2dþ rÞ2 þ 12n

q� � , (26)

is necessary for their survival. Direct comparison shows that the right-hand side of
inequality (A1) exceeds that of inequality (26):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2dþ rÞ2 þ 12n
q

Xd� r.

As (A1) is more relaxed than inequality (26), it is necessary for inequality (26),
establishing the result. &

The complementary condition, (26), holds whenever the climate glut, z, is
sufficiently small relative to the product glut, x. As the derivative with respect to r of
its right-hand side is negative, it also holds when agents are sufficiently patient.18 The
existence of f̂3 candidates whose steady states lie closer to x̄ than does that of f̂b

when condition A1 holds (q.v. Fig. 2) motivated a search for ‘Folk Theorem’ results
whereby the efficient solution could be obtained by sufficiently patient agents
(Tsutsui and Mino, 1990, p. 154; Dockner and Long, 1993). When agents are
sufficiently impatient, this set of more efficient candidates is eliminated.

4.2. Equilibrium

Having discarded various families of solutions from further consideration, we now
establish the main result, proving that certain candidates do support MPE.

Theorem 1. f̂b and any ff̂pjfpð0ÞX0; p 2 f3; abgg are MPE strategies.

The proof applies the sufficiency conditions in Theorem 3 (Appendix A).
Accordingly, its structure and conditions will be more easily understood after
reading Theorem 3.

Proof. 1. As the derivatives of f̂b; f̂ab and the f̂3 are bounded, when they exist, the
candidate Markov strategies are Lipschitz continuous. This, by the Picard–Lindelöf
17Dockner and Long (1993, p. 23) also note this result.
18When d24n, perfect patience ensures that the condition holds.
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Theorem, suffices for the initial value problem defined in Eq. (6) when uiðtÞ ¼

fi
ðxðtÞÞ to admit a unique solution (Walter, 1998, Section 6). As this solution may be

expressed as the integral

xðtÞ ¼ e�dt x0 þ

Z t

0

eds½fi
ðxðsÞÞ þ f�i

ðxðsÞÞ�ds

� �
, (27)

it is absolutely continuous (Royden, 1988). A pair of these candidates is therefore
feasible for Gðx0; 0Þ.

2. (a) Now consider non-stationary value functions and HJB equations. When
V iðx; t;TÞ is differentiable, it must solve:

rViðx; t;TÞ ¼

�nðx� zÞ2 þ V i
xðx; t;TÞð2x� dxÞ þ

3Vi
xðx; t;TÞ

2

4

þVi
tðx; t;TÞ when V i

xðx; t;TÞX� 2x; and

�x2 � nðx� zÞ2 � dxV i
xðx; t;TÞ þ Vi

tðx; t;TÞ

when V i
xðx; t;TÞp� 2x

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(28)

as

ui� ¼ f̂i�
¼ max 0; xþ

V i
xðx; t;TÞ

2

� �
.

This is solved by separation of variables, decomposing the value function into a
stationary and a non-stationary component:

Viðx; t;TÞ ¼W ðxÞ � erðt�TÞW ðX ðT ; x; tÞÞ, (29)

where play begins in subgame Gðx; tÞ;X ðT ; x; tÞ is the state reached at time T by
candidate play and equation of motion (6) when uiðtÞ ¼ fi

ðxðtÞÞ; W ðxÞ corresponds
to the candidate solution, and is subject to the same auxiliary condition. Function
(29) inherits continuity from W ðxÞ.

