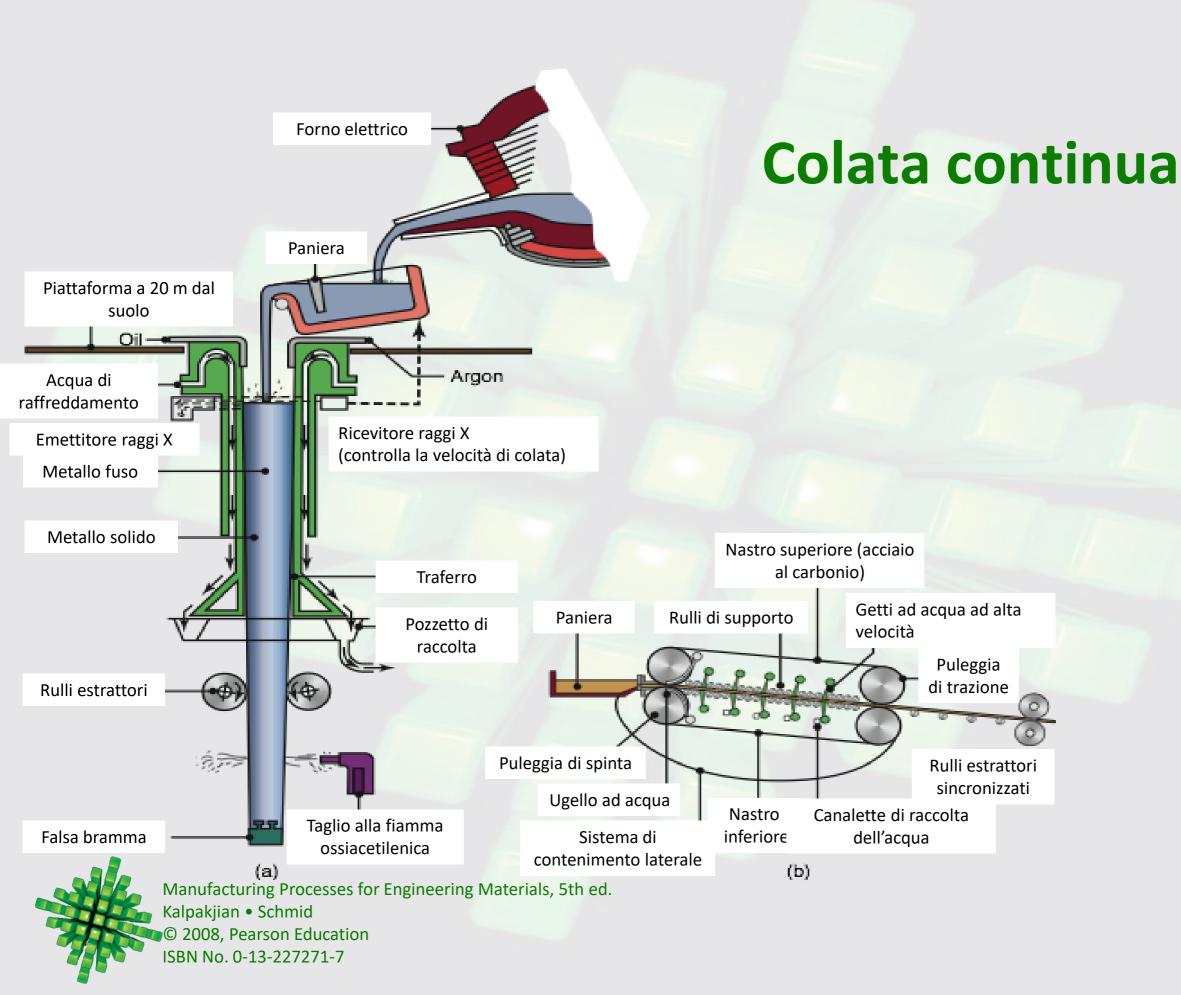
Processi di Fonderia

Sono tecniche per dare forma al materiale che si basano su:

