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Propositional logic - Intuition

Propositional logic is the logic of propositions

a proposition can be true or false in the state of the world.

the same proposition can be expressed in different ways. E.g.

“B. Obama is drinking a bier”
“ The U.S.A. president is drinking a bier”, and
“B. Obama si sta facendo una birra”

express the same proposition.

The language of propositional logic allows us to express
propositions.
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Propositions

Example (Propositions)

1 Today is Monday.

2 The derivative of sin x is cos x.

3 Every even number has at least two factors.

Example (Not Propositions)

4 The dog of my girlfriend

5 When is the pretest?

6 Do your homework!
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Propositional logic language

Definition (Propositional alphabet)

Logical symbols ¬, ∧, ∨, →, and ≡
Non logical symbols A set P of symbols called propositional

variables

Separator symbols “(” and “)”

’

Definition (Well formed formulas (or simply formulas))

every P ∈ P is an atomic formula

every atomic formula is a formula

if A and B are formulas then ¬A, A ∧ B, A ∨ B A→ B, e
A ≡ B are formulas
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Formulas cont’d

Example ((non) formulas)

Formulas Non formulas
P → Q PQ
P → (Q → R) (P → ∧((Q → R)
P ∧ Q → R P ∧ Q → ¬R¬
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Reading formulas

Problem

How do we read the formula P ∧ Q → R?
The formula P ∧ Q → R can be read in two ways:

(P ∧ Q)→ R P ∧ (Q → R)

Symbol priority

¬ has higher priority, then ∧,
∨, → and ≡. Parenthesis can
be used around formulas to
stress or change the priority.

Symbol Priority
¬ 1
∧ 2
∨ 3
→ 4
≡ 5

Furthermore binary connectives are right associative, e.g.:

a→ b → c reads as a→ (b → c)

a ∧ b ∧ c reads as a ∧ (b ∧ c)
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Formulas as trees

Tree form of a formula

A formula can be seen as a tree. The leaves of the tree associated
to a formula are propositional variables, while intermediate
(non-leaf) nodes are associated to connectives.

Example (Tree of the formula (A ∧ ¬B) ≡ (B → C ))

≡

∧

A ¬

B

→

B C
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Subformulas

intuition

The subformulas of a formulas φ are the formulas associated to the
subtrees of the tree associated to the formula φ.

Example

≡

∧

A ¬

B

→

B C

A

B

C

¬B
A ∧ ¬B
B → C

(A ∧ ¬B) ≡ (B → C )
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Subformulas

Definition

(Proper) Subformula

A is a subformula of itself

A and B are subformulas of A ∧ B, A ∨ B A→ B, e A ≡ B

A is a subformula of ¬A
if A is a subformula of B and B is a subformula of C , then A
is a subformula of C .

A is a proper subformula of B if A is a subformula of B and A
is different from B.

Remark

The subformulas of a formula represented as a tree correspond to
all the different subtrees of the tree associated to the formula, one
for each node.
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Formalization in Propositional Logic

Exercise 1

Transform the following sentences in propositional logic formulas:

1 John will make supper only if Mary is working late.

2 Mary will make supper if John is working late.

3 John will not make supper unless he is very hungry.

4 John works late if and only if Mary does not.

5 Not both John and Mary will make supper.

Answer of exercise 1

1 JS → MW

2 JW → MS

3 ¬JH → ¬JS
4 JW ↔ ¬MW

5 ¬(JS ∧MS)
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Exercise 2

Which of the following sentences express a proposition?

1 The sum of the numbers 3 and 5 equals 8.

2 Jane reacted violently to Jack’s accusations.

3 Every even natural number is the sum of two prime numbers.

4 Could you please pass me the salt?

5 Ready, steady, go.

6 May fortune come your way.

Answer of exercise 2

1–3 are declarative

3–6 are not declarative, as they cannot be clearly spoken to be
true or false.
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Exercise 3

For each of the following compound propositions, construct the
parse tree. What is the main connective in each case?

