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CHAPTER 1

Propositional Logic

1. What is a proposition

According to Stanford Encyclopedia of Philosophy1 , the term ”proposition”
has a broad use in contemporary philosophy. It is used to refer to some or all of
the following: the primary bearers of truth-value, the objects of belief and other
”propositional attitudes” (i.e., what is believed, doubted, known, etc.), the referents
of that-clauses, and the meanings of sentences.

Propositions can be expressed by sentences of a natural language (English,
Italia, etc. ) Examples of propositions are “John is a teacher”, “John is rich’
and “John is a rock singer”. Notice that there is a difference between “sentence”
and “proposition”. A sentence is a string that expresses a proposition. I.e., the
meaning of a sentence is a proposition. In natural langue we say that two sentences
are equivalent, when they expresses the same proposition. E.g.,

(1) the brother of my mam is blond;
(2) my uncle is blond;

One of the most important characteristic of proposition is that they can take
a truth value. IN classical propositional logic, there are only two truth values true
and false. Notice that, one can imagine a situation in which a proposition is not
completely true or completely false, or it is both true and false. To treat these
situations there are other logics (we will see fuzzy logic). So, don’t believe that the
world of logic is limited to “true and false”.

Complex propositions can be build by combining simpler (atomic) propositions.
For instance the sentence “Paolo is painting and Renzo is playing piano” expresses a
proposition which is the conjunction of the propositions expressed by the sentences
“Paola is painting” and “Pietro is playing piano”. There are other ways to compose
complex proposition from simpler ones. For instance one could “disjunct” two
propositions. E.g., the proposition “Paolo is painting or Renzo is playing piano” is
the disjunction of the two simpler propositions. Another example is negation. E.g.,
the proposition rexpressed by the sentence “Renzo is not playing the piano” is the
result of negating the proposition expressed by the sentence “Renzo is playing the
piano”.

Notice that the truth value of the simpler proposition determine the truth
value of the complex proposition. This property is sometimes referred as truth-
functionality and has been formally characterised by the Polish logician Alfred
Tarski in 1933.

1see https://plato.stanford.edu/entries/propositions/
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2. The language of propositional logic

The language of propositional logic allows to “speak about” propositions. The
basic components of a propositional language is the set of propositional variables P.
This can be a finite or an infinite set (indeed the set of all propositions in general
might be infinite).

P = {p1, p2, p3, . . . }
When we stud When we want to use propos y the general propoerties of PL, we
don’t care about which proposition is denoted by each single pi in P; we only
assume that each pi refers to some proposition. This is the reason why pi is called
variable. Instead, when we want to use PL to represent some concrete scenario,
we have to specify the specific proposition which is denoted by each propositional
variable. For instance if we want to use PL to describe what Paola and Renzo are
doing. we can define the set of propositional variables:

P = {p, r}

where

• p is the proposition expressed by the sentence “Paola is painting”;
• r is the proposition expressed by the sentence “Renzo is playing the pi-

ano”.

The language of PL allows to express also complex proposition which are the result
of negating a proposition, and combining two propositions with conjunction, dis-
junction, implication, and equivalence. To allow this PL introduces the following
set of symbols called propositional connectives

• ¬ for negation (not);
• ∧ for cojunction (and);
• ∨ for disjunction (or);
• → for implication (if . . . then . . . );
• ↔ for equivalence (if and only if).

In the literature one can find alternative symbols for implication and equivalence,
which are ⊃ and ≡. We will use both the symbols. Two additional symbols “(“
and “)” are also added to PL, which allows one to express the correct separation of
simple propositions that occour in a complex propositions. Parenthesis in PL play
the similar role played by punctuation symbols (e.g., “.”, “;”, “,”, . . . ) in natural
language.

In summary, the alphabet of a propositional language is composed by

• a set P of propositional variables (also called non-logical symbols);
• the set ¬, ∧,
vee, →, and ↔ of propositional connectives (also called logical symbols);

• parenthesis symbols ( and ).

From this alphabet the set of well formed formula are defined by induction as
follows:

Definition 1.1 (Well formed formulas). Given a set P of propositional vari-
ables, the set of well formed formulas is inductively defined as follows:

(1) every p ∈ P is a well formed formula;
(2) if φ is a well formed formula then ¬φ is a well formed formula;
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(3) if φ and ψ are well formed formula, then φ ◦ ψ is a well formed formula
for ◦ ∈ {∧,∨,→,↔};

(4) nothing else is a well formed formula.

Each element p ∈ P is called also atomic formula. The set wffs(P) is the set of
well formed formulas that contains only the propositions in P

An additional symbol, that is often use in propositional logic is the ⊥ symbol.
Intuitively ⊥ is a constant that represents the proposition that is always false.

The term “formula” us used as a short version of “well formed formulas” when
there is no confusion. We also shorten well formed formula with “wff”.

Example 1.1 (Formulas and non formulas).

Formulas Non formulas
p→ q pq
p→ (q → r) (p→ ∧((q → r)
(p ∧ q)→ r p ∧ q → ¬r¬

Notice that the formulas on the left can be build by applying the rules of Defini-
tion 1.1. For instance the formula (p ∧ q)→ r can be buld as follows

(1) p is a wff for item 1;
(2) q is a wff for item 1;
(3) p ∧ q is a wff for item 3;
(4) (pwedgeq)→ r is a wff for item 3.

Notice that in the last step we use parenthesis, in order to specify how the formula
is build. Indeed if one does not use parenthesis, the formula would look as

p ∧ q → r

The above formula however can be build in two ways.

• first build p ∧ q and then p ∧ q → r (as we indeed do)
• first buld q → r and then p ∧ q → r

To distinguish the two ways of constructing the formula we use parentes. obtaining

(p ∧ q)→ r(1)

p ∧ (q → r)(2)

Notice that the two formulas above represents different propositions.

Example 1.2. Suppose that

• p stands for “Paola is painting”;
• q stands for “outside it’s raining”;
• r stands for “Renzo is playing the piano”.

we have that the two formulas refers to the propositions expressed by

If Paola is painting and outside it is raining, then Renzo is playing the piano;
(3)

Paola is painting and, if outside it is raining, then Renzo is playing the piano
(4)

Notice that the proposition expressed by the two sentences above are different. So
they are the corresponding propositional formula.
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In some cases, the use of parenthesis will result in an awkward notation. In
order to minimize the usage of parenthesis only when they are necessary, PL provide
a “default” order of construction in case there are no parenthesis. This default order
of application of rule of construction is specified by associating a priority ordering
between connectives. ¬ has the highest priority, then ∧, ∨, → and ≡.

Symbol Priority
¬ 1
∧ 2
∨ 3
→ 4
↔ 5

In absence of parenthesis the above priorities are applied. Therefore the formula
p ∧ q → r is considered to be (p ∧ q)→ r. If we want to refer to the other formula
we have to explicitly add parenthesis.

A formula can be seen as a tree. The leaves of the tree are propositional vari-
ables contained in the formula and the intermediate (non-leaf) nodes are associated
to connectives that are used in order to build the complex formula.

Example 1.3 (Tree of the formula). The tree of the formula

A ∧ ¬B → (B ↔ C)

is the following:

→

∧

A ¬

B

↔

B C

Notice that, in order to force that the ↔ connective should be applied before the
→ connective we have to use parenthesis. Indeed the tree of the formula without
parenthesis, i.e.,

A ∧ ¬B → B ↔ C

is the following:

↔

→

∧

A ¬

B

B

C
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Informally, a subformula is a part of a wff which is itself a wff. More formally
the best approach is via the idea of the constructional history for a wff, with the
subformulae being the wffs that appear in the history. Any decent textbook will
explain this, and explain how you set out constructional histories as trees.

The set of formulas which need to be constructed in order to build a complex
formula φ are called the subformulas of φ. The trees of the subformulas of a formula
φ are the sub-trees of the tree of φ. A formal definition of sub-formula of φ is the
following:

Definition 1.2.

• A is a subformula of itself
• A and B are subformulas of A ∧B, A ∨B A ⊃ B, e A ≡ B
• A is a subformula of ¬A
• if A is a subformula of B and B is a subformula of C, then A is a sub-

formula of C.
• A is a proper subformula of B if A is a subformula of B and A is different

from B.

Example 1.4. The subformulas of (p0 ∨ ¬p1) → (p2 ∧ p1) are: (p0 ∨ ¬p1) →
(p2 ∧ p1), p0 ∧ ¬p1, p2 ∧ p1, p0, ¬p1, p2 and p1.

Notation 1.1. Unfortunately, books on mathematical logic use widely varying
notation for the Boolean operators; furthermore, the operators appear in program-
ming languages with a different notation from that used in mathematics textbooks.
The following table shows some of these alternate notations.