- 1. Fabbricazione partendo da materiale allo stato liquido
- Introduzione del materiale liquido nello stampo, detto forma
- 3. Solidificazione del materiale liquido nella forma
- 4. Estrazione del pezzo solido
- Eventuali lavorazioni successive o trattamenti termici

Materiali

Metalli puri (oro, argento, alluminio, rame) con una <u>unica</u> temperatura di fusione caratteristica del materiale

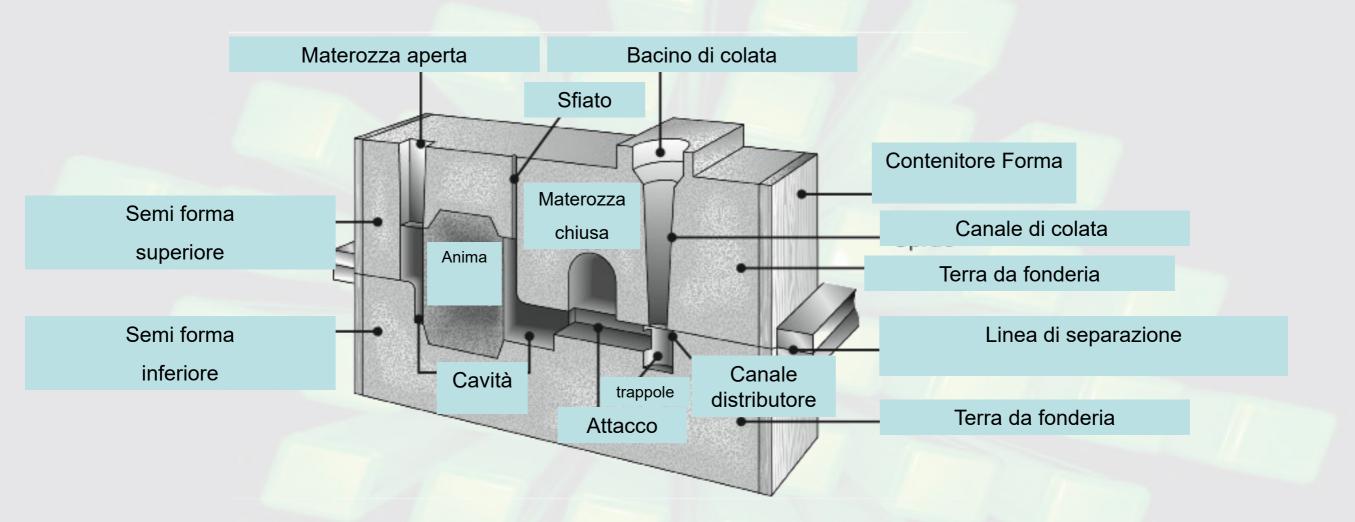

Leghe (acciai, ghise, leghe Al, leghe Mg, leghe Pb, leghe Cu, leghe Zn, ...) con <u>un intervallo di temperatura di fusione</u> in funzione della composizione della lega

Aspetti fondamentali nella messa a punto del processo sono:

- 1) Scelta del processo di fonderia
- 2) Progettazione dello stampo (FORMA)
- 3) Scelta dei parametri di processo (temperature,

lubrificanti, distaccanti, tecniche di

raffreddamento)


Tipi di Forme

Forme Transitorie = Expendable Mold (utilizzabili solo 1 volta)

Forme Permanenti = **Permanent Mold** (utilizzabili in modo ripetitivo, consentono una facile rimozione del pezzo, sono realizzati in almeno due parti richiudibili tra loro in modo da realizzare la cavità dove effettuare colata e solidificazione)

- Forme (Cope + Drag) e Anime (Core = parti mobili) in metallo, per creare cavità nell'oggetto
- Sistema di colata costituito da
 - Bacino di colata con Filtri (Pouring basin with Filters)
 - Canale di colata (Sprue)
 - Canale distributore con Trappole ferma scorie (Gate with Traps)
 - Attacchi di colata (Runners)
- Materozze a cielo aperto o cieche (Open risers or Blind risers)
- Estrattori (Ejectors)
- Sfiati (Vents) per l'evacuazione del gas
- Distaccanti e Lubrificanti es. grafite dispersa in acqua (Detaching Agents and Lubricants)

