LECTURE 2, rench 2,2023.
Example 3: Hamiltor-Jacobi ephetions.
(HJ) $\quad u_{t}+H\left(D_{x} u, x\right)=0$ in $\left.\Omega x\right] 0, T[$ evolutive $\&$ fully nonlivear. $\Omega \subseteq \mathbb{R}^{n}$ ofren

- Anclytical Mechanics $H(P, x)=\frac{|P|^{2}}{2}+V(x)$ H in colvex in p.
- Optimal coltrol: H-J-Belcran

$$
H(p, x)=\sup _{a}\{-f(x, a) \cdot p-l(x, e)\}
$$

convex in p

- O-sum differential gomes H-I- Isaacs

$$
H(p, x)=\sup _{a} \inf \quad b\{-f(x, a, b) \cdot p-l(x, a, b)\}
$$

N.B. H not convex hen conconve in P.

Ex.4 Stationary h-J equetions

$$
H(\text { Du, } x)=0 \quad \text { in } \Omega \quad, u(x)
$$

describe stationery sals. of (HJ)
ExGbis EIKONAL EQ. In GEOMETRIC OPTICS $|D u|=n(x)$ refrection inolex $\left(|v|=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}\right)$ - FEROAT priLciple

- Marvel eqs. (.. book Born-Wolf).
- wave eq. (EE] = Evans ch. 4)

0
METHOD of CHARACTERISTICS
(1) $\quad F(D u, u, x)=0 \quad$ in $v \in \mathbb{R}^{N}$

- Basic example \& motivation: Transport EQ.

$$
(T E)_{(C P)}\left\{\begin{array}{lr}
u_{t}+b(x) \cdot D_{x} u=0 & \text { in } \left.\mathbb{R}^{n} \times\right] 0, T[\\
u(x, \theta)=g(x) & b, g \text { oletQ }, \\
C^{1} \& b \in L_{i p} \quad b: \mathbb{R}^{h} \rightarrow \mathbb{R}^{n}, g: \mathbb{R}^{h} \rightarrow \mathbb{R} .
\end{array}\right.
$$

$$
(00 D \sqrt{2}) \quad \dot{x}=b(x)
$$

know that u solves $(T E) C u(x(t), t)=$ cost \forall sols $x(\cdot)$ of (ODE)
 $\forall s \in[0, T]$.

$$
u(x(t), t)=u(x(0), 1)=g(x(0))
$$

Def. $\Phi_{+}\left(x_{0}\right): x\left(t ; x_{0}\right):=$ sol of $\left\{\begin{array}{l}\dot{x}=b(x) \\ x(0)=x_{0}\end{array}\right.$ FLOW of DDE.
FAct (Known...) $\Phi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is c^{1}, bijective, with c^{\prime} inverse $\left[\Phi_{t}(0)\right.$ is a DIFFEOMORPISM.].
Def $u(x, t):=g\left(\Phi_{t}^{-1}(x)\right) \quad(u(x, 0)=g(x))$

- $u \in C^{\prime}$
- u is constant on trej' of (ODE) by ole.
\Rightarrow u solves (TE)
$\Rightarrow I$ found a solent. of (TE), the uniphe dol.
Ex. $b(x)=b \in \mathbb{R}^{2} \quad \Phi_{+}\left(x_{0}\right)=x_{0}+b t \stackrel{?}{=}$

$$
\begin{aligned}
& x_{0}=x-b t \Rightarrow \Phi_{t}^{-1}(x)=x-b t \Rightarrow \text { sd. of }(c P) \text { is } \\
& u(b, t)=\delta(x-b t)
\end{aligned}
$$

GENERAL CASE: Meth of cheract. for
(1) (P) $\begin{cases}F(D u, u, x)=0 & \text { in } v . \\ u=g & \text { on } \Gamma \leq \partial v .\end{cases}$

Sunn. $\exists u \in C^{2}$ i look fa curves in v $Z(s)=\left(x_{z}(1), \ldots, x_{n}(\Omega)\right)$ on which. celculeto $u(\underline{X}(s))=z(s)$, Let $p(s):=\operatorname{Du}(\bar{X}(s))$. d look for a system of $2 n+1$ (ODEs) for ($\underline{X}(1), z(1), P($.$))$

$$
\begin{equation*}
\dot{p}_{i}(1)=\frac{d}{d \prime} u_{x_{i}^{\prime}}(\underline{X}(s))=\sum_{j=1}^{N} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}^{\prime}}(\underline{X}(\rho)) \dot{x}_{j}(\Omega) \tag{*}
\end{equation*}
$$