1 (¬p) ∧ q

2 ¬(p ∧ q)

3 (q1 ∧ q2) ∧ q3

4 q1 ∧ (q2 ∧ q3)

5 ¬((p ∨ q) ∧ r)

6 ((¬p) ∧ (¬q)) ∨ (¬r)
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Exercise 4

Parse each of the following formulas, add the parenthesis in the
correct position according to the connectives’ priorities

1 p ∧ q ∧ ¬r
2 p ∨ q ∨ ¬r
3 q ∧ ¬p ∨ q

4 p ∧ q ∨ ¬r ∧ p

5 p → q ∧ r → s ∨ t

Answer of exercise 4

1 p ∧ (q ∧ (¬r))

2 p ∨ (q ∨ (¬r)

3 (q ∧ (¬p)) ∨ q

4 ((p ∧ q) ∨ ((¬r) ∧ p))

5 p → ((q ∧ r)→ (s ∨ (¬t)))‘,
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Propositional logic syntax

Exercise 5

Which of the following words are well formed?

1 (P ∧ Q) ∨ R

2 ∨(∧PQ)R

3 (P ∧ Q)

4 P&Q

5 ((¬P)) ∨ Q

6 (((P ∧ Q) ∨ R))

Answer of exercise 5

1 (P ∧ Q) ∨ R: is a well formed formula (wff).
2 ∨(∧PQ)R: Is not a wff since the ∨ operator needs two

arguments;
3 (P ∧ Q): is a wff;
4 P&Q: is not a wff, since & is not part of the alphabet;
5 ((¬P)) ∨ Q: it is a wff, though parantesis are redundant and

can be simplified in ¬P ∨ Q;
6 (((P ∧ Q) ∨ R)): it is a wff, but it can be simplified by

removing parentesis in P ∧ Q ∨ R.
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Interpretation of Propositional Logic

Definition (Interpretation)

A Propositional interpretation is a function I : P → {True,False}

Remark

If |P| is the cardinality of P, then there are 2|P| different
interpretations, i.e. all the different subsets of P. If |P| is finite
then there is a finite number of interpretations.

Remark

A propositional interpretation can be thought as a subset S of P,
and I is the characteristic function of S , i.e., A ∈ S iff
I(A) = True.
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Interpretation of Propositional Logic

Example

Functional form Set theoretic
p q r form

I1 True True True {p, q, r}
I2 True True False {p, q}
I3 True False True {p, r}
I4 True False False {p}
I5 False True True {q, r}
I6 False True False {q}
I7 False False True {r}
I8 False False False {}
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Satisfiability of a propositional formula

Definition (I satisfies a formula, I |= A)

A formula A is true in/satisfied by an interpretation I, in symbols
I |= A, according to the following inductive definition:

If P ∈ P, I |= P if I(P) = True.

I |= ¬A if not I |= A (also written I 6|= A)

I |= A ∧ B if, I |= A and I |= B

I |= A ∨ B if, I |= A or I |= B

I |= A→ B if, when I |= A then I |= B

I |= A ≡ B if, I |= A iff I |= B

Functional Notation

Sometimes it is useful to consider an interpretation I as a function
from formulas to truth values. In this case we use the notation
I(A) = true or I(A) = false, as an alternative to I |= A and
I 6|= A, respectively
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Satisfiability of a propositional formula

Proposition

For every pair of interpretations I and I ′, if I(p) = I ′(p) for all
the propositional variables p of a formula A, then I |= A iff I ′ |= A

In other words if I and I ′ differs only on the propositional
letters that do not appears in A, then the truth values of A
w.r.t., I and I ′ are the same.

This means that to check if I |= A it is enough to consider
the truth assignments to the propositional variables appearing
in A.
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Material implication

The semantic of the perator → is called material implication;

it does not assert causality, i.e, that the antecedent causes the
consequent;

the interpretation of → as material implication implies that

I |= a→ b if and only if I |= ¬a ∨ b

Counter intuitive

the moon is made of cheese→ the earth is flat

is always true, since the antecedent is false.
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The low of excluded middle

Notice that the formula p ∨ ¬p is valid, This is related to the
fact that we have only two truth values;

There are logics (e.g, constructive logics or intuitionistic logic)
which does not assume the law of excluded middle.