Connective Alternative programming languages
¬ ∼ ~ ! -

∧ & & && ^

∨ ‖ | ||

→ ⊃ ⇒ =>, ->

↔ ⇔ ≡ <=>, <->, = %

3. Interpretation of propositional formulas

Informally speaking an interpretation of a propositional language represents a
state of affairs that allows one to establish for every proposition if it true or false,
or equivalently if it holds or it does not hold. So for instance if we have the set
of P are {p, q, r} and they denote the propositions as described in Example 1.2,
an interpretation correspond to a specific situation in which for instance Paola is
painting, outside it is not raining, and Renzo is not playing piano. Since in PL we
have that the truth value of complex propositions is fully determined by the truth
value of the simplest (aka atomic) propositions, an interpretation can be specified
by saying if p is holds or does not hold for every p ∈ P. Let’s now define this notion
formally:

Definition 1.3. An interpretation of a propositional language on the set of
propositional variables P, is a function I : P → {True,False}.

Alternative notation for True and False that we will unse in this notes and are
used in other books are 0 and 1, > and ⊥. An alternative and equivalent definition
of interpretation is the following
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Definition 1.4. An interpretation of the set of propositional variables P is
any subset I ⊆ P.

The two definitions are equivalent under the correspondence

I(p) = True if and only if p ∈ II(p) = False if and only if p 6∈ I
We will use alternatively both the definition depending on convenience. Notice

that if P contains n propositional variables, (i.e, |P| = n) then there are 2n distinct
interpretations. This corresponds to the fact that a set P that contains n elements
has 2n distinct subsets.

Example 1.5. Suppose that the set P of propositional variaables is equal to
{p, q, r}, then there are 23 = 8 propositional interpretations of P. The following
table reports all of them in the functional form I : P → {True,False} and in the
setwise form I ⊆ I.

Functional form Set theoretic
p q r form

I1 True True True {p, q, r}
I2 True True False {p, q}
I3 True False True {p, r}
I4 True False False {p}
I5 False True True {q, r}
I6 False True False {q}
I7 False False True {r}
I8 False False False {}

The truth value for propositional letters assigned by an interpretation I one
can define when a formula is true (or holds) in the interpretation I.

Definition 1.5 (I satisfies a formula A, I |= A). A formula A is satisfied by
an interpretation I, in symbols

I |= A

according to the following inductive definition:

• If p ∈ P, I |= p if I(p) = True;
• I |= ¬A if not I |= A (also written I 6|= A);
• I |= A ∧B if, I |= A and I |= B;
• I |= A ∨B if I |= A or I |= B;
• I |= A→ B if either I 6|= A or I |= B;
• I |= A↔ B if I |= A iff I |= B.

If I is an interpretation and A a formula, following expressions has the same
meaning

• I |= A;
• I satisfies A;
• A is true in I;
• A holds in I;
• A is satisfied by I;
• I(A) = True.

Notice that, if we have to check if a formula A is true in an interpretation I,
we have to take into account only the assignments that I does to the propositional
variables that occours in A. This fact isi reflected by the following property:
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Proposition 1. For every pair of interpretations I and I ′, if I(p) = I ′(p) for
all the propositional variables p of a formula A, then I |= A iff I ′ |= A

In other words if I and I ′ differs only on the propositional variables that do not
appear in A, then the truth values of A in I and I ′ are equal. As a consequence,
to check if I |= A it is enough to consider the truth values that I assigns to the
propositional variables appearing in A.

3.1. Material Implication. Some discussion is necessary about the seman-
tics of implication →. The operator → is called material implication; p is the
antecedent and q is the consequent. Material implication does not claim causality;
that is, it does not assert there the antecedent causes the consequent (or is even
related to the consequent in any way). A material implication merely states that
if the antecedent is true the consequent must be true; so it can be falsified only if
the antecedent is true and the consequent is false. This definition of the conditions
under which a→ b is true is easily acceptable when a (the premise of the implica-
tion) is true, but when a is false, according to the definition, we have that a→ b is
true. In other words according to the condition given above we have that

I |= a→ b if and only if I |= ¬a ∨ b

so in other words a→ b and ¬a ∨ b are equivalent propositions. This is sometimes
very unintuitive. Consider for instance the statement:

the moon is made of cheese implies that the earth is flat

which can be represented by the propositional formula

c→ f

with c representing the proposition ”the moon is made of cheese” and f the propo-
sition ”the earth is flat”. According to the formal sematnics we have that c→ f is
true in the current state of the world (as we know that the premise is false), however
the sentence in natural language suggests some cauation between the premise c and
the conclusion f , which is not formalized by the implication. Other paradixical
formulas are the following. They are true in all interpretation, however they are
not intuitively acceptable:

• (¬p∧p)→ q: p and its negation imply q. This is the paradox of entailment.
• p→ (q → p): if p is true then it is implied by every q.
• ¬p → (p → q): if p is false then it implies every q. This is referred to as

’explosion’. In these cases, the statement p → q is said to be vacuously
true.

• p→ (q∨¬q): either q or its negation is true, so their disjunction is implied
by every p.

• (p → q) ∨ (q → r): if p, q and r are three arbitrary propositions, then
either p implies q or q implies r. This is because if q is true then p
implies it, and if it is false then q implies any other statement. Since
r can be p, it follows that given two arbitrary propositions, one must
imply the other, even if they are mutually contradictory. For instance,
”Nadia is in Barcelona implies Nadia is in Madrid, or Nadia is in Madrid
implies Nadia is in Barcelona.”is always true. This sounds like nonsense
in ordinary discourse.
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• ¬(p → q) → (p ∧ ¬q): if p does not imply q then p is true and q is false.
N.B. if p were false then it would imply q, so p is true. If q were also
true then p would imply q, hence q is false. This paradox is particularly
surprising because it tells us that if one proposition does not imply another
then the first is true and the second false.

Suggestion: As a practice in order to avoid these types of paradoxes it is better
to read a→ b directly as ¬a ∨ b.

3.2. The low of excluded middle. The formula p ∨ ¬p is valid (or equiva-
lently it is a tautology). Indeed independently from the truth value assigned to p
by an interpretation I, we have that I |= p ∨ ¬p.

This tautology, called the law of excluded middle, is a direct consequence of
our basic assumption that a proposition is a statement that is either true or false.
Thus, the logic we will discuss here, so-called Aristotelian logic, might be described
as a “2-valued” logic, and it is the logical basis for most of the theory of modern
mathematics, at least as it has developed in western culture. There is, however,
a consistent logical system, known as constructivist, or intuitionistic, logic which
does not assume the law of excluded middle. This results in a “3-valued” logic in
which one allows for a third possibility, namely,”other”. In this system proving
that a statement is “not true” is not the same as proving that it is “false”, so that
indirect proofs, which we shall soon discuss, would not be valid. If you are tempted
to dismiss this concept you should be aware that there are those who believe that
in many ways this type of logic is much closer to the logic used in computer science
than Aristotelian logic. You are encouraged to explore this idea: there is plenty of
material to be found in your library or through the worldwide web.

3.3. Valid, Satisfiable, and unsatisfiable formulas.

Definition 1.6. A formula A is

• Valid if for all interpretations I, I |= A. The notation |= A (with no
interpretation in the front) stands for “A is valid”;

• Satisfiable if there is an interpretations I s.t., I |= A
• Unsatisfiable if for no interpretations I, I |= A

Validity, satisfiable, and unsatisfiability are not independent concepts, they are
related one another. This relation is highlighted in the following diagram

all formulas

satisfiable

valid

Stating that

Valid formulas ⊂ Satisfiable formulas ⊂Well formed formulas
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This implies that if a formula is valid it is also satisfiable, and if a formula it
is unsatisfiable (not satisfiable) it is also not valid. Alternative terms for valid,
satisfiable and unsatisfiable formula are the following:

• tautology is a synonym of valid ;
• contingency is a synonym of satisfiable;
• contradiction is a synonym of unsatisfiable.

Example 1.6.

Satisfiable


Uatisfiable



A→ A
A ∨ ¬A
¬¬A ≡ A
¬(A ∧ ¬A)
A ∧B → A
A→ A ∨B

p ∨ q
p→ q

¬(p ∨ q)→ r
A ∧ ¬A
¬(A→ A)
A ≡ ¬A
¬(A ≡ A)


Valid


Non Valid

Prove that the blue formu-
las are valid, that the ma-
genta formulas are satisfiable
but not valid, and that the red
formulas are unsatisfiable.

In the following we provide the proof for some formulas and leave the others by
exercize.