Supp $F \in C^{\prime}$ it diffile (1) w.r.l. x_{i}

$$
(x) \sum_{j=1}^{N} F_{p_{j}}(D u, n, x) u_{x_{j} x_{i}}+F_{z}(D n, u, x) u_{x_{i}}+F_{x_{i}}(D u, n, x)=0
$$

Choore $\quad \bar{x}(\cdot): \dot{x}_{j}(0)=F_{p_{j}}(p(s), z(0), \underline{x}(0)) \quad j=1, \ldots, N$
i.e. $\dot{\dot{Z}}(寸)=F_{p}(p(0), z(0), \&(0))$. Use $(\#)+(x)$

$$
\dot{p}_{i}(0)=-F_{z}(p(n), z(0), \bar{X}(0)) p_{i}-F_{x_{i}}(p(0), z(0), \ngtr(0))
$$

i.e. $\quad \dot{p}(0)=-F_{z}() \cdot p+F_{x}()$
$\dot{z}(s)=\operatorname{Du}(X(0)) \cdot \dot{X}(s)=p(s) \cdot F_{p}(p, z, \bar{X})$.
I found the systen of characterigtics:
(Q) $\begin{cases}\dot{p}=-F_{z}(p, z, \bar{X}) p-F_{x}(p, z, \bar{X}) & \text { neqs. } \\ \text { (b) } & \begin{array}{ll}\dot{z}=p \cdot F_{p}(p, z, \bar{X}) & 1 \text { eq. } \\ \dot{\dot{X}}=F_{p}(p, z, \bar{X}) & \text { N.eqs. }\end{array} \text { (c) }\end{cases}$

N,B: These equatias do not involve u!
Def. Sols. of $a+b+c$ ae CHARACT CURVES.
※(.) projected cheracteistics. $(\subseteq V)$. we proved
Theoren $F \in C^{\prime}, u \in C^{2}$ solves (1), if $X(i)$ solve (C) with $p(0)=\nabla u(X(1))$, \& $Z(n)=u(\underline{E}(0)) \Rightarrow$
$p($.$) solves (a, \& \in \cdot$ solve (b) $\forall s: \underline{x}(1) \in V$.
Idee constuct a sol. of (P) by folving $(a-b-c)$

+ "good" cololition on Γ :

$$
u(x)=z(\bar{x}(0))
$$

with "suites le"
initial covtlixs

$\int(0,7 \geq)$ sodvij. $(a, b, c$, oh $(a-b-c)$
For simplicity it brevity I restrict to $N=n+1$

$$
\begin{aligned}
& \left.v=\mathbb{R}^{h} \times J 0, T i \quad(T \leq+\infty) \quad T=\mathbb{R}^{n} \times 30\right\} \\
& \bar{\Sigma}=(x,+), \quad p=\left(\bar{P}, P_{n+1}\right) \\
& (E \vee)_{(C P)}\left\{\begin{array}{l}
u_{t}+G\left(D_{x} u, u, x, t\right)=0 \\
u(x, 0)=g(x) \quad F(P, R
\end{array}\right.
\end{aligned}
$$

took for initial volition for ($a-b-c$)

For (b) $\quad z(0)=g(y)$
For (e) $\quad\left\{\begin{array}{l}p_{i}(0)=g_{x_{i}}(y) \quad i=1, \ldots, h \\ p_{h+1}(0)=-c_{2}\left(D_{g}(y), g(y), y, 0\right)\end{array}\right.$
consioler the Cauchy for $(a-b-c)+$ there initial cowls.
If $c_{1} \in c^{2} \quad r \cdot h$. of $(a-s-c)$ is loci. Lip.
Then $f \pm \nabla_{0}(p(y, s), z(y, s), \varepsilon(y, s))$ sol of $(a, b, c)+$ init. d as. in $\left.B\left(y_{0}, r_{1}\right) \times\right] c_{1} d[, \quad c<0<d$