Elementi della Forma

Dimensionamento

Canale di colata

• di solito
$$\frac{A_{top}}{A_{botton}} = \sqrt{\frac{h_{botton}}{h_{top}}}$$

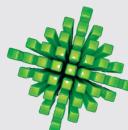
• 2000 <
$$Re = \frac{vD\rho}{\mu} < 20000$$

Tempo di solidificazione

•
$$t_{solid} = k \left(\frac{Volume}{Superficie} \right)^2$$

Angoli di sformo

•	Modelli legno	1°- 2°
	Woden regine	<u> </u>


- Raccordare gli spigoli vivi nelle zone di flusso per evitare erosioni
- Il baricentro delle anime orizzontali a sbalzo deve cadere all' interno della portata d'anima
- Maggiorare le dimensioni del modello usando il coefficiente di ritiro medio lineare per compensare il ritiro
- Raccordo tra piastre di spessore s
 - i. Raccordare le piastre con raggio pari a $R = \frac{s}{3}$
 - ii. Tracciare il cerchio inscritto D tangente a tali raccordi
 - iii. Modulo di raffreddamento della piastra di spessore pari a D

 $M = \frac{D}{2}$

Raccordo tra barre di spessore s

- i. Raccordare le barre con raggio pari a $R = \frac{s}{3}$
- ii. Tracciare il cerchio inscritto D tangente a tali raccordi
- iii. Modulo di raffreddamento della barra con dimensioni della sezione pari a D ed s

 $M = \frac{Ds}{2(D+s)}$

Modulo di raffreddamento

Modulo di raffreddamento M=

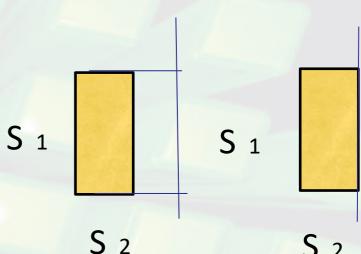
Aggiungendo un raffreddatore ho un incremento di 50 mm sulla zona protetta

Cubo, sfera, cilindro (D=H=S)

Piastre o dischi di spessore S

Corpi toroidali o cilindri

Barre di sezione costante A il cui perimetro è P


$$M = \frac{S}{6}$$

$$M = \frac{S}{3}$$

$$M = \frac{S}{2}$$

$$M = \frac{S_1 S_2}{2(S_1 + S_2)}$$

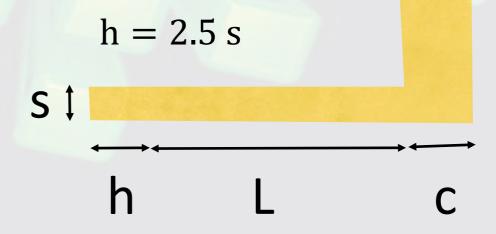
$$M = \frac{A}{P}$$

- La solidificazione va da M minore a M maggiore
- La zona i-esima è alimentata da quella adiacente (i+1) se $M_{i+1} \ge 1.1 M_i$
- La materozza si mette sull'ultima zona di solidificazione
- Zona di influenza della materozza L

• L=
$$3.5 s - 5 s$$

acciaio

ghisa


•
$$L = 5 s - 8 s$$

bronzo

• L=
$$5 s - 7 s$$

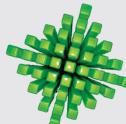
leghe leggere

Manufacturing Processes for Engineering Materials, 5th ed. Kalpakjian • Schmid © 2008, Pearson Education ISBN No. 0-13-227271-7

Volume ritiro

- V r = volume ritiro
- V p = volume pezzo
- V m = volume materozza
- B = coefficiente di ritiro volumetrico del materiale
- Per materozze cilindriche o ovali

$$Vr = 0.14 \ Vm$$


$$Vp \ max = Vm\left(\frac{14-b}{b}\right)$$

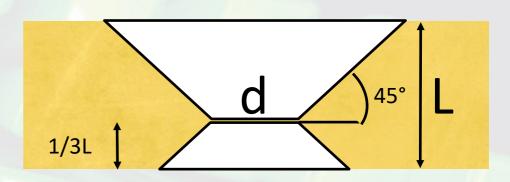
• Per materozze **sferiche** o **semisferiche**

