Automi e Linguaggi Formali

Parte 15 – Indecidibilità

Sommario

1 Il metodo della diagonalizzazione

2 Un problema indecidibile

3 Un linguaggio non Turing-riconoscibile

■ Metodo scoperto da Cantor nel 1873

- Metodo scoperto da Cantor nel 1873
- Serve per confrontare le dimensioni di insiemi infiniti

- Metodo scoperto da Cantor nel 1873
- Serve per confrontare le dimensioni di insiemi infiniti

- Metodo scoperto da Cantor nel 1873
- Serve per confrontare le dimensioni di insiemi infiniti

Idea: due insiemi finiti hanno la stessa dimensione se gli elementi di un insieme possono essere accoppiati agli elementi dell'altro insieme.

■ Abbiamo due insiemi A e B e una funzione $f: A \mapsto B$

- Abbiamo due insiemi $A \in B$ e una funzione $f : A \mapsto B$
- f è iniettiva se non mappa mai elementi diversi nello stesso punto: $f(a) \neq f(b)$ ogniqualvolta che $a \neq b$

- Abbiamo due insiemi $A \in B$ e una funzione $f : A \mapsto B$
- f è iniettiva se non mappa mai elementi diversi nello stesso punto: $f(a) \neq f(b)$ ogniqualvolta che $a \neq b$
- f è suriettiva se tocca ogni elemento di B: per ogni $b \in B$ esiste $a \in A$ tale che f(a) = b

- Abbiamo due insiemi $A \in B$ e una funzione $f : A \mapsto B$
- f è iniettiva se non mappa mai elementi diversi nello stesso punto: $f(a) \neq f(b)$ ogniqualvolta che $a \neq b$
- f è suriettiva se tocca ogni elemento di B: per ogni $b \in B$ esiste $a \in A$ tale che f(a) = b
- Una funzione iniettiva e suriettiva è chiamata biettiva: è un modo per accoppiare elementi di A con elementi di B

- Abbiamo due insiemi $A \in B$ e una funzione $f : A \mapsto B$
- f è iniettiva se non mappa mai elementi diversi nello stesso punto: $f(a) \neq f(b)$ ogniqualvolta che $a \neq b$
- f è suriettiva se tocca ogni elemento di B: per ogni $b \in B$ esiste $a \in A$ tale che f(a) = b
- Una funzione iniettiva e suriettiva è chiamata biettiva: è un modo per accoppiare elementi di A con elementi di B

Definition

A e B hanno la stessa cardinalità se esiste una funzione biettiva $f:A\mapsto B$

Esempio: naturali vs numeri pari

Esempio

- $lackbox{\blacksquare} \mathbb{N} = \{0, 1, 2, \dots, \}$, insieme dei numeri naturali
- \blacksquare $\mathbb{E} = \{0, 2, 4, \dots, \}$, insieme dei numeri pari

Quale dei due insiemi è il più grande?

Esempio: naturali vs numeri pari

Esempio

- $\mathbb{N} = \{0, 1, 2, \dots, \}$, insieme dei numeri naturali
- \blacksquare $\mathbb{E} = \{0, 2, 4, \dots, \}$, insieme dei numeri pari

Quale dei due insiemi è il più grande?

Definition (Insieme numerabile)

Un insieme è numerabile se è finito oppure ha la stessa cardinalità di $\mathbb N$

■ Q è numerabile?

- Q è numerabile?
- \blacksquare \mathbb{R} è numerabile?

- Q è numerabile?
- R è numerabile?
- Dato un alfabeto finito Σ , Σ^* è numerabile?

- Q è numerabile?
- R è numerabile?
- Dato un alfabeto finito Σ , Σ^* è numerabile?
- L'insieme di tutte le macchine di Turing è numerabile?

- Q è numerabile?
- R è numerabile?
- Dato un alfabeto finito Σ , Σ^* è numerabile?
- L'insieme di tutte le macchine di Turing è numerabile?
- L'insieme di tutte le sequenze binarie infinite è numerabile?

- Q è numerabile?
- R è numerabile?
- Dato un alfabeto finito Σ , Σ^* è numerabile?
- L'insieme di tutte le macchine di Turing è numerabile?
- L'insieme di tutte le sequenze binarie infinite è numerabile?
- Dato un alfabeto finito Σ , l'insieme di tutti i linguaggi su Σ^* è numerabile?