To see that Eq. (29) solves the HJB equations, let X nðT ; x; tÞ be the partial
derivative of X ðT ; x; tÞ with respect to its nth argument. Then substitute Eq. (29) and
its partial derivatives,

Vi
xðx; t;TÞ ¼W 0ðxÞ � erðt�TÞW 0ðX ðT ; x; tÞÞX 2ðT ; x; tÞ,

Vi
tðx; t;TÞ ¼ �e

rðt�TÞ½rW ðX ðT ; x; tÞÞ þW 0ðX ðT ; x; tÞÞX 3ðT ; x; tÞ�,

into the general HJB equation for

r½W ðxÞ � erðt�TÞW ðX ðT ; x; tÞÞ� ¼ F ðx;fi
ðxÞ;f�i

ðxÞÞ

þ ½W 0ðxÞ � erðt�TÞW 0ðX ðT ; x; tÞÞX 2ðT ; x; tÞ�

�f ðx;fi
ðxÞ;f�i

ðxÞÞ � erðt�TÞ½rW ðX ðT ; x; tÞÞ

þW 0ðX ðT ; x; tÞÞX 3ðT ; x; tÞ�. ð30Þ
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As

rW ðxÞ ¼ F ðx;fi
ðxÞ;f�i

ðxÞÞ þW 0ðxÞf ðx;fi
ðxÞ;f�i

ðxÞÞ,

Eq. (30) may be simplified to

0 ¼ erðt�TÞW 0ðX ðT ; x; tÞÞ½X 2ðT ; x; tÞf ðx;f
i
ðxÞ;f�i

ðxÞÞ þ X 3ðT ; x; tÞ�. (31)

Assessing this equation requires expressions for X 2ðT ; x; tÞ and X 3ðT ; x; tÞ.
19 Letting

hðxÞ � f ðx;fi
ðxÞ;f�i

ðxÞÞ, the former may be derived from the equation of motion

X 1ðs; x; tÞ ¼ hðX ðs; x; tÞÞ;X ðt; x; tÞ ¼ x,

by differentiating with respect to x and then integrating by separation of variables
over s 2 ½t;T � for

X 2ðT ; x; tÞ ¼ exp

Z T

t

h0ðX ðs; x; tÞÞds

� �
.

Doing the same with t instead of x yields

X 3ðT ; x; tÞ ¼ �hðxÞX 2ðT ; x; tÞ,

as the differentiated initial condition sets �X 3ðt; x; tÞ ¼ X 1ðt;x; tÞ ¼ hðxÞ. Substitu-
tion into Eq. (31) shows that the square bracketed term is identically zero.

Finally, Eq. (29) satisfies terminal condition (34): Viðx;T ;TÞ ¼W ðxÞ � erðT�TÞ

W ðxÞ ¼ 0 as X ðT ; x; tÞ ¼ x when t ¼ T .
(b) As f̂b; f̂ab and the f̂3 candidate strategies are derived from HJB equations,

they are elements of Fðx; t;TÞ. The f̂3 candidate strategies and f̂b are differentiable
except when they corner; f̂ab is non-differentiable when it corners and at x ¼ b. In all
cases, the Lebesque measure of times at which this occurs is zero.

3. Limit condition (37) is satisfied as

lim
T!1

V iðx; t;TÞ ¼W ðxÞ � lim
T!1

erte�rT W ðX ðT ; x; tÞÞ ¼W ðxÞ,

as X ðT ; x; tÞ along all candidates are bounded are T !1.
The limits are also finite as the candidate W ðxÞ are. Along a corner component,

this is immediate from inspection of Eq. (24) as x40. Along an interior component,
the undetermined constant of integration needed to uniquely identify Eq. (23) is
supplied by the discounted intertemporal integral on the right-hand side of
expression (1). For any finite x, the candidate controls are also finite, so that
instantaneous utility and its discounted infinite integral are as well. The limit
value functions are not just locally Lipschitz but C1 as the candidate controls
are continuous. Finally, the candidates were generated by solving the limit HJB
equation (8).