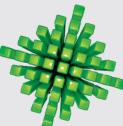
$$Vr = 0.20 \ Vm$$

$$Vp \ max = Vm\left(\frac{20-b}{b}\right)$$

• $M_m \geq 1.2 M_p$

Collare attacco materozze


Materozze cieche con collare rettangolare


$$M_m$$
: M_c : $M_p = 1.2: 1.1: 1.0$

Materozze a cielo aperto

materiale	d	
Acciai	0.40D	0.14-0.18D
Ghise	0.66D	0.14-0.18D
Leghe Cu	0.66D	0.35D
Leghe leggere	0.75D	0.40D

D

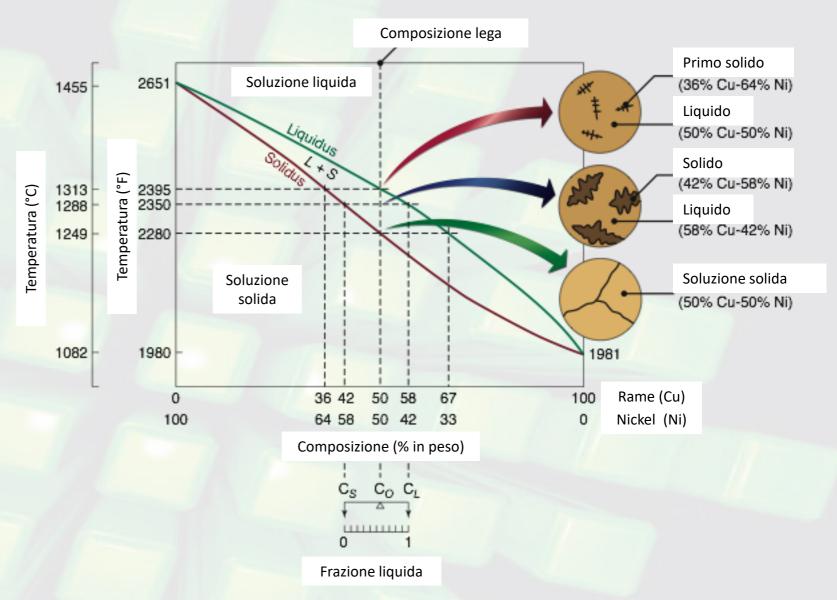
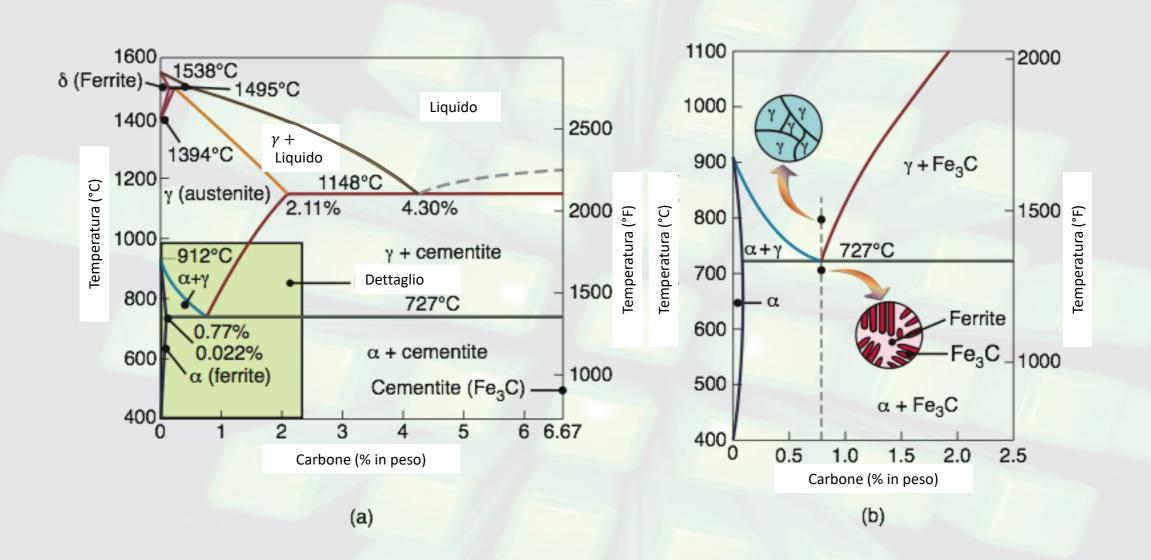
Dimensionamento sistema di colata