This results in a “3-valued” logic in which one allows for a
third possibility, namely,”other”. In this system proving that a
statement is “not true” is not the same as proving that it is
“false”, so that indirect proofs,

there is also the entire field of many valued logics that admits
a partially ordered set of truth values (T ,≺) where T can
contain more than two truth values.

e.g., in fuzzy logic there are infinitely many truth values in the
real interval [0, 1].
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Valid, Satisfiable, and Unsatisfiable formulas

Definition

A formula A is

Valid if for all interpretations I, I |= A

Satisfiable if there is an interpretations I s.t., I |= A

Unsatisfiable if tere is no interpretations I, I |= A

all formulas

satisfiable
valid

Luciano Serafini Knowledge Representation and Learning



Valid, Satisfiable, and Unsatisfiable formulas

Example

Satisfiable


Uatisfiable



A→ A
A ∨ ¬A
¬¬A ≡ A
¬(A ∧ ¬A)
A ∧ B → A
A→ A ∨ B

p ∨ q
p → q

¬(p ∨ q)→ r
A ∧ ¬A
¬(A→ A)
A ≡ ¬A
¬(A ≡ A)


Valid


Non Valid

Prove that the blue for-
mulas are valid, that the
magenta formulas are
satisfiable but not valid,
and that the red formu-
las are unsatisfiable.
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Models of a formula

Definitions (Models of φ)

For every formula φ the set Models(φ), the models of φ is the set
{I | I |= φ}, i.e., the set of truth assignments to the propositional
variables P of φ that satisfy φ;

if A is satisfiable models(A) 6= ∅;
if A is valid models(A) = 2prop(A), i.e., the set of all
interpretations of prop(A);

if A is unsatisfiable then models(A) = ∅.
models(¬A) = 2prop(A) \models(A);

models(A ∧ B) = modelsprop(A∧B)(A) ∩modelsprop(A∧B)(B);

models(A ∨ B) = modelsprop(A∨B)(A) ∪modelsprop(A∨B)(B);

models(A→ B) =
modelsprop(A→B)(¬A) ∪modelsprop(A→B)(B)
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Valid, Satisfiable, and Unsatisfiable sets of formulas

Definition

A set of formulas Γ is

Valid if for all interpretations I, I |= A for all formulas
A ∈ Γ

Satisfiable if there is an interpretations I, I |= A for all A ∈ Γ

Unsatisfiable if for no interpretations I,, s.t. I |= A for all A ∈ Γ

Proposition

For any finite set of formulas Γ, (i.e., Γ = {A1, . . . ,An} for some
n ≥ 1), Γ is valid (resp. satisfiable and unsatisfiable) if and only if
A1 ∧ · · · ∧ An is valid (resp, satisfiable and unsatisfiable).
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Logical consequence

Definition (Logical consequence)

A formula A is a logical consequence of a set of formulas Γ, in
symbols

Γ |= A

Iff for any interpretation I that satisfies all the formulas in Γ, I
satisfies A,

Example (Logical consequence)

p |= p ∨ q

q ∨ p |= p ∨ q

p ∨ q, p → r , q → r |= r

p → q, p |= q

p,¬p |= q
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Proving Logical consequence in a direct manner

Example

Proof of p |= p ∨ q Suppose that I |= p, then by definition I |= p ∨ q.

Proof of q ∨ p |= p ∨ q Suppose that I |= q ∨ p, then either I |= q or
I |= p. In both cases we have that I |= p ∨ q.

Proof of p ∨ q, p → r , q → r |= r Suppose that I |= p ∨ q and
I |= p → r and I |= q → r . Then either I |= p or I |= q.
In the first case, since I |= p → r , then I |= r , In the
second case, since I |= q → r , then I |= r .

Proof of p,¬p |= q Suppose that I |= ¬p, then not I |= p, which
implies that there is no I such that I |= p and I |= ¬p.
This implies that all the interpretations that satisfy p and
¬p (actually none) satisfy also q.

Proof of (p ∧ q) ∨ (¬p ∧ ¬q) |= p ≡ q) Left as an exercise

Proof of (p → q) |= ¬p ∨ q Left as an exercise
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Chesking Validity and (un)satisfiability of a formula

Truth Table

Checking (un)satisfiability and validity of a formula A can be done
by enumerating all the interpretations (truth assignments) of the
propositional variables of A, and for each interpretation I compute
I(A).

Example ( Truth table p → (q ∨ ¬r))

p q r p → ( q ∨ ¬ r )

True True True True True True True False True
True True False True True True True True False
True False True True False False False False True
True False False True True False True True False
False True True False True True True False True
False True False False True True True True False
False False True False True False False False True
False False False False True False True True False
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Valid, Satisfiable, and Unsatisfiable formulas

Proposition

if A is then ¬A is

Valid Unsatisfiable

Satisfiable not Valid

not Valid Satisfiable

Unsatisfiable Valid
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Truth Tables: Example

Compute the truth table of (F ∨ G ) ∧ ¬(F ∧ G ).