4. For T sufficiently large, play along the candidates is described by Eq. (23). As
W 0ðxðTÞÞ is finite, so is W ðxðTÞÞ if the corresponding constant of integration is finite.
The constant may be seen to be finite by integrating backwards from the candidate’s
stable steady state, which yields finite instantaneous utility. &
19I am grateful for the Associate Editor’s suggestions in deriving these.
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The candidate strategies eliminated by Lemmata 3–6 do not satisfy the sufficiency
conditions of Theorem 3: those eliminated by Lemma 3 violate the Theorem’s
condition (1) by failing to provide a well-defined problem over the whole domain;
those eliminated by the remaining Lemmata violate finite limit condition (3).

4.3. Equilibrium with generalised lower bounds

The preceding analysis allows generalised lower control and state bounds to be
considered. Suppose now that X � hx;1Þ and Uð�Þ � hu;1Þ where u and x are
negative.

First order condition (9) then becomes

ui� � fi�
ðxÞ � max u; xþ

Vi
xðxÞ

2

� �
,

so that the corner component of linear differential equation (10) is now

rW ðxÞ ¼ �ðu�xÞ2 � nðx� zÞ2 þ ð2 u�dxÞW 0ðxÞ,

when W 0ðxÞp� 2ðx� uÞ. Its solution, the generalisation of Eq. (24), is

W ðxÞ ¼ �
x2 þ nz2 þ ðu�2xÞ u

r
�

nx2

2dþ r
þ

2nzx

dþ r
þ c x�

2 u

d

� ��r=d

� 4n u½ðx� zÞrþ 2ðu�dzÞ�, ð32Þ

subject to the same auxiliary condition. Eq. (23) is unaltered.
To generalise Lemma 6 first define

xa �
2xþ a� sab

d� sa

.

As xb occurs at the intersection of the SSL and the line fb, xa lies on the intersection
of ua and the SSL. Then:

Lemma 8. When xa4 x and faðxaÞ4 u; f̂ab and the f̂3 candidate strategies are

eliminated.

Proof. The first condition generalises inequality (25). Together, the conditions
ensure that f̂ab and the SSL intersect at an unstable steady state. There are then two
possibilities:
1.
 2 u =d 2 hx;xaÞ so that f̂ab and the SSL intersect again at ðx;fÞ ¼ ð2 u =d; uÞ.
Generalising the proof of Lemma 5 takes the limit of Eq. (32) as x& 2 u =d. The
analogous condition to inequality (11) is

2d
r

x�
2 u

d

� �ðdþrÞ=d

xþ
nz

dþ r
� ð1þ 2nrÞ u�

n
2dþ r

x

� �
pc.

As up0, co0 is ruled out, so that the limit produces W ðxÞ ! 1.
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2.
 2 u =dehx; xaÞ so that f̂ab and the SSL do not intersect for any xoxa. Thus,
8x 2 hx; xaÞ; ðuiðtÞ � xÞ2 and ðxðtÞ � zÞ2 increase over time along the candidate.
Deviating to a uipx above the candidate play that increases _xðtÞp0 reduces an
agent’s production loss and slows the growth of its climate loss, a profitable
deviation. &

The candidate strategies rejected by Lemma 8 correspond to candidate value
functions that are generically discontinuous at the unstable steady state, violating
sufficiency condition (3) of Theorem 3. This may be explicitly shown with f̂ab, whose
piecewise linear structure produces a quadratic candidate value function.

Lemma 8 allows consideration of the textbook case (Bas-ar and Olsder (1999,
Section 7.1) and Dockner et al. (2000, Section 6.5.3)), in which the state and control
space is unbounded: u;x!�1, eliminating f̂ab and the f̂3 candidates.

Finally, we generalise Theorem 1:

Theorem 2. f̂b and any ff̂pjfpð2 u =dÞX u; p 2 f3; abgg are MPE strategies.

The proof is straightforward. The condition ensures that the candidate strategy
does not intersect the SSL at an unstable steady state or along its corner component.
The unique intersection between the candidate f̂abðxÞ and the SSL is at xb, the stable
steady state.
5. Discussion

The MPE presented above all possess steady states that are unique, stable and
finite in ðx;fi

Þ space. The presence of an unstable steady state generically gives rise to
discontinuities in the value function. While these therefore fail to satisfy this paper’s
sufficiency conditions, it is the existence of profitable deviations that eliminates them.