Hypotheses $a \in c^{3}, \delta \in C^{3} \Rightarrow$ vector fielob in (abc) ane $c^{2} \& t$ initue cowh olp. in c^{2} way $x y \Rightarrow$ By C^{2} deveoluce of sols. of $(O D E)$ from obt.

$$
(y, 1) \leftrightarrow(P(y, s), Z(y, 0), \delta(y, 1)) \in C^{2}\left(B\left(y_{0}, r_{y}\right) \times\right] c, d[) .
$$

Lemme $\underline{X}(0,0)$ is locally invertible, i.e., $f V \subseteq \mathbb{R}^{n+1}$ ubhd. of $\left(y_{0}, 0\right), I=(a, b) \geqslant 0, W=B(y, r) \subseteq \mathbb{R}^{n} \Omega t$. $\forall(x, t) \in V$ Juniqhe $s \in I, y \in W:(x, t)=\bar{x}(y, J)$. Oroneover the inverse is C^{2}.
roof. URE INVERSE FN,THM, be $(y, s) \leftrightarrow \underline{X}(y, s) \in C^{2}$. oust check that $J a C . \quad D \underline{X}\left(y_{0}, 0\right)$ has det $\neq 0$. Then inverse \exists locolly \notin it's c^{2}.

$$
\begin{aligned}
& \bar{\chi}(y, 0)=(y, 0) \quad \begin{array}{lll}
\text { the iolentity } & D_{y} \bar{\chi}\left(y_{0}, 0\right) \\
y & \leftrightarrow \bar{x}(y, 0)
\end{array} \quad\binom{I_{n \times n}}{0 \ldots 0} \\
& y \leftrightarrow \bar{\Sigma}(y, 0)
\end{aligned}
$$

$$
\begin{aligned}
& F=P_{n+1}+G \\
& \Delta \underline{X}\left(\begin{array}{ll}
y_{01} & 0
\end{array}\right)=\left(\begin{array}{ccc}
I_{n \times n} & G_{p_{1}^{\prime}} \\
\hdashline 0.0 & 1
\end{array}\right) \\
& \begin{array}{r}
\operatorname{det} P \bar{X}\left(y_{0}, 0\right)=1 \neq 0 \\
\text { 因 }
\end{array}
\end{aligned}
$$

Def. $(E, S)=$ the locel irverse of $\bar{X}(\cdot, \cdot)$ i.e. $(x, t)=X(y, s) \Leftrightarrow y=\bar{Y}(x, t), s=S(x, t)=t$ $\&$ olef $u(x, t):=z(\underline{Y}(x, t), t)$

NB. 1. If $(\overline{F v})=(T E)$ we recover whet we diol.
N.B.2 $u \in C^{2}$ became $Y \not \& z$ are C^{2}.

Thm The function a def.ly (D) solves
$(C D) \quad\left\{\begin{array}{lc}u_{t}+G\left(D_{x} u, u, x, t\right)=0 & \text { in } \\ u(x, 0)=g(x) & \text { in } v \wedge\{t=0\} .\end{array}\right.$
Ruk by gustunction.
Reneins to prove that eq. halds.

- General case [EV, p.107-110].
- I will ob $u_{t}+H\left(D_{x} u\right)=0$
tron P.L.Lious!" hen.led shs. of H-J eq s." Pitmen 1982

Examples Ex.z.

$$
\text { (LE) } \quad u_{+}+b \cdot D_{x} u+c u=e
$$

$b \in \mathbb{R}^{2}$ cost, c, e cont. fus of $x \neq t$.

$$
G=b \cdot \bar{p}+c(x, t) z-l(x,+) \quad F=p_{n+1}+c
$$

$$
\begin{aligned}
& (c)\left\{\begin{array}{lll}
\dot{x}_{i}=b_{i} & x_{i}(0)=y_{i} & x_{i}(1)=y_{i}+1 b_{i} \\
\dot{x}_{n+1}=1 & x_{n+1}(0)=0 & x_{n+1}(1)=1=t \\
\mathbb{X}(y, s)=(y+1 b, 1) \geq(x, t) \quad \Leftrightarrow t=1 \quad y=x-J b \\
& =: \bar{Y}(x, 1)
\end{array}\right.
\end{aligned}
$$

Cawliolete 20l. By (D)

$$
u(x, t)=z(\underline{Y}(x, y)) \quad \text { Who is } z \text { ? }
$$

HW: Try to go on and fidt' a formule for U...