F G F ∨ G F ∧ G ¬(F ∧ G ) (F ∨ G ) ∧ ¬(F ∧ G )

T T T T F F
T F T F T T
F T T F T T
F F F F T F

Intuitively, what does this formula represent?
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Truth Tables: Example (2)

Use the truth tables method to determine whether (p → q) ∨ (p → ¬q)
is valid.

p q p → q ¬q p → ¬q (p → q) ∨ (p → ¬q)

T T T F F T
T F F T T T
F T T F T T
F F T T T T

The formula is valid since it is satisfied by every interpretation.
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Truth Tables: Example (3)

Use the truth tables method to determine whether
(¬p ∨ q) ∧ (q → ¬r ∧ ¬p) ∧ (p ∨ r) (denoted with Φ) is satisfiable.

p q r ¬p ∨ q ¬r ∧ ¬p q → ¬r ∧ ¬p (p ∨ r) Φ

T T T T F F T F
T T F T F F T F
T F T F F T T F
T F F F F T T F
F T T T F F T F
F T F T T T F F
F F T T F T T T
F F F T T T F F

There exists an interpretation satisfying Φ, thus Φ is satisfiable.
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Truth Tables: Exercises

Compute the truth tables for the following propositional formulas:

(p → p)→ p

p → (p → p)

p ∨ q → p ∧ q

p ∨ (q ∧ r)→ (p ∧ r) ∨ q

p → (q → p)

(p ∧ ¬q) ∨ ¬(p ↔ q)
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Truth Tables: Exercises

Use the truth table method to verify whether the following formulas are
valid, satisfiable or unsatisfiable:

(p → q) ∧ ¬q → ¬p

(p → q)→ (p → ¬q)

(p ∨ q → r) ∨ p ∨ q

(p ∨ q) ∧ (p → r ∧ q) ∧ (q → ¬r ∧ p)

(p → (q → r))→ ((p → q)→ (p → r))

(p ∨ q) ∧ (¬q ∧ ¬p)

(¬p → q) ∨ ((p ∧ ¬r)↔ q)

(p → q) ∧ (p → ¬q)

(p → (q ∨ r)) ∨ (r → ¬p)
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Proving Logical consequence using the truth tables

Use the truth tables method to determine whether p ∧ ¬q → p ∧ q is a
logical consequence of ¬p.

p q ¬p p ∧ ¬q p ∧ q p ∧ ¬q → p ∧ q

T T F F T T
T F F T F F
F T T F F T
F F T F F T
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Truth Tables: Exercises

Use the truth table method to verify whether the following logical
consequences and equivalences are correct:

(p → q) |= ¬p → ¬q

(p → q) ∧ ¬q |= ¬p

p → q ∧ r |= (p → q)→ r

p ∨ (¬q ∧ r) |= q ∨ ¬r → p

¬(p ∧ q) ≡ ¬p ∨ ¬q

(p ∨ q) ∧ (¬p → ¬q) ≡ q

(p ∧ q) ∨ r ≡ (p → ¬q)→ r

(p ∨ q) ∧ (¬p → ¬q) ≡ p

((p → q)→ q)→ q ≡ p → q
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Logical Equivalence

Definition

Logical Equivalence Two formulas Φ and Ψ are logically
equivalent (denoted with Φ ≡ Ψ) if for each interpretation I,
I(Φ) = I(Ψ).
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Truth Tables: Example (5)

Use the truth tables method to determine whether p → (q ∧ ¬q) and ¬p
are logically equivalent.

p q q ∧ ¬q p → (q ∧ ¬q) ¬p
T T F F F
T F F F F
F T F T T
F F F T T
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Properties of propositional logical consequence

Proposition

If Γ and Σ are two sets of propositional formulas and A and B two
formulas, then the following properties hold:

Reflexivity {A} |= A

Monotonicity If Γ |= A then Γ ∪ Σ |= A

Cut If Γ |= A and Σ ∪ {A} |= B then Γ ∪ Σ |= B

Deduction theorem If Γ,A |= B then Γ |= A→ B

Refutation principle Γ |= A iff Γ ∪ {¬A} is unsatisfiable

Compactness If Γ |= A, then there is a finite subset Γ0 ⊆ Γ, such
that Γ0 |= A
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Reflexivity {A} |= A.
PROOF: For all I if I |= A, then I |= A.