Corollario

■ L'insieme di tutte le macchine di Turing è numerabile

Corollario

- L'insieme di tutte le macchine di Turing è numerabile
- L'insieme di tutti i linguaggi è non numerabile

Corollario

- L'insieme di tutte le macchine di Turing è numerabile
- L'insieme di tutti i linguaggi è non numerabile
- Devono esistere linguaggi non riconoscibili da una macchina di Turing

"Esiste un problema specifico che è algoritmicamente irrisolvibile"

"Esiste un problema specifico che è algoritmicamente irrisolvibile"

■ Problemi di interesse non solo teorico, ma anche pratico

"Esiste un problema specifico che è algoritmicamente irrisolvibile"

- Problemi di interesse non solo teorico, ma anche pratico
- Esempio: Verifica del software

"Esiste un problema specifico che è algoritmicamente irrisolvibile"

- Problemi di interesse non solo teorico, ma anche pratico
- Esempio: Verifica del software
 - verificare che un programma è corretto non è risolvibile algoritmicamente

Sommario

1 Il metodo della diagonalizzazione

2 Un problema indecidibile

3 Un linguaggio non Turing-riconoscibile

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$$

■ Chiarimento: A_{TM} è Turing-riconoscibile

Teorema: A_{TM} è indecidibile

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$$

- Chiarimento: A_{TM} è Turing-riconoscibile
- Conseguenza: i riconoscitori sono più potenti dei decisori

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$$

- Chiarimento: A_{TM} è Turing-riconoscibile
- Conseguenza: i riconoscitori sono più potenti dei decisori
- U = "Su input $\langle M, w \rangle$, dove M è una TM e w una stringa:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$$

- Chiarimento: A_{TM} è Turing-riconoscibile
- Conseguenza: i riconoscitori sono più potenti dei decisori
- $U = \text{"Su input } \langle M, w \rangle$, dove M è una TM e w una stringa:
 - 1 Simula *M* su input *w*

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$

- Chiarimento: A_{TM} è Turing-riconoscibile
- Conseguenza: i riconoscitori sono più potenti dei decisori
- U = "Su input $\langle M, w \rangle$, dove M è una TM e w una stringa:
 - Simula M su input w
 - 2 Se la simulazione raggiunge lo stato di accettazione, accetta; se raggiunge lo stato di rifiuto, rifiuta."

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$

- **Chiarimento**: A_{TM} è Turing-riconoscibile
- Conseguenza: i riconoscitori sono più potenti dei decisori
- $U = \text{``Su input } \langle M, w \rangle$, dove M è una TM e w una stringa:
 - 1 Simula M su input w
 - 2 Se la simulazione raggiunge lo stato di accettazione, accetta; se raggiunge lo stato di rifiuto, rifiuta."
- *U* è un riconoscitore. Perché non è un decisore?

Macchina Universale di Turing

■ *U* è un esempio di Macchina Universale di Turing

Macchina Universale di Turing

- *U* è un esempio di Macchina Universale di Turing
- Introdotta da Alan Turing nel 1936

Macchina Universale di Turing

- \blacksquare *U* è un esempio di Macchina Universale di Turing
- Introdotta da Alan Turing nel 1936
- Può simulare qualsiasi macchina di Turing a partire dalla sua descrizione

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$$

Teorema: A_{TM} è indecidibile

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$$

Dimostrazione:

lacktriangle per contraddizione. Assumiamo A_{TM} decidibile per poi trovare una contraddizione

Teorema: A_{TM} è indecidibile

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$$

- per contraddizione. Assumiamo A_{TM} decidibile per poi trovare una contraddizione
- Supponiamo H decisore per A_{TM}

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$$

- **p** per contraddizione. Assumiamo A_{TM} decidibile per poi trovare una contraddizione
- Supponiamo H decisore per A_{TM}
- Cosa fa H con input $\langle M, w \rangle$?

$$H(\langle M, w \rangle) = \begin{cases} \text{accetta} & \text{se } M \text{ accetta } w \\ \text{rifiuta} & \text{se } M \text{ non accetta } w \end{cases}$$

■ Definiamo una TM D che usa H come subroutine

Teorema: A_{TM} è indecidibile

- Definiamo una TM D che usa H come subroutine
- D = "Su input $\langle M \rangle$, dove M è una TM:

- Definiamo una TM D che usa H come subroutine
- D = "Su input $\langle M \rangle$, dove M è una TM:
 - **1** Esegue H su input $\langle M, \langle M \rangle \rangle$

- Definiamo una TM D che usa H come subroutine
- D = "Su input $\langle M \rangle$, dove M è una TM:
 - **1** Esegue H su input $\langle M, \langle M \rangle \rangle$
 - 2 Dà in output l'opposto dell'output di H. Se H accetta, rifiuta; se H rifiuta, accetta."

- Definiamo una TM D che usa H come subroutine
- D = "Su input $\langle M \rangle$, dove M è una TM:
 - **1** Esegue H su input $\langle M, \langle M \rangle \rangle$
 - 2 Dà in output l'opposto dell'output di H. Se H accetta, rifiuta; se H rifiuta, accetta."
- Cosa fa D con input $\langle D \rangle$?

