Automi e Linguaggi Formali

Parte 9 – Linguaggi non context-free

Sommario

1 Il pumping lemma per linguaggi context-free

Linguaggi non context-free

- Il pumping lemma ci dimostra che esistono linguaggi non regolari
- Vedremo un pumping lemma simile per i linguaggi regolari:
 - per ogni linguaggio context-free
 - esiste una lunghezza del pumping
 - tutte le stringhe più lunghe possono essere "iterate" (pompate)
- Useremo il lemma per dimostrare ci sono linguaggi non context-free

Pumping Lemma per CFL

Theorem (Pumping Lemma per Linguaggi Context-free)

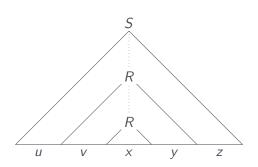
Sia L un linguaggio context-free. Allora

- \blacksquare esiste una lunghezza $k \ge 0$ tale che
- lacksquare ogni parola $w \in L$ di lunghezza $|w| \geq k$
- - 1 |vy| > 0 (il secondo o il quarto pezzo non sono la stringa vuota)
 - $|vxy| \le k$ (il blocco centrale è lungo al max k)
 - 3 $