• A → A is valid. By Definition 1.5, I |= A → A if and only if either
I |= A or I 6|= A, which holds for every I.

• A ∨ ¬A is valid. By Definition 1.5, I |= A ∨ ¬A if and only if I |= A or
I |= ¬A. Furhtermore, by Definition 1.5, I |= ¬A if and only if I 6|= A.
So I |= A ∨ ¬A iff I |= A or I 6|= A, which is true for every I.

• ¬¬A ≡ A is valid. Suppose by contradiction that there is an I such that
I |= ¬¬A and I 6|= A. By Definition 1.5, If I |= ¬¬A then I 6|= ¬A.
Furtherore, again by Definition 1.5, I 6|= A then I |= ¬A. So by assuming
that there is an interpretation I that satisfies ¬¬A and does not satisfy
A we reach a contraddiction that I |= ¬A and I 6|= ¬A. Therefore there
is no such an I. This implies that for all interpretations I |= ¬¬A if and
obnly if I |= A, and due to Definition 1.5, I |= ¬¬A ≡ a for all I.

• p ∨ q is satisfiable. To show that a formula is satisfiable it is sufficient to
find an interpretation that makes it true. Let I be such that I(p) = True,
then (independently on the interpretation of q) we have that according to
Definition 1.5 I |= p ∨ q.

• p∨ q is not valied. To show that a formula is not valid we have to find an
interpretation that does not satisfy it. Consider the interpretation I with
I(p) = False and I(q)− False. We have that by Definitin 1.5 I 6|= p ∨ q.

• A ∧ ¬A is unsatisfiable. We have to prove that for all interpretation s I,
I 6|= A ∧ ¬A. Suppose by contraddiction that there is an interpretation
such that I |= A|wedge¬A, then by Definition 1.5 I |= A and I |= ¬A.
The last fact implies that I 6|= A. Since by assuming that there is an I
that satisfies A ∧ ¬A we reach a contraddiction that I |= A and I |= ¬A,
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we can conclude that there is no such I, and therefore that A ∧ ¬A is
unsatisfiable.

Definition 1.7 (Models of a formula). For every formula A the set models(A),
the models of A, is the set {I | I |= A}, i.e., the set of truth assignments (inter-
pretations) to the propositional variables prop(A) that satisfy A;

The sef of models of a complex formula can be computed in terms of the models
of its direct subformulas. However, in computing the models of the subformulas we
have to take into account the assignments to the proposition of the entire formulas.
For this reason we introduce a generalization of the above definition

Definition 1.8. If P is a set of propositional variables that contains prop(A)
then modelsP(A) is the set of assignments to P that satisfies A.

Notice that the following facts holds

• if A is satisfiable models(A) 6= ∅;
• if A is valide models(A) = 2prop(A), i.e., the set of all interpretations of

prop(A);
• if A is unsatisfiable then models(A) = ∅.
• models(¬A) = 2prop(A) \models(A);
• models(A ∧B) = modelsprop(A∧B)(A) ∩modelsprop(A∧B)(B);
• models(A ∨B) = modelsprop(A∨B)(A) ∪modelsprop(A∨B)(B);
• models(A→ B) = modelsprop(A→B)(¬A) ∪modelsprop(A→B)(B)
• models(A ≡ B = modelsprop(A≡B)(A)∩modelsprop(A≡B)(B)∪ |= (¬A)∩ |=

Validity, satisfiability, and unsatisfiability of a formula A is also related to
validity, satisfiability and unsatisfiability of its negation, i,e. ¬A.

Proposition 2.

(1) A is valid if and only if ¬A is unsatisfiable;
(2) A is satisfiable if and only if ¬A is not valid;
(3) A is not valid if ¬A is satisfiable;
(4) A is unsatisfiable if ¬A is valid.

Proof. We prove the first two points and left the other two by exercize.

(1) A is valid then models(A) = 2P . Since models(¬A) = 2P \models(A) we
have that models(¬A) = ∅, and therefore ¬A is unsatisfiable.

(2) A is satisfiable then models(A) 6= ∅. and therefore models(¬A) = 2P \
models(A) 6= 2P which means that ¬A is not valid.

�

The definition of satisfiability, validity, and unsatisfiability can be extended
also to sets of formulas as follows:

Definition 1.9. A set of formulas Γ is

• Valid if for all interpretations I, I |= A for all formulas A ∈ Γ
• Satisfiable if there is an interpretations I, I |= A for all A ∈ Γ
• Unsatisfiable if for no interpretations I,, s.t. I |= A for all A ∈ Γ

Proposition 3. For any finite set of formulas Γ, (i.e., Γ = {A1, . . . , An} for
some n ≥ 1), Γ is valid (resp. satisfiable and unsatisfiable) if and only if A1∧· · ·∧An

is valid (resp, satisfiable and unsatisfiable).

We leave the proof of the previous proposition by exercize.
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4. Logical consequence

Logical consequence is one of the key notion of every logic. It is the base of cor-
rect inference. Intuitively a proposition, called consequence, logically follows from
(or equivalently, is a logical consequence of) a set of propositions, called premises
or hypothesis, if from the assumption that the hypothesis are true we can conclude
with cartainty that the consequence is also true. For instance if x > y and y > z
we can conclude that x− z > 0. Logical consequence is strictly connected with the
definition of truth of a formula in an interpretation. One of the main motivation
of using logic is to make rigorous what is a “valid argument”, i.e., when one fact
follows form some other facts. Intuitively a “valid argument” is the one that derive
true facts from true facts. To this aim, we use the notion of logical consequence
(Some books refer to logical implication and entailment.)

Definition 1.10. A formula A is a logical consequnece of a set of formulas Γ,
in symbols Γ |= A, if for all interpretations I, if I |= C for all C ∈ Γ then I |= B.
If Γ contains is a finite set of formulas {A1, . . . , An}, then we use the notation

A1, . . . , An |= A

to denote that A is a logical consequence of Γ.

In other words, Γ |= A means that whenever all the wffs in Γ are true, then
A must also be true. Notice that this definition does not say anything about
interpretations under which one or more of the wffs in Γ are false. In this case, we
don’t care whether A is true or false.

Example 1.7. q is a logical consequence of {p → q,¬p → q}. In symbols
p → q,¬p → q |= q. To check this, since we have to look to all the interpretations
we can build a need a truth table.

p q p→ q ¬p→ q
I1 True True True True
I2 True False False True
I3 False True True True
I4 False False True False

p → q,¬p → q |= q holds since all the interpretations that satisfy p → q and
¬p→ ¬q (i.e.,I1 and I3) also satisfy q.

Notation 1.2. Given a non empty finite set of formulas Γ = {A1, . . . , An}∧
Γ or equivalently

n∧
i=1

Ai

which stands for A1 ∧A2 ∧ · · · ∧An∨
Γ or equivalently

n∨
i=1

Ai

which stands for A1 ∨A2 ∨ · · · ∨An

When Γ is empty we extend the notation as follows∧
Γ denotes >

and ∨
Γ denotes ⊥
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4.1. Properties of propositional logical consequence.

Proposition 4. If Γ and Σ are two sets of propositional formulas and A and
B two formulas, then the following properties hold:

Reflexivity:: {A} |= A
Monotonicity:: If Γ |= A then Γ ∪ Σ |= A
Cut:: If Γ |= A and Σ ∪ {A} |= B then Γ ∪ Σ |= B
Deduction theorem:: If Γ, A |= B then Γ |= A→ B
Refutation principle”: Γ |= A iff Γ ∪ {¬A} is unsatisfiable

Proof.

Reflexifity: For all I if I |= {A} then I |= A.
Monotonicity: For all I if I |= Γ ∪ Σ, then I |= Γ, by hypothesis (Γ |= A)

we can infer that I |= A, and therefore that Γ ∪ Σ |= A
Cut:: For all I, if I |= Γ ∪ Σ, then I |= Γ and I |= Σ. The hypothesis

Γ |= A implies that I |= A. Since I |= Σ, then I |= Σ ∪ {A}. The
hypothesis Σ∪ {A} |= B, implies that I |= B. We can therefore conclude
that Γ ∪ Σ |= B.

Deduction theorem: Suppose that I |= Γ. If I 6|= A, then I |= A → B. If
instead I |= A, then by the hypothesis Γ, A |= B, implies that I |= B,
which implies that I |= B. We can therefore conclude that I |= A→ B.

Refutation principle: (=⇒) Suppose by contradiction that Γ∪{¬A} is satis-
fiable. This implies that there is an interpretation I such that I |= Γ and
I |= ¬A, i.e., I 6|= A. This contradicts that fact that for all interpretations
that satisfies Γ, they satisfy A (⇐=) Let I |= Γ, then by the fact that
Γ ∪ {¬A} is unsatisfiable, we have that I 6|= ¬A, and therefore I |= A.
We can conclude that Γ |= A.