Monotonicity If Γ |= A then Γ ∪ Σ |= A
PROOF: For all I if I |= Γ ∪ Σ, then I |= Γ, by
hypothesis (Γ |= A) we can infer that I |= A, and
therefore that Γ ∪ Σ |= A

Cut If Γ |= A and Σ ∪ {A} |= B then Γ ∪ Σ |= B.
PROOF: For all I, if I |= Γ ∪ Σ, then I |= Γ and
I |= Σ. The hypothesis Γ |= A implies that I |= A.
Since I |= Σ, then I |= Σ ∪ {A}. The hypothesis
Σ ∪ {A} |= B, implies that I |= B. We can therefore
conclude that Γ ∪ Σ |= B.
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Deduction theorem If Γ,A |= B then Γ |= A→ B
PROOF: Suppose that I |= Γ. If I 6|= A, then I |= A→ B. If

instead I |= A, then by the hypothesis Γ,A |= B, implies that

I |= B, which implies that I |= B. We can therefore conclude that

I |= A→ B.
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Refutation principle Γ |= A iff Γ ∪ {¬A} is unsatisfiable
PROOF:
(=⇒) Suppose by contradiction that Γ ∪ {¬A} is satisfiable. This
implies that there is an interpretation I such that I |= Γ and
I |= ¬A, i.e., I 6|= A. This contradicts that fact that for all
interpretations that satisfies Γ, they satisfy A

(⇐=) Let I |= Γ, then by the fact that Γ ∪ {¬A} is unsatisfiable, we

have that I 6|= ¬A, and therefore I |= A. We can conclude that

Γ |= A.
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Proof of compactness theorem

Definition (Finitely satisfiable set)

A set of formulas Γ is finitely satisfiable if all the finite subsets of Γ
are satisfiable.

Theorem (Compactness)

Γ is satisfiable if and only if Γ is finitely satisfiable.

This formulation of the compactness theorem is equivalent to the formulation
given in the previous slide. We can indeed easily prove the original compactness
theorem by combining the refutation principle, monotonicity and the the new
formulaiton of the compactness theorem.

Γ |= A if and only if Γ ∪ {¬A} is not satisfiable (by the refutation
principle)

Γ ∪ {¬A} is not satisfiable if and only if there is a finite subset Γ0 of
Γ ∪ {¬A} which is not satisfiable (new formulation of the compactness
theorem).

This implies that Γ0 ∪ {¬A} is not satisfiable, by monotonicity, and
therefore by refutation principle that Γ0 |= A.

Luciano Serafini Knowledge Representation and Learning



Proof of compactness theorem

Lemma

If Γ is finitely satisfiable then either Γ ∪ {φ} or Γ ∪ {¬φ} is finitely satisfiable.

Proof.

Suppose the conclusion of the lemma does not hold: Both Γ ∪ {φ} and
Γ ∪ {¬φ} are not finitely satisfiable.

Hence, there are two finite subsets Γ1 and Γ2 of Γ such that both
Γ1 ∪ {φ} and Γ2 ∪ {¬φ} are not satisfiable.

Let us show that Γ1 ∪ Γ2 does not have models

If I is a model of Γ1, than it cannot be a model of φ, therefore it is a
model of ¬φ. But since Γ2 ∪ {¬φ} is not satisfiable, then I cannot be a
model of Γ2.

This implies that every model of Γ1 is not a model for Γ2 and therefore,
Γ1 ∪ Γ2 is not satisfiable.

Since Γ1 ∪ Γ2 is finite and it is a subset of Γ, then Γ cannot be finitely
satisfiable.
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Proof of compactness theorem

Proof of the main theorem.

let enumerate all the formulas φ1, φ2, φ3, . . .

we define the sequence Σ0,Σ1,Σ2, . . .

Σ0 = Γ Σn =

{
Σ ∪ {φn} if Σn−1 ∪ {φn} is fin. sat.

Σ ∪ {¬φn} if Σn−1 ∪ {¬φn} is fin. sat.

By induction, using previous lemma, Σi is finitely satisfiable;

Let Σ =
⋃

n≥0 Σi

By construction Σ is finitely satisfiable. Furthermore

1 For every formula φ either φ ∈ Σ or ¬φ ∈ Σ but not both.
2 For every p ∈ P, p ∈ Σ or ¬p ∈ Σ but not both.

Luciano Serafini Knowledge Representation and Learning



Proof of compactness theorem (cont’d)

Proof of the main theorem.