At the same time, the possession of a unique, stable and finite steady state is not
sufficient for equilibrium: the f0 candidate satisfies these criteria, but generates an
explosive candidate value function. This possibility should therefore be considered
(by examining the equivalents of Eqs. (23) and (24)) when analysing differential
games other than the linear-quadratic.

Kinks in agents’ controls are also consistent with equilibrium play, both in the
transition between corner and interior play and between singular elements of interior
play.20 This may not be the case in differential games in which a finite measure of
time is spent at a kink.

We conclude by mentioning some avenues for future research. First, the
techniques presented here do not depend on the linear quadratic structure of the
game. The primary role of that structure is to reduce the singular MPE to a linear
MPE. This simplifies derivation of the singular solution, allowing an explicit
solution, but does not otherwise bear on the existence of non-singular solutions.
Even without explicit solutions, the techniques presented here often rely on limits as
20As noted earlier, discontinuous controls may also support equilibrium play.
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x tends to some value, which can also be applied to implicit solutions. Thus,
we hope that the results presented here ease analysis of a larger class of differential
games.

Second, additional or more complicated control bounds could be introduced
without new techniques. Tsutsui (1996) considers capacity constraints on firms’
production decisions. Analysis of non-constant upper bounds (e.g. a joint savings
account game in which maximum aggregate withdrawal is the account balance) may
be an interesting generalisation.

Finally, most existing analyses have been symmetric: agents are assumed to be
identical; the search for MPE has been confined to ones in which they play
identically. Technically, this reflects the possibility that a system of ODEs, one for
each player, may not yield an analytical solution. Rowat (2002) uses numerical
techniques to analyse the game presented here, first allowing identical agents to play
differently, then allowing non-identical agents.
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Appendix A. Sufficiency conditions

The appendix presents a sufficiency theorem for the existence of Markov Nash
equilibria based on results in Dockner et al. (2000). (It also applies to MPE in the
stationary game Gðx; 0Þ: the time index of any subgame can be re-set to zero.) This
result then allows the conclusions of Theorem 1. We present the theorem in greater
generality than necessary for Theorem 1 to increase its applicability to other
environments. In particular, it is not limited to LQDGs.

The theorem is based on Theorem 4.1 of Dockner et al. (2000), a sufficiency
condition for Markov Nash equilibria. The statement is generalised by their
Theorems 3.4 and 3.5 to allow for value functions that are unbounded below and not
continuously differentiable, respectively. The proof of the theorem is therefore left to
Dockner et al. (2000).

Before proceeding, we present two further definitions necessary to state the result.

Definition 6 (Dockner et al., 2000, 3.2). Define Ji
f�i ;T

by replacing the upper limit of
integration in objective functional 1 with T. A feasible control path uið�Þ is catching

up optimal if, for every other feasible control path ~uið�Þ:

lim inf
T!1

½Ji
f�i ;T
ðuið�ÞÞ � Ji

f�i ;T
ð ~uið�ÞÞ�X0.
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As noted by Gale (1967), which introduced the criterion,21 this is equivalent to: for
every �40 there exists a T̄ such that, for all TXT̄ ,

½Ji
f�i ;T
ðuið�ÞÞ � Ji

f�i ;T
ð ~uið�ÞÞ�X� �.

Thus, equilibria in catching up optimal strategies are �-equilibria for all sufficiently
large T. The more stringent criterion of overtaking optimality sets � ¼ 0.

Stern (1984) presents seven other definitions of optimality in the infinite horizon
framework.