�

The above property has an important impact in using propositinal logic for
representing the knowledge of an artificial agent. In particular the monotonicity
property, states that by adding new knowledge you never “delete” the old knowl-
edge. For instance if an agent represent the fact that all birds flies, with the
implication bird→ flies, and the fact that a penguin is a bird with the implication
penguin→ bird, then this automatically implies that penguin→ flies. But we know
that penguins do not fly, Humans adjust this problem by providing the additional
knowledge that penguins are exceptions and therefore they don’t fly. This is not pos-
sible in propositional logic, since if we add the fact that penguin→ exceptionalBird,
and exceptionalBird → ¬fly, we don’t delete the fact that a penguin is a bird, and
therefore we still derive that penguins fly. In order to cope with this type of repre-
sentation problem, researchers in knowledge representation in AI introduces “non
monotonic” logics Brewka 1989.

The deduction theorem states that logical consequence that involves a finite
set of formulas can be “internalized” in an implications. Indeed an immediate
consequence of the deduction theroem is that A1, . . . , A − n |= A implies that
A1 → (A2 → . . .→ (An−1 → An) . . . )) is a valid formulas.

The Refutation principle is also a very important property, that allows to trans-
form the problem of checking logical consequence in to the problem of checking
satisfiability of a set of formulas. We will explain this method in the next chapter
that is dedicated to algorithms for checking satisfiability.
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Another inportan property of the logical consequence in propositional logic is
the so called compactness theoremn

Theorem 1.1 (Compactness). If Γ |= A then Γ0 |= A for some finite subset
Γ0 ⊆ Γ.

We report one proof of the compactness theorem at the end of this chapter.

5. Logical equivalence

Definition 1.11. Two formulas A and B are logically equivalent if and only
if they are true under the same set of interpretations. Alternatively A and B are
equivalent if [[A]] = [[B]].

With an abuse of notation, we write A ≡ B to state that A is logically equivalent
to B. Let us now analyse the different type of equivalence formulas we have in PL.

5.0.1. Absorption of > and ⊥. Remember that > and ⊥ are usually added
to the language of propositional logic, and they are mapped to True and False
respectively by all the interpretations. The appearance of these constants in a
formula can collapse the formula so that the binary operator is no longer needed; it
can even make a formula become a constant whose truth value no longer depends
on the non-constant sub-formula.

A ∨ > ≡ > A ∨ ⊥ ≡ A
A ∧ > ≡ A A ∧ ⊥ ≡ ⊥
A→ > ≡ > A→ ⊥ ≡ ¬A
> → A ≡ A ⊥ → A ≡ >
A↔ > ≡ A A↔ ⊥ ≡ ¬A

5.0.2. Identical Operands. Collapsing can also occur when both operands of an
operator are the same or one is the negation of another.

A ≡ ¬¬A
A ∧A ≡ A
A ∨A ≡ A

A ∧ ¬A ≡ ⊥
A ∨ ¬A ≡ >
A→ A ≡ >
A↔ A ≡ >

5.0.3. Commutativity, Associativity and Distributivity. The binary Boolean op-
erators are commutative, except for implication.

A ∨B ≡ B ∨A
A ∧B ≡ B ∧A
A↔ B ≡ B ↔ A

If negations are added, the direction of an implication can be reversed:

A→ B ≡ ¬B → ¬A



18 1. PROPOSITIONAL LOGIC

The formula ¬B → ¬A is called the contrapositive of A → B. Disjunction, con-
junction, equivalence are associative.

A ∨ (B ∨ C) ≡ (A ∨B) ∨ C
A ∧ (B ∧ C) ≡ (A ∧B) ∧ C

A↔ (B ↔ C) ≡ (A↔ B)↔ C

Disjunction and conjunction distribute over each other

A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)

A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C)

5.0.4. De Morgan laws. Negating a conjunction results in a disjunction of the
negated conjuncts, and viceversa

¬(A ∧B) ≡ ¬A ∨ ¬B
¬(A ∨B) ≡ ¬A ∧ ¬B

5.0.5. Distribution of implication.

A→ B ∨ C ≡ (A→ C) ∨ (B → C)

A→ B ∧ C ≡ (A→ C) ∧ (B → C)

A→ (B → C) ≡ (A→ B)→ (A→ C)

5.0.6. The Relationship Between ↔ and logical equivalence. Equivalence,↔, is
a Boolean operator in propositional logic and can appear in formulas of the logic.
Logical equivalence, instead, is a relations between formulas. There is potential for
confusion because we are using a similar vocabulary both for the object language,
in this case the language of propositional logic, and for the metalanguage that we
use reason about the object language. Equivalence and logical equivalence are,
nevertheless, closely related as shown by the following theorem:

Theorem 1.2. A is logically equivalent to B if and only if A↔ B is valid

Proof. if A is logically equivalent to B if and only if [[A]] = [[B]] which is true
if and only if for all I, I |= A whenever I |= B and viceversa, and i.e., I |= A↔ B
for all I, which holds iff A↔ B is valid. �

6. Truth tables

Truth tables is a simple method for explicitly enumerating all the interpreta-
tions of the propositional variables of a formula A and for each interpretation it
reports the corresponding truth value of A. The truth table for a propositional
formula is a table containint as many columns as the propositional variables occur-
ring in A plus the number of subformulas of A. The truth table of A contains one
row for every interpretation of prop(A), where prop(A) is the set of propositional
variables that occours in A. Therefore it contains 2|prop(A)| rows (where |X| denote
thor e cardinality of a set X, i.e., the number of elements that belongs to X). A
raw of a truth table corresponds to an interpretation I i.e., an assignment of the
propositional variables of A. The first n elements of the raws are the assignments
of the propositional variables, while the last element is the value of I(A).
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Example 1.8. the truth table of the formula p→ (q ∨ ¬r) is the following2

p q r p → ( q ∨ ¬ r )
True True True True True True True False True
True True False True True True True True False
True False True True False False False False True
True False False True True False True True False
False True True False True True True False True
False True False False True True True True False
False False True False True False False False True
False False False False True False True True False

The truth table contains the columns corresponding to the propositinal variables of
the formula p → (q ∨ ¬r), i.e., {p, q, r} and one column for every subformula of
p→ (q ∨ ¬r), which are p, q, r, ¬r, q ∨ ¬r, and p→ (q ∨ ¬r. The truth values of
the subformulas are computed starting from the simplest one to the most complex
until you compute the truth value of the entire formula. (marked in red)

With the truth table for A is is possible to check if A valid, satisfiable, or
unsatisfiable. If all the values in the columns of A are True, then A is valied, if
there is at least one true then A is satisfiable, and all the values are False, then A is
unsatisfiable. Truth tables are computationally very expensive since they enumerate
the interpretations of a formula, which are esponentially large w.r.t., the size of the
formula. Therefore they are only theoretical and pedagocical objects, in practice,
(in real application where the number of propositional variables are large) you will
never explicitly compute a truth table.

It is possible to build a truth table for more than one formula, by simply adding
on the right one column for each formula. Sometimes it is also convenient to add
columns corresponding to the subformulas of a complex formula. For instance if we
have to compute the truth table of the formula

(F ∨G) ∧ ¬(F ∧G)

we build a truth table for all its subformulas, as follows:

F G F ∨G F ∧G ¬(F ∧G) (F ∨G) ∧ ¬(F ∧G)

True True True True False False
True False True False True True
False True True False True True
False False False False True False

Exercise 1:

Use the truth tables method to determine whether

(p→ q) ∨ (p→ ¬q)

is valid.

Solution

2To generate the truth table automatically I have used the web application availabe at https:
//mrieppel.net/prog/truthtable.html

https://mrieppel.net/prog/truthtable.html
https://mrieppel.net/prog/truthtable.html
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p q p→ q ¬q p→ ¬q (p→ q) ∨ (p→ ¬q)
True True True False False True
True False False True True True
False True True False True True
False False True True True True

The formula is valid since it is satisfied by every interpretation. �

7. Propositional Theories

In the commonsense a theory is a system that allows to describe must be true in
a certain domain of interests. An example of theory, which we have studied in high
school, is euclidean geometry. A more sophisticate theory is the quantum mechan-
ics. etc. Theories have been developed by humans in order to describe precisely a
phenomena, and to allow to perform correct inference in order to deduce the truth
of “unknown” propositions starting from a handful of principles (axioms) that are
accepted to be necessarily true. In a theory there are propositions that are known
to be true, i.e., somebody manage to show that truth by providing a deduction, but
there are also propositions that are unknown to be true. For instance in numbner
theory that are many so called “open problems” 3 In artificial intellighence, one
can use a logical theory to represent the knowledge of an agent about a particular
domain.by means of a logical theory, and use automatic deduction in order to in-
fer what is true and what is false in such a domain. This was one of the original
proposal of one of the founders of AI (John Mc Carthy McCarthy 1959.