- Ac =sezione canale di colata
- Ad = sezione canale distributore
- Aa = sezione attacchi di colata (complessiva) = $\frac{G}{t_c v} \gamma$

 $A_c:A_d:A_a=1:0.75:0.5$ per garantire la pressurizzazione

- Tempo di colata t_c = 6.4 s G
 - Dove tc in secondi
 - S=spessore medio getto in cm
 - G=peso getto in Kg
 - γ =peso specifico materiale
- Velocità fluido all'uscita del canale di colata $v=\sqrt{2gh}$

Diagramma di fase Nickel - Rame

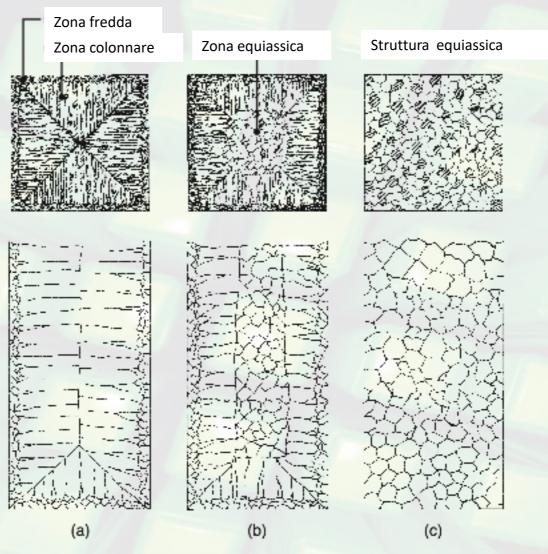
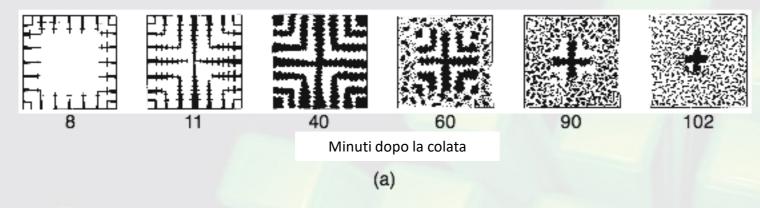
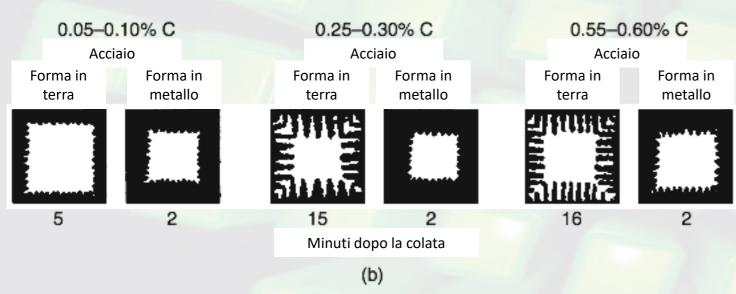

Diagramma di fase del sistema di lega Nickel – Rame ottenuto con una velocità di raffreddamento bassa. Notare che il nickel puro e il rame puro hanno una unica temperature di solidificazione o di fusione. Il cerchio in alto a destra mostra la nucleazione dei primi cristalli solidi; il secondo cerchio mostra la formazione dei dendriti; il cerchio in basso mostra la lega solidificata con I bordi grano.

Diagramma di fase Ferro – Carburo di ferro

- (a) Diagramma di fase Ferro Carburo di ferro.
- (b) Dettaglio delle microstrutture sopra e sotto la temperature dell'eutettoide (727 °C).