To address the possibility of the non-differentiability of V, we also define the
generalised gradient, or Clarkian:

Definition 7 (Clarke, 1983, 2.5.1; Dockner et al., 2000, 3.4). Let V : R2
7!R be

Lipschitz continuous in an open neighbourhood of x. The generalised gradient of V

at x is the set

qV ðxÞ ¼ co lim
i!1
rV ðxiÞjxi ! x; xieZV

� �
,

where ZV is the set of non-differentiable points of V.

Theorem 3. Consider Gðx0; 0Þ, as defined above. Let ðf1;f2
Þ be a given pair of

functions fi : X 7!R and assume that:
1. the pair ðf1;f2

Þ is feasible for Gðx0; 0Þ;
2. for all sufficiently large T40, and i 2 f1; 2g:
(a) there exist locally Lipschitz continuous functions, V ið�; �;TÞ : X � ½0;T �7!R

which solve the HJB equations

rViðx; t;TÞ ¼ maxfF ðx; ui;f�i
Þ þ aif ðx; ui;f�i

Þ þ bi

jui 2 Uðx;f�i
Þ; ðai;bi

Þ 2 qV iðx; t;TÞg 8ðx; tÞ 2 X � ½0;T �, ð33Þ

and the terminal condition

Viðx;T ;TÞ ¼ 0. (34)

Denote by Fiðx; t;TÞ the set of all ðui; ai;bi
Þ 2 Uðx;f�i

Þ � qV iðx; t;TÞ which maximise

the RHS of HJB equations (33);
(b) for the feasible control ui

T against f�i, which induces state trajectory xT , there

exist ðaiðtÞ; bi
ðtÞÞ 2 R2 for all t such that

ðui
T ðtÞ; a

iðtÞ;bi
ðtÞÞ 2 FiðxT ; t;TÞ and (35)

d

dt
V iðxT ðtÞ; t;TÞ ¼ aiðtÞ _xT ðtÞ þ bi

ðtÞ, (36)

for almost all t 2 ½0;T �;
3. for all x 2 X and i 2 f1; 2g, the limits

ViðxÞ � lim
T!1

V iðx; t;TÞ (37)
21Carlson et al. (1991) refer to it as ‘overtaking optimal’.
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exist, are finite, and are locally Lipschitz continuous functions Vi : X 7!R which solve

the HJB equations

rViðxÞ ¼ maxfF ðx; ui;f�i
Þ þ aif ðx; ui;f�i

Þ

jui 2 Uðx;f�i
Þ; ai 2 qV iðxÞg 8x 2 X . ð38Þ

Denote by FiðxÞ the set of all ðui; aiÞ 2 Uðx;f�i
Þ � qV iðxÞ which maximise the RHS of

HJB equations (38);
4. lim supT!1 e�rT V iðxðTÞÞp0 8i 2 f1; 2g.
If fi
ðxÞ 2 FiðxÞ for each i 2 f1; 2g and almost all t 2 ½0;1Þ, then ðf1;f2

Þ is a MPE

in the sense of catching up optimality.

Informally, assumption 1 ensures that each agent faces a well-defined problem:
given play f�i by the other, the objective functional of agent i is well-defined –
although it may take on infinite value.

Assumption 2a establishes sufficiency conditions for MPE in the finite horizon
problem. Assumption 2b addresses the possibility of the failure of Við�;TÞ to be
differentiable; by Rademacher’s Theorem, locally Lipschitz continuous functions are
differentiable for almost all t 2 ½0;T � (Clarke, 1983, p. 63). By Theorems 3.1 and 3.5
in Dockner et al. (2000), these assumptions define an optimal control, ui

T ð�Þ over
t 2 ½0;T �.

Assumption 4 is a transversality condition. It may be replaced with other
conditions to obtain other criteria of optimality mentioned in the introduction.
Finally, assumption 3 allows application of the transversality conditions to the
sufficiency conditions derived under a finite horizon. If the optimal controls derived
have a Markov representation, then a MPE exists.
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