A logical theory is nothing more than a set of sentences that expressews the
propositions that must be true in all the configurations of the domain of interest
that we believe to be possible.

Definition 1.12 (Propositional theory). A theory is a set of propositional
formulas on a set of propositional variables P closed under the logical consequence
relation. I.e. A set of formulas T is a theory T |= A implies that A ∈ T .

An alternative and equivalent definition of theory is the following.

Definition 1.13 (Propositional theory). A theory is a set of propositional
formulas on a set of propositional variables P that are true in a set of interpretations
of P.

Example 1.9. Let P be the set of propositional variables. The set T of valid for-
mulas on the propositional variables P, i.e., T = {A ∈ wffs(P) | A is valid}. This
is equivalent to say T is the set of fromulas that are true in all the interpretations
of P. For instance if p, q, r are propositional variables of P, The formulas p ∨ ¬p,
q ∨ ¬q, p ∧ q → p, r → r belongs to T . While the formulas p→ q does not. Notice
that T is closed under logical consequence. Indeed suppose that A1, . . . , An |= A,
and A1, . . . , An ∈ T . Then we have that each Ai is valid, and therefore it is true
in every models, The fact that A1, . . . , An |= A entails that A is also treue in every
interpretation, and therefore A is valied, hwnce it belongs to T .

3An example of open problem in number theory is connected to the Erdös–Moser equation:

1k + 2k + · · ·+mk = (m+ 1)k,

where m and k are positive integers. The only known solution is 11 + 21 = 31, and Paul Erd ös
conjectured that no further solutions exist.
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Example 1.10. is the set of formulas which are true in the the following three
interpretations of P, {I1, I2, I3}, where I1 = {p, q}, I2 = {q, r} and I2 = {p, r}.
Notice that this theory contains all the valid formulas since they are true in all the
interpretations, and therefore also in I1, I2 and I3. However T contains formulas
which are not valid as for instance p ∨ q, ¬p → q ∧ r. Notice that T can be
defined as the set of formulas that are logical consequences of the formula A =
(p∧ q)∨ (p∧ r)∨ (q ∧ r). Indeed if B is a logical consequence of A, it is true in all
the models that satisfies A. Since I1, I2 and I3 satisfies B, then B ∈ T . We way
that A is an axiomatization of T , because from the axiom A all the formulas of T
follows logically.

Example 1.11. Let T be the set of formulas that are true in a single interpre-
tation I. T is a theory since it is closed under logical consequence. Indeed if Ai ∈ T
we have that I |= Ai we have that I |= Ai, and if A1, . . . , An |= A, we have that
I |= A and therefore A ∈ T . This theory is complete in the sense that for every
formula A, either A ∈ T or ¬A ∈ T .

The three examples of theories provided above, range from the weakest theory
to the strongest one.

A propositional theory contains an infinite set of formulas. Indeed every theory
contains all the propositional tautoloties, which are infinite. However thee infinite
set of formulas could be defined as the logical consequences of a smaller set of
formulas (possibily but not necessarily finite) such that all the formulas of the
theory logically follows. These set of formulas are called axioms of a theory, They
are the basic principles of the theory from which everything else that is true in the
theory follows logically. So the set of axioms constitute a base for the theory and
characterizes it.

Definition 1.14. A set S of formulas is a set of axioms (or equivalently an
axiomatization) of a theory T if T = {A ∈ wffs(P) | S |= A}.

An important property for a set of axioms S of a theory T is that they are
minimal, in the sense that no formulas in S is a logical consequences of other
formulas in S. This property can be formulated also as follows: there is no S′ ⊂ S
that is an axiomatization of T .

Example 1.12. The axiomatization of the theory of Example 1.9 is the empty
set. An axiomatization of the theory of Example 1.11 is the set {p | I |= p} ∪ {¬p |
I 6|= p}

8. The Compactness Theorem

In this section we prove a fundamental result about propositional logic called
the Compactness Theorem. This will play an important role in the second half of the
course when we study predicate logic. This is due to our use of Herbrand’s Theorem
to reduce reasoning about formulas of predicate logic to reasoning about infinite
sets of formulas of propositional logic. Before stating and proving the Compactness
Theorem we need to introduce one new piece of terminology.

Recall that a set of formulas Γ is satisfiable if there is an assignment that
satisfies every formula in Γ. For example, the set of formulas

Γ = {p1 ∨ p2,¬p2 ∨ ¬p3, p3 ∨ p4,¬p4 ∨ p5, . . . }
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on the infinite set of propositional variables P = {p1, p2, p2, . . . } is satisfied by the
assignment I defined as

I(pi) =

{
True if i is odd

False if i is even

Definition 1.15. A set of formula is finitely satisfiable if all its finite subsets
are satisfiable.

Theorem 1.3 (Compactness Theorem). A set of formulas Γ is satisfiable if
and only if it is finitely satisfiable.

Notice that the formulation above of the compactness theorem is is different
fron the one introduced by Theorem 1.1. Nevertheless, if we proove Theorem 1.3,
we can easily prove the original compactness theorem by combining the refutation
principle, monotonicity and the the new formulaiton of the compactness theorem.

• Γ |= A if and only if Γ∪{¬A} is not satisfiable (by the refutation principle)
• Γ ∪ {¬A} is not satisfiable if and only if there is a finite subset Γ0 of

Γ ∪ {¬A} which is not satisfiable (new formulation of the compactness
theorem).

• This implies that Γ0∪{¬A} is not satisfiable, by monotonicity, and there-
fore by refutation principle that Γ0 |= A.

To get an idea of what says the Compactness theorem consider the following
intuitive example

Example 1.13. Suppose that you have a logical language in which you can
express by means of formula K, Pi and S the following proposition:

K there is a cake of finite size

Pi The i-th person has a piece of cake for i = 1, 2, 3, . . . s

S The pieces of cake have all the same non zero dimension

The formula K ∧S → Pi formalizes the fact that if there is a cake and it is equally
divided then the ith person gets it’s piece of cake. Notice consider any finite subset
of the set Γ = {K ∧ S → P1,K ∧ S → P2,K ∧ S → P3, . . . }. i.e., for every finite
set of natural numbers I ⊂ N let

ΓI = {K ∧ S → Pi | i ∈ I}
Notice that the whole Γ is not satisfiable, since you cannot cut a finite cake in an
infinite set of slices of finite and constant size. However each ΓI for every finite
I ⊂ N is satisfiable. Since the compactness theorems holds in propositional logic,
we can conclude that such a scenario cannot be formalized in propositional logic.

To prove the compactness theorems we first need to prove the following lemma:

Lemma 1.1. If Γ is finitely satisfiable then either Γ∪{φ} or Γ∪{¬φ} is finitely
satisfiable, for every formula φ.

Proof. • Suppose the conclusion of the lemma does not hold: Both
Γ ∪ {φ} and Γ ∪ {¬φ} are not finitely satisfiable.

• Hence, there are two finite subsets Γ1 and Γ2 of Γ such that both Γ1∪{φ}
and Γ2 ∪ {¬φ} are not satisfiable.

• Let us show that Γ1 ∪ Γ2 does not have models, i.e., it is unsatisfiable.
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• If I is a model of Γ1, than it cannot be a model of φ, therefore it is a
model of ¬φ. Otherwise Γ1∪{φ} would be satisfiable. Therefore, I |= ¬φ.

• Since Γ2 ∪ {¬φ} is not satisfiable, then I cannot be a model of Γ2.
• This implies that every model of Γ1 is not a model of Γ2 and therefore,

Γ1 ∪ Γ2 is not satisfiable.
• Since Γ1 ∪ Γ2 is finite and it is a subset of Γ, then Γ cannot be finitely

satisfiable. This contraddicts the hypothesis of the lemma, and therefore
the lemma is proved.

�

Let us now prove the compactness theorem:

Of theorem 1.3. If Γ is satisfiable, then every subset of Γ is satisfiable, and
therefore Γ is finitely satisfiable. The prove of the opposite direction is more com-
plex. We have to show that if Γ is finitely satisfiable then the whole Γ is satisfiable,
i.e., there is an interpretation I such that I |= Γ.