- Definiamo una TM D che usa H come subroutine
- D = "Su input $\langle M \rangle$, dove M è una TM:
 - **1** Esegue H su input $\langle M, \langle M \rangle \rangle$
 - 2 Dà in output l'opposto dell'output di H. Se H accetta, rifiuta; se H rifiuta, accetta."
- Cosa fa D con input $\langle D \rangle$?

- Definiamo una TM D che usa H come subroutine
- $D = \text{``Su input } \langle M \rangle$, dove M è una TM:
 - **1** Esegue H su input $\langle M, \langle M \rangle \rangle$
 - 2 Dà in output l'opposto dell'output di H. Se H accetta, rifiuta; se H rifiuta, accetta."
- Cosa fa D con input $\langle D \rangle$?

$$D(\langle D \rangle) = \begin{cases} \text{accetta} & \text{se } D \text{ non accetta } \langle D \rangle \\ \text{rifiuta} & \text{se } D \text{ accetta } \langle D \rangle \end{cases}$$

■ Contraddizione!

 \blacksquare H accetta $\langle M, w \rangle$ esattamente quando M accetta w

- $\ \ \, \textbf{1} \ \, \textit{H} \,\, \text{accetta} \,\, \langle \textit{M}, \textit{w} \rangle \,\, \text{esattamente quando} \,\, \textit{M} \,\, \text{accetta} \,\, \textit{w}$
 - a. Banale: abbiamo assunto che H esista e decida A_{TM}

- f I H accetta $\langle M,w \rangle$ esattamente quando M accetta w
 - a. Banale: abbiamo assunto che H esista e decida A_{TM}
 - b. M rappresenta qualsiasi TM e w è una qualsiasi stringa

- f I H accetta $\langle M,w \rangle$ esattamente quando M accetta w
 - a. Banale: abbiamo assunto che H esista e decida A_{TM}
 - b. M rappresenta qualsiasi TM e w è una qualsiasi stringa
- **2** D rifiuta $\langle M \rangle$ esattamente quando M accetta $\langle M \rangle$

- f I H accetta $\langle M,w \rangle$ esattamente quando M accetta w
 - a. Banale: abbiamo assunto che H esista e decida A_{TM}
 - b. M rappresenta qualsiasi TM e w è una qualsiasi stringa
- **2** D rifiuta $\langle M \rangle$ esattamente quando M accetta $\langle M \rangle$
 - a. Cosa è successo a w?

- lacksquare H accetta $\langle M,w \rangle$ esattamente quando M accetta w
 - a. Banale: abbiamo assunto che H esista e decida A_{TM}
 - b. M rappresenta qualsiasi TM e w è una qualsiasi stringa
- **2** D rifiuta $\langle M \rangle$ esattamente quando M accetta $\langle M \rangle$
 - a. Cosa è successo a w?
 - b. w è solo una stringa, come $\langle M \rangle$. Tutto ciò che stiamo facendo è definire quale stringa dare in input alla macchina.

- f I H accetta $\langle M, w \rangle$ esattamente quando M accetta w
 - a. Banale: abbiamo assunto che H esista e decida A_{TM}
 - b. M rappresenta qualsiasi TM e w è una qualsiasi stringa
- **2** D rifiuta $\langle M \rangle$ esattamente quando M accetta $\langle M \rangle$
 - a. Cosa è successo a w?
 - b. w è solo una stringa, come $\langle M \rangle$. Tutto ciò che stiamo facendo è definire quale stringa dare in input alla macchina.
- $oxed{3}$ D rifiuta $\langle D \rangle$ esattamente quando D accetta $\langle D \rangle$

- lacksquare H accetta $\langle M,w \rangle$ esattamente quando M accetta w
 - a. Banale: abbiamo assunto che H esista e decida A_{TM}
 - b. M rappresenta qualsiasi TM e w è una qualsiasi stringa
- **2** *D* rifiuta $\langle M \rangle$ esattamente quando *M* accetta $\langle M \rangle$
 - a. Cosa è successo a w?
 - b. w è solo una stringa, come $\langle M \rangle$. Tutto ciò che stiamo facendo è definire quale stringa dare in input alla macchina.
- **3** D rifiuta $\langle D \rangle$ esattamente quando D accetta $\langle D \rangle$
 - a. Questa è la contraddizione.

- lacksquare H accetta $\langle M,w \rangle$ esattamente quando M accetta w
 - a. Banale: abbiamo assunto che H esista e decida A_{TM}
 - b. M rappresenta qualsiasi TM e w è una qualsiasi stringa
- **2** *D* rifiuta $\langle M \rangle$ esattamente quando *M* accetta $\langle M \rangle$
 - a. Cosa è successo a w?
 - b. w è solo una stringa, come $\langle M \rangle$. Tutto ciò che stiamo facendo è definire quale stringa dare in input alla macchina.
- $oxed{3}$ D rifiuta $\langle D \rangle$ esattamente quando D accetta $\langle D \rangle$
 - a. Questa è la contraddizione.
- 4 Dove si usa la diagonalizzazione?