By construction Σ is finitely satisfiable. Furthermore

1 For every formula φ either φ ∈ Σ or ¬φ ∈ Σ but not both.
2 For every p ∈ P, p ∈ Σ or ¬p ∈ Σ but not both.

We define the interpretation I(p) =

{
True if p ∈ Σ

False if ¬p ∈ Σ

I |= φ for all φ ∈ Σ. Consider the finite set Σi that contains φ and either
p or ¬p for all p in φ. Since it is finite, and Σ is finitely satisfiable, there
is an interpretation I′ that satisfies Σi , and therefore I′ |= φ.

I′ and I agree on the interpretations of all the p’s of φ and therefore
I |= φ.

Hence, I |= Σ. Since Γ ⊂ Σ, then I |= Γ
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Propositional theory

Definition (Propositional theory)

A theory is a set of formulas closed under the logical consequence
relation. I.e. T is a theory iff T |= A implies that A ∈ T

Example (Of theory)

T1 is the set of valid formulas {A|A is valid}
T2 is the set of formulas which are true in the interpretation
I = {P,Q,R}
T3 is the set of formulas which are true in the set of
interpretations {I1, I2, I3}
T4 is the set of all formulas

Show that T1, T2, T3 and T4 are theories
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Propositional theory (2)

Example (Of non theory)

N1 is the set {A,A→ B,C}
N2 is the set {A,A→ B,B,C}
N3 is the set of all formulas containing P

Show that N1, N2 and N3 are not theories
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Axiomatization

Remark

A propositional theory always contains an infinite set of formulas.
Indeed any theory T contains at least all the valid formulas. which
are infinite) (e.g.,A→ A for all formulas A)

Definition (Set of axioms for a theory)

A set of formulas Ω is a set of axioms for a theory T if for all
A ∈ T , Ω |= A.

Definition

Finitely axiomatizable theory A theory T is finitely axiomatizable if
it has a finite set of axioms.
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Propositional theory (cont’d)

Definition (Logical closure)

For any set Γ, cl(Γ) = {A|Γ |= A}

Proposition (Logical closure)

For any set Γ, the logical closure of Γ, cl(Γ) is a theory

Proposition

Γ is a set of axioms for cl(Γ).
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Axioms and theory - intuition

Compact representation of knowldge

The axiomatization of a theory is a compact way to represent a set
of interpretations, and thus to represent a set of possible
(acceptable) world states. In other words is a way to represent all
the knowledge we have of the real world.

minimality

The axioms of a theory constitute the basic knowledge, and all the
generable knolwledge is obtained by logical consequence. An
important feature of a set of axioms, is that they are minimal, i.e.,
no axioms can be derived from the others.
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Axioms and theory - intuition

Example

Suppose that we want to write a theory about the possible status
of a traffic-light.

Red → ¬Orange (1)

Red → ¬Green (2)

Orange → ¬Green (3)

Red ∨ Orange ∨ Green (4)

The axioms above constitute the basic knowledge about three
propositions Red , Orange and Green, that are mutual exclusive,
and such that at leas one is true. The formula
¬Red → Orange ∨ Green, corresponding to the proposition “if the
traffic light is not red then it must be orange or green”, which is
also valid, should not be added to the set of axioms for the traffic
light since it is entailed by (1)–(4)
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Logic based systems

A logic-based system for representing and reasoning about knowledge is
composed by a Knowledge base and a Reasoning system. A knowledge
base consists of a finite collection of formulas in a logical language. The
main task of the knowledge base is to answer queries which are
submitted to it by means of a Reasoning system

Logic based system for knowledge representation

knowledge base

•source
learning

• queryask

• answer
reply

Reasoning

Learn: this action incorporates the new knowledge encoded in an
axiom (formula). This allows to build/extend/update a
KB.

Ask: allows to query what is known, i.e., whether a formula φ is
a logical consequences of the axioms contained in the KB
(KB |= φ)Luciano Serafini Knowledge Representation and Learning



Propositional theory (cont’d)

Proposition

Given a set of interpretations S , the set of formulas A which are
satisfied by all the interpretations in S is a theory. i.e.

TS = {A|I |= A for all I ∈ S}

is a theory.

Knowledge representation problem

Given a set of interpretations S which correspond to admissible
situations find a set of axioms Ω for TS .
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