• let enumerate all the formulas φ1, φ2, φ3, . . . of the language of Γ.
• let us define the sequence Σ0,Σ1,Σ2, . . . as follows

Σ0 = Γ Σn =

{
Σ ∪ {φn} if Σn−1 ∪ {φn} is fin. sat.

Σ ∪ {¬φn} if Σn−1 ∪ {¬φn} is fin. sat.

• By induction, using previous lemma, Σi is finitely satisfiable;
• Let

Σ =
⋃
n≥0

Σi

The construction of Σ is shown in the following picture:

Γ

Σ0
Σ1

Σ3

Σ3

Σ

φ1 ¬φ2 ¬φ3 φ4 . . .

• By construction Σ is finitely satisfiable. Furthermore
(1) For every formula φ either φ ∈ Σ or ¬φ ∈ Σ but not both.
(2) For every p ∈ P, p ∈ Σ or ¬p ∈ Σ but not both.

(3) We define the interpretation I(p) =

{
True if p ∈ Σ

False if ¬p ∈ Σ

(4) Let us show that I |= φ for all φ ∈ Σ.
(5) Consider the finite set Σi that contains φ and either p or ¬p for all

propositional variable p that occours in φ. Since φ contains only a
finite set of propositional variables, such an finite Σi exists.
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(6) Since Σi is finite, and Σ is finitely satisfiable, there is an interpretation
I ′ that satisfies Σi, and therefore I ′ |= φ

(7) Furthermore I ′ |= p of p ∈ Σi or I ′ |= ¬p if ¬p in Σi.
(8) However by construction of I, we have that I ′ and I agree on all the

interpretations of all the propositional variables of φ and therefore
I |= φ.

(9) Hence, I |= Σ.
(10) Since Γ ⊂ Σ, then I |= Γ.

�

9. Exercises

9.1. Formulas, subformulas, and other syntactic objects.

Exercise 2:

Decide which of the following phrases expresses a proposition

(1) The dog of my syster
(2) Is mario Happy?
(3) A lion in the forest
(4) A tiger is walking in the forest
(5) the sooner the better

(6) No more food please!
(7) Have a nice week end!
(8) The hause in which I was born
(9) Closed door

(10) The door is closed

Exercise 3:

Knowing that the precedence relations batween the propositional connectives
is

“ ¬” ≺ “ ∧” ≺ “ ∨” ≺ “ →” ≺ “ ↔”

add the parenthesis to specify the correct parsing of the following formulas:

(1) (¬p ∨ q) ∧ (q → (¬r ∧ ¬p)) ∧ (p ∨ r)
(2) ((¬p ∨ q)→ q ∧ (q → r) ∧ ¬r)→ p
(3) ¬p ∧ (¬q ∨ r) ∧ (¬p→ q ∧ ¬r)

Solution
(¬p ∨ q) ∧ (q → (¬r ∧ ¬p)) ∧ (p ∨ r)

((¬p) ∨ q) ∧ (q → ((¬r) ∧ (¬p))) ∧ (p ∨ r)

((¬p ∨ q)→ q ∧ (q → r) ∧ ¬r)→ p
(((¬p) ∨ q)→ (q ∧ (q → r) ∧ (¬r)))→ p

¬p ∧ (¬q ∨ r) ∧ (¬p→ q ∧ ¬r)
(¬p) ∧ ((¬q) ∨ r) ∧ ((¬p)→ (q ∧ (¬r)))

�

Exercise 4:

When we have two connectives which are the same, then we give precedence
to the right one. I.e., a ◦ b ◦ c reads as a ◦ (b ◦ c) for every binary connective
◦ ∈ {→,∧,∨,↔}. Put the right parentesist on the following formulas

(1) a→ b ∧ ¬c→ d



9. EXERCISES 25

(2) a→ b→ c→ d
(3) a↔ b↔ c ∧ d↔ e

Exercise 5:

Draw the formula tree of the following formula:

(p ∧ q)→ ¬q ∧ r ∨ q → (p ∧ q)

Rimember that the expression a→ b→ c is parsed as a→ (b→ c), and a↔ b↔ c
is parsed as a→ (b→ c). Count all the sub-formulas of φ.

Solution The formula φ is parsed as p ∧ q → (((¬q ∧ r) ∨ q) → q ∧ p) where
parentesis are made explicit. The tree of φ is

→

∧

p q

→

∨

∧

¬

q

r

q

∧

p q

In general a formula has as many subformulas as many distinct subtrees of its
formula tree, including the entire tree and the leavers. Therefore φ has 9 subformula
corresponding to the following subtrees:
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→

∧

p q

→

∨

∧

¬

q

r

q

∧

p q

∧

p q p p

→

∨

∧

¬

q

r

q

∧

p q

∨

∧

¬

q

r

q

∧

¬

q

r ¬

q r

� Exercise 6:

Draw the formula tree for the following formulas and count the number of
subformulas:

(1) a→ b→ c↔ a ∧ b ∨ ¬a ∧ ¬b ∨ ¬a
(2) ¬(a↔ b↔ c)
(3) ¬(a ∧ ¬(b ∧ ¬c))).
(4) a ∧ b ∨ b ∧ a

Exercise 7:

For each of the following formula draw the formula tree and the form with
minimal number of parenthesis:

(1) (p ∧ q)→ (¬(q → r ∧ ¬r))
(2) ((p↔ (¬¬q)) ∨ r ∧ q
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Exercise 8:

Produce a formula that contains only 2 propositional variables and n = 1, 2, 3, 4
binary connective ∧, which has the maximum number of subformulas. Can you
generalize this process to any n?

Solution If n = 1 then the formula p ∧ q has 3 subformulas, and this is the only
formula that satisfies the requirements of containing two propositinal variables and
one binary connective.

With n = 2, then the formula must be of the form ? ∧ (? ∧ ?) or (? ∧ ?) ∧ ?
where ? can be replaced either with p or q. This implies that the atomic subformulas
must be at most 2. Since the fromula contains 2 coonectives and every coonective
corresponds to a subformula, then we have that the formulas has 4 subformulas.

if n = 3 the possible shapes is ? ∧ (? ∧ (? ∧ ?)), where ? can be replaced by p
or q. Furthermore notice that all the subformulas that has ∧ as main connective
are different. From this we can conclude that the we can produce a formula with
3 connectives that has 3 subformulas + 2 atomic formulas which in total is equal
to 5. Notice that we can construct formulas that contains 3 occurrences of ∧ that
has less subformulas. For instance (p ∧ q) ∧ (p ∧ q), contains only 4 subformulas,
since the subformula p ∧ q occurs twice and therefore it contributes only for 1 to
the total number of subformulas.

In the general case we have that the formula (? ∧ ?) ∧ ? ∧ ?

∧

p ∧

p ∧

p . . .

. . . ∧

p q

contains n+ 2 subformulas. �

Exercise 9:

Suppose that a formula φ contains n occurrences of ∧, m occurrences of ∨ and
p occurrences of ¬.

(1) What is the maximum number s of subformulas of φ?
(2) Explain how you get this result.
(3) Provide an example of a formula with s subformulas;
(4) Provide an example of a formula with less then s subformulas. maximum

number.

Solution

(1) For every occurrence of ∨ and ∧ the formula has two subformulas (they
can be different provided that we have anought propositional variables),
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for every occurrence of ¬ there is one subformula. In total therefore we
have s = 2n+m + p+ 1

(2) If you imagine the formula tree, and every node labelled with n there two
subtrees, and for every nodel labelled with ¬ there is only one subtree. In
both case we have to consider also the tree as a formula is a subformula
of itself. If we make sure that all the subtrees are different, by using
diffferent set of propositinal variables for each subtree, we can guarantee
that all the subtrees are different.

(3) For instance p∧ (q ∨negr) is a formula that contains 1 ∧, 1 occurrence of
∨ and 1 occurrence of ¬ and has 21+1 + 1 + 1 = 6 subformulas, which are

p ∧ (q ∨ ¬r) p q ∨ ¬r
q ¬r r

The formula tree is the following:

∧

p ∨

q ¬

r

which has exactly 6 nodes.
(4) To obtain less subformulas than s we have to make sure that two subfor-

mulas are the same. This is the case for instance in the simple formula

p ∧ p
that contains 1 conjunction connective. Therefore s = 21 + 1 = 3, but the
number of subformulas are 2, i.e., p∧p and p. This is due to the fact that
p is a subformula of both branches of ∧.

�

Exercise 10:

If a formula φ contains n connectives, what is the minimum and the maximum
number of subformulas?