- lacksquare H accetta $\langle M,w \rangle$ esattamente quando M accetta w
 - a. Banale: abbiamo assunto che H esista e decida A_{TM}
 - b. M rappresenta qualsiasi TM e w è una qualsiasi stringa
- **2** *D* rifiuta $\langle M \rangle$ esattamente quando *M* accetta $\langle M \rangle$
 - a. Cosa è successo a w?
 - b. w è solo una stringa, come $\langle M \rangle$. Tutto ciò che stiamo facendo è definire quale stringa dare in input alla macchina.
- $oxed{3}$ D rifiuta $\langle D \rangle$ esattamente quando D accetta $\langle D \rangle$
 - a. Questa è la contraddizione.
- 4 Dove si usa la diagonalizzazione?

Sommario

1 Il metodo della diagonalizzazione

2 Un problema indecidibile

■ Abbiamo visto che A_{TM} è Turing-riconoscibile

- Abbiamo visto che A_{TM} è Turing-riconoscibile
- Sappiamo che l'insieme di tutte le TM è numerabile

- Abbiamo visto che A_{TM} è Turing-riconoscibile
- Sappiamo che l'insieme di tutte le TM è numerabile
- Sappiamo che l'insieme di tutti i linguaggi è non numerabile

- Abbiamo visto che *A_{TM}* è Turing-riconoscibile
- Sappiamo che l'insieme di tutte le TM è numerabile
- Sappiamo che l'insieme di tutti i linguaggi è non numerabile
- Di conseguenza deve esistere un linguaggio non Turing-riconiscibile

■ C'è ancora una cosa che dobbiamo fare prima di poter mostrare un linguaggio non Turing-riconoscibile.

- C'è ancora una cosa che dobbiamo fare prima di poter mostrare un linguaggio non Turing-riconoscibile.
- Mostreremo che se un linguaggio e il suo complementare sono Turing-riconoscibili, allora il linguaggio è decidibile.

- C'è ancora una cosa che dobbiamo fare prima di poter mostrare un linguaggio non Turing-riconoscibile.
- Mostreremo che se un linguaggio e il suo complementare sono Turing-riconoscibili, allora il linguaggio è decidibile.
- Un linguaggio è co-Turing riconoscibile se è il complementare di un linguaggio Turing-riconoscibile

Theorem

Un linguaggio è decidibile se solo se è Turing-riconoscibile e co-Turing riconoscibile.

Theorem

Un linguaggio è decidibile se solo se è Turing-riconoscibile e co-Turing riconoscibile.

Dimostrazione:

■ Dobbiamo dimostrare entrambe le direzioni

Theorem

Un linguaggio è decidibile se solo se è Turing-riconoscibile e co-Turing riconoscibile.

- Dobbiamo dimostrare entrambe le direzioni
- Se A è decidibile, allora sia A che \overline{A} sono Turing-riconoscibili

Theorem

Un linguaggio è decidibile se solo se è Turing-riconoscibile e co-Turing riconoscibile.

- Dobbiamo dimostrare entrambe le direzioni
- Se A è decidibile, allora sia A che \overline{A} sono Turing-riconoscibili
 - Il complementare di un linguaggio decidibile è decidibile!

Theorem

Un linguaggio è decidibile se solo se è Turing-riconoscibile e co-Turing riconoscibile.

- Dobbiamo dimostrare entrambe le direzioni
- Se A è decidibile, allora sia A che \overline{A} sono Turing-riconoscibili
 - Il complementare di un linguaggio decidibile è decidibile!
- Se *A* e *A* sono Turing-riconoscibili, possiamo costruire un decisore per *A*

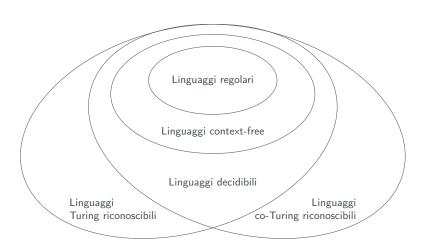
$\overline{A_{TM}}$ non è Turing-riconoscibile

■ Se il complementare di A_{TM} fosse Turing-riconoscibile, allora A_{TM} sarebbe decidibile

$\overline{A_{TM}}$ non è Turing-riconoscibile

- Se il complementare di A_{TM} fosse Turing-riconoscibile, allora A_{TM} sarebbe decidibile
- Sappiamo che A_{TM} non è decidibile, quindi il suo complementare non può essere Turing-riconoscibile!

Conclusione



Cosa c'é qui fuori?