Microstruttura in una forma a sezione quadrata

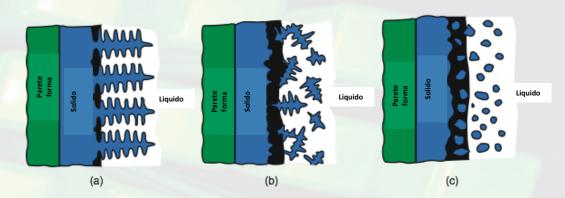



Schema di tre strutture di metalliche solidificati in una forma quadrata:

- (a) Metalli puri, con tessitura preferenziale alle pareti della forma raffreddata. Notare al centro della figura che solo i grani orientati in modo favorevole crescono, cioè quelli orientati parallelamente alla direzione di flusso del calore nella forma, ovvero perpendicolarmente alla superficie della forma, mentre gli altri grani risultano bloccati;
- (b) Leghe in soluzione solida; e
- (c) Struttura ottenuta da nucleazione eterogenea di grani.

Manufacturing Processes for Engineering Materials, 5th ed.
Kalpakjian • Schmid
© 2008, Pearson Education
ISBN No. 0-13-227271-7

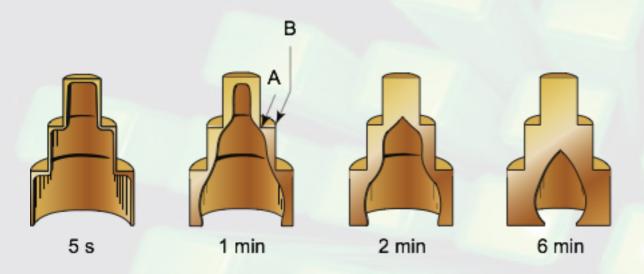
Modelli di solidificazione per la ghisa grigia e per l'acciaio



Schema di tre tipi base di strutture di solidificazione:

- (a) Modello di solidificazione di un pezzo quadrato (180 mm x 180 mm) di ghisa grigia. Dopo 11 minuti le dendriti si uniscono, ma il pezzo è ancora semisolido.
- (b) Solidificazione in forma in terra e in forma in metallo di acciai con diverso contenuto di carbonio.
 Il modello di solidificazione cambia al cambiare del contenuto di carbonio.

Manufacturing Processes for Engineering Materials, 5th ed. Kalpakjian • Schmid © 2008, Pearson Education ISBN No. 0-13-227271-7



Schema di tre tipi base di strutture di solidificazione:

- (a) Colonnare dendritica;
- (b) Equiassiale dendritica; e
- (c) Equiassiale non dendritica.

Pelle solidificata in Fonderia

Legge di Chvorinov: $tempo\ di\ solidificazione = C\left(\frac{Volume\ Pezzo}{Superficie\ raffreddamento}\right)^n$

Dove

- C dipende dal materiale della forma, dalle proprietà del metallo fuso e dalla sua temperatura;
- n oscilla tra 1.5 e 2 e di solito è pari a
 2.

Pelle solidificata in un getto di acciaio; il metallo ancora liquido è versato fuori dalla forma ai tempi indicati nella figura, misurati a partire dall'inizio del raffreddamento. Tale tecnica è usata per produrre oggetti ornamentali e decorativi mediante il processo di colata a rigetto (*slush casting*).

Contrazione - Dilatazione

Contrazione (%)	Dilatazione (%)		
Alluminio	7.1	Bismuto	3.3
Zinco	6.5	Silicio	2.9
Lega di alluminio con 4.5% Cu	6.3	Ghisa grigia	2.5
Oro	5.5		
Ghisa bianca	4-5.5		
Rame	4.9	// //	
Ottone (70-30)	4.5		
Magnesio	4.2		
Lega 90% Cu 10% Al	4		
Acciai al carbonio	2.5-4		
Lega di alluminio con 12% Si	3.8		
Piombo	3.2		

Video colata in sabbia

https://youtu.be/H-GrSDVG_iU

Video colata in fossa

https://youtu.be/QFOQ8PIJxog