Solution First of all notice that the connective ¬ applies only to one subformula,
while all the other connectives are binary, i.e., they apply to two subformulas.
To minimize the number of subformulas therefore we can suppose that all the n
connectives are ¬, i.e., the formula is of the form:

×n︷ ︸︸ ︷
¬(¬(¬(. . . (¬ p) . . . ))

In this case the formula has n+ 1 subformulas. Instead to maximize the number of
subformulas one should use binary connectives since for each binary connective we
can potentially have 2 subformulas. The maximum number of subformulas using
n connectives can be obtained by using only binary connectives and making sure
that the two subformulas of all the binary connectives are distinct. This can be
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obtained by introducing enough propositional variables to make all subformulas for
every connective different from the other. This implies that the occurrence of every
connective corresponds to two subformulas. Therefore the maximum number of
subformulas are 2n+ 1

Suppose for instance that k = 2, then the following are two examples of formulas
with binary connectives (∧ in this case):

∧

∧

p1 p2

∧

p3 p4

∧

p1 ∧

p2 ∧

p3 p4

The number of subformuals are 2 ·3+1 = 7. More in general the maximum number
of subformulas are 2n− 1. �

Exercise 11:

Prove by structural induction that a propositional formula that contains n
occurrences of ¬ and m occurrences of binary connectives has at most n+ 2m+ 1
subformulas. Solution Let φ be a formula that contains n occurrences of ¬

and m occurrences of binary propositional connectives. We prove the theorem by
induction on n+m

Base case: Suppose that n + m = 0, then φ does not contain any propos-
itoinal connective, and therefore it is an atomic formula p, which has
exactly 1 subformula, i.e., φ itself. Therefore the number of subformulas
of φ are 1 = n+ 2m+ 1.

Step case: Suppose that the property holds for all the formulas that con-
tains m′ occurrences of ¬ and n′ occurrences of binary connectives with
m′ ≤ m and n′ ≤ n and m′ + n′ < m + n, and let us prove that it holds
also for m+ n. We consider two cases.
(1) φ is of the form ¬φ1. Then φ1 contains n−1 occurrences of ¬ and m

occurrences of binary connectives. By induction hypothesis we can
infer that φ1 has at most n−1+2m+1 = n+2m subformulas. Since
the subformulas of ¬φ1 are the subformulas of φ1 plus the formula
¬φ1 itself, then the maximum number of subformulas of ¬φ1 are
n+ 2m+ 1.

(2) φ is of the form φ1 ◦ψ2 for some binary connective ◦ ∈ {∧,∨,→,↔}.
Then we have that each φi with i = 1, 2 contains ni occurrences of
¬ and mi occurrences of binary connectives. with mi ≤ m − 1, and
ni ≤ n. We therefore have that ni + mi < n + m. By induction
on φi we have that the maximum number of subformulas of φi are
ni + 2mi + 1. Since the subformulas of φ1 ◦ φ2 are the subformulas
of φi for i = 1, 2 plus φ1 ◦ φ1 itself, we have that φ1 ◦ φ2 has at most



30 1. PROPOSITIONAL LOGIC

n1 + 2m1 + 1 + n2 + 2m2 + 1 + 1 = (n1 + n2) + 2(m1 +m2 + 1) + 1
subformulas. Notice that n1 + n2 = n since every occurrence of ¬ in
φ is either an occurrence in φ1 or in φ2 but not in both. Furthermore
m1 + m2 = m − 1 because an occurrence of a binary connective is
either in φ1 or in φ2 or it is ◦, the main connective of φ1 ◦ φ2. This
allows us to infer that φ1 ◦ φ2 has at most n+ 2m+ 1 subformulas.

�

9.2. Semantics of propositional logic. Exercise 12:

Define when a formula is valid, satisfiable, unsatisfiable, and not valid, and the
relations between these concepts.

Exercise 13:

Draw an arrow between the statement of the left colong and the one of the
right column every time the former implies the latter. Then repeat the exercize
swapping the columns.

(a) A is satisfiable
(b) B is satisfiable
(c) A is satisfiable and B is satisfiable
(d) A is satisfiable or B is satisfiable
(e) A is valid
(f) B is valid
(g) A is valid and B is valid
(h) A is valid or B is valid
(i) A is unsatisfiable
(j) B is unsatisfiable
(k) A is unsatisfiable and B is unsatisfiable
(l) A is unsatisfiable or B is unsatisfiable

(m) A is not valid
(n) B is not valid
(o) A is not valid and B is not valid
(p) A is not valid or B is bot valid

(1) ¬A is satisfiable
(2) ¬B is satisfiable
(3) ¬A is valid
(4) ¬B is valid
(5) ¬A is unsatisfiable
(6) ¬B is unsatisfiable
(7) ¬A is not valid
(8) ¬B is bot valid
(9) A ∧B is satisfiable

(10) A ∧B is valid
(11) A ∧B is unsatisfiable
(12) A ∧B is not valid
(13) A ∨B is satisfiable
(14) A ∨B is valid
(15) A ∨B is unsatisfiable
(16) A ∨B is not valid

Exercise 14:

Explain the difference between the following statements

(1) |= A ∨B (A ∨B is valid)
(2) |= A or |= B (A is valid or B is valid)

which one is the strongest?

Solution Let us expland 1. and 2. according to the definition of valid formula:

(1) |= A ∨B means that for every interpretation I, I |= A ∨B, which means
that either I |= A or I |= B

(2) |= A or |= B instead means that either for every interpretation I, I |= A
or for every interpretation I, I |= B.

To highlight the difference between 1. and 2. you can write their definition by
using a more formal notation,

|= A ∨B ⇐⇒ ∀I, (I |= A or I |= B)(5)

|= A or |= B ⇐⇒ (∀I, I |= A) or (∀I, I |= B)(6)
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An example that shows the difference can be constructed by taking A equal to the
atomic formula p and B the negated atomic formula ¬p. You have that |= p ∨ ¬p,
but neither |= p nor |= ¬p Clearly 2. is a stronger statement than 1. �

Exercise 15:

Find three formula A, B, and C such that A ∧B ∧C is unsatisfiable and such
that the conjunction of any pair of them is satisfiable. I.e., A∧B, A∧C and B∧C
are satisfiable.

Exercise 16:

Suppose that A and B contains two disjoint set of propositional variables. Show
that A ∧B is satisfiable if and only if A is satisfiable and B is satisfiable.

Exercise 17:

Show that if A is satisfiable then A ∧ p or A ∧ ¬p is satisfiable.

Exercise 18:

Prove that if A and B contain a disjoint set of propositional variable then A∨B
is valid if and only if A is valid or B is valid.

Exercise 19:

Let φ be a propositional formula built only with the operators ∨, ∧ and ¬. An
occurrence of a propositional variable p in φ is positive if it is in the scope of an even
number of ¬ operators, and it is negative if it is not positive. Provide an explanation
(or better a proof) of the fact that if φ does not contains two occurrences of the
same propositional variable, which are one positive and one negative, then φ is
satisfiable.

Solution If you transform φ in NNF (negated normal form) then for every proposi-
tional variable p, either all its occurrences in NNF(φ) will not be negated (if all the
occurrences of p in φ are positive, then an even number negations cancel out) or all
of them will have a ¬ in front of them (i.e, when they are negative occurrences, an
odd number of negations reduce to a single negation). The assignment that maps
all positive p into true and the negative p into false, satisfies NNF(φ) and therefore
it satisfies also φ. �

9.3. Truth tables. Exercise 20:

For each of the following formulas, construct a truth table and state whether
it is valid, satisfiable, or unsatisfiable.

(1) p ∧ ¬p
(2) p ∨ ¬p
(3) (p ∨ ¬q)→ q
(4) (p ∨ q)→ (p ∧ q)
(5) (p→ q)↔ (¬q → ¬p)
(6) (p→ q)↔ (q → p)
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Exercise 21:

Give a truth-table definition of the ternary boolean operation “if p then q else
r”, and write a propositional formula using only the connectives → and ¬ that is
equivalent to such an operator.

Solution One possible intuitive reading of “if p then q else r” is that when p is true
then q should be also true and we don’t know anything about r, and when p is false
then q should be true, and we don’t know anything about p. This is represented
by the following table:

p q r if p then q else r

T T T T
T T F T
T F T F
T F F F
F T T T
F T F F
F F T T
F F F F

Such a ternary connective can be formalized by the propositional formula

(p→ q) ∧ (¬p→ r)

�

Exercise 22:

Given the truth table for an arbitrary n-ary boolean function

f : {0, 1}n → {0, 1}
describe how one can build a formula φ using only n propositional variables p1, . . . , pn
such that the following holds:

f(x1, . . . , xn) = 1 if and only if I |= φ

where I is an assignment such that I(pi) = xi

Solution For every x = (x1, . . . , xn) ∈ {0, 1}n let us define the formula φx as
follows:

φx =

n∧
i=1
xi=1

pi ∧
n∧

i=1
xi=0

¬pi

Notice that the formula φx is satisfied only by a single assignment, i.e., the assign-
ment in which I(pi) = xi for all the propositional variables pi. Let us define φ as
the disjunction of all the φx such that f(x) = 1.

φ =
∨

x∈{0,1}n
f(x)=1

φx

For every interpretation I, if I |= φ then for some x for which f(x) = 1, I |= φx.
By the construciton of φx I is the assignment that assigns xi to each pi. �

Exercise 23:

Are the following formulae satisfiable, valid, unsatisfiable, or not valid?
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(1) (¬p ∨ q) ∧ (q → (¬r ∧ ¬p)) ∧ (p ∨ r)
(2) ((¬p ∨ q)→ q ∧ (q → r) ∧ ¬r)→ p
(3) ¬p ∧ (¬q ∨ r) ∧ (¬p→ q ∧ ¬r)

Solution Let us build the truth tables of the three formulas:

p q r (((¬ (p ∨ q )) ∧ ( q → ((¬ r ) ∧ (¬ p )))) ∧ (p ∨ r ))
T T T F T T T F T F F T F F T F T T T
T T F F T T T F T F T F F F T F T T F
T F T F T T F F F T F T F F T F T T T
T F F F T T F F F T T F F F T F T T F
F T T F F T T F T F F T F T F F F T T
F T F F F T T F T T T F T T F F F F F
F F T T F F F T F T F T F T F T F T T
F F F T F F F T F T T F T T F F F F F

p q r ((((¬ p ) ∨ q ) → (( q ∧ ( q → r )) ∧ (¬ r ))) → p )
T T T F T T T F T T T T T F F T T T
T T F F T T T F T F T F F F T F T T
T F T F T F F T F F F T T F F T T T
T F F F T F F T F F F T F F T F T T
F T T T F T T F T T T T T F F T T F
F T F T F T T F T F T F F F T F T F
F F T T F T F F F F F T T F F T T F
F F F T F T F F F F F T F F T F T F

p q r (((¬ p ) ∧ ((¬ q ) ∨ r )) ∧ ((¬ p ) → ( q ∨ (¬ r ))))
T T T F T F F T T T F F T T T T F T
T T F F T F F T F F F F T T T T T F
T F T F T F T F T T F F T T F F F T
T F F F T F T F T F F F T T F T T F
F T T T F T F T T T T T F T T T F T
F T F T F F F T F F F T F T T T T F
F F T T F T T F T T F T F F F F F T
F F F T F T T F T F T T F T F T T F

(1) The first formula is not valid since there are truth assignments that evalu-
ates it to false. It is satisfiable since for the truth assignment I(p) = False,
I(q) = False and I(r) = True (one but last line of the first truth table)
the formula is evaluated to True. Consequenclty the formula is not un-
satisfiable.

(2) The second formula is valid since it is true for all the assignments. It is
also satisfiable since there are assignments that makes it true.

(3) The third formula, like the first one is not valid but it is satisfiable.

�

Exercise 24:

Suppose that φ contains only the↔ operator. Prove that if every propositional
variable p occours an evenq number of times, then φ is valid. Solution The proof

is based on the fact that ↔ operator is associative and commutative. let us prove
these two properties
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Associativity of ↔: We build the truth tables of A↔ (B ↔ C) and (A↔
B)↔ C and see that the two formulas takes identical truth values.

A B C A ↔ ( B ↔ C ) ( A ↔ B ) ↔ C
T T T T T T T T T T T T T
T T F T F T F F T T T F F
T F T T F F F T T F F F T
T F F T T F T F T F F T F
F T T F F T T T F F T F T
F T F F T T F F F F T T F
F F T F T F F T F T F T T
F F F F F F T F F T F F F

Commutativity of ↔: We use the same procedure to prove that A ↔ B
is equivalent to B ↔ A.

A B A ↔ B B ↔ A
T T T T T T T T
T F T F F F F T
F T F F T T F F
F F F T F F T F

Associativity and commutativity imply that every formula φ in which all the propo-
sitional variables appears an even number of ties can be rearranged in the following
form

(p1 ↔ p1)↔ (p2 ↔ p2)↔ (p3 ↔ p3), . . .

Which is equivalent to > ↔ > ↔ > . . . which is always true. �

9.4. Logical consequence. Exercise 25:

Prove the following logical consequences:

(1) p |= p ∨ q
(2) q ∨ p |= p ∨ q
(3) p ∨ q, p→ r, q → r |= r
(4) p→ q, p |= q
(5) p,¬p |= q

Solution

(1) Suppose that I |= p, then by definition I |= p ∨ q.
(2) Suppose that I |= q ∨ p, then either I |= q or I |= p. In both cases we

have that I |= p ∨ q.
(3) Suppose that I |= p ∨ q and I |= p → r and I |= q → r. Then either
I |= p or I |= q. In the first case, since I |= p → r, then I |= r, In the
second case, since I |= q → r, then I |= r.

(4) Suppose that I |= ¬p, then not I |= p, which implies that there is no I
such that I |= p and I |= ¬p. This implies that all the interpretations
that satisfy p and ¬p (actually none) satisfy also q.

(5) . . .
(6) . . .

�

Exercise 26:
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Show that if Γ |= A and Γ |= ¬A, then Γ is not satisfiable.

Exercise 27:

Prove that q → p is not a logical consequence of p→ q.

Exercise 28:

Prove that ¬pimp¬q is not a logical consequence of p→ q.

Exercise 29:

Prove that ¬q → ¬p is a logical consequence of p→ q.

Exercise 30:

Prove the following logical consequences

(1) p |= p ∨ q
(2) q ∨ p |= p ∨ q
(3) p ∨ q, p→ r, q → r |= r
(4) p→ q, p |= q
(5) p,¬p |= q

Solution

(1) Suppose that I |= p, then by definition I |= p ∨ q.
(2) Suppose that I |= q ∨ p, then either I |= q or I |= p. In both cases we

have that I |= p ∨ q.
(3) Suppose that I |= p ∨ q and I |= p → r and I |= q → r. Then either
I |= p or I |= q. In the first case, since I |= p → r, then I |= r, In the
second case, since I |= q → r, then I |= r.

(4) Suppose that I |= ¬p, then not I |= p, which implies that there is no I
such that I |= p and I |= ¬p. This implies that all the interpretations
that satisfy p and ¬p (actually none) satisfy also q.

�

9.5. Logical equivalence. Exercise 31:

Show that ∧ is associative, i.e., a ∧ (b ∧ c) is equivalent to a ∧ (b ∧ c), and
therefore one can write a ∧ b ∧ c ∧ d ∧ . . . without parentesis.

Solution Let us generate the truth table for both ]

a b c a ∧ ( b ∧ c ) ( a ∧ b ) ∧ c
T T T T T T T T T T T T T
T T F T F T F F T T T F F
T F T T F F F T T F F F T
T F F T F F F F T F F F F
F T T F F T T T F F T F T
F T F F F T F F F F T F F
F F T F F F F T F F F F T
F F F F F F F F F F F F F
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The truth values of the fomrulas are shown in the two columns blue and red. Notice
that the two columns are identical. Therefore the two formulas are equivalent. �

Exercise 32:

Show that that → is a non associative operator, i.e., thjat a → (b → c) is not
equivalent to (a→ b)→ c.

Solution Let us build the truth table for the two formulas.
a b c a → ( b → c ) ( a → b ) → c
T T T T T T T T T T T T T
T T F T F T F F T T T F F
T F T T T F T T T F F T T
T F F T T F T F T F F T F
F T T F T T T T F T T T T
F T F F T T F F F T T F F
F F T F T F T T F T F T T
F F F F T F T F F T F F F

Notice that there are two assignments (highlighted in red), to a, b, c for which the
truth value of the two formulas are not the same. The two formulas therefore are
not equivalent. This implies that the expression a → b → c is ambigous, and one
should add the parenthesis in order to specify the correct parsing. In absence of
parentesis the parsing a→ (b→ c) is usually taken as correct. �

Exercise 33:

Repeat the previous exercise for the connective ∨.

Exercise 34:

Show that the ↔ is commutative and associative.

Exercise 35:

Rewrite the following formulas by using only ∧ and ¬.

(1) p ∨ q
(2) p→ q
(3) p↔ q
(4) p→ (q → r)
(5) p↔ (q ∨ r)

Exercise 36:

Rewrite the following formulas by using only ∨ and ¬.

(1) p ∧ q
(2) p→ q
(3) p↔ q
(4) p→ (q → r)
(5) p↔ (q ∧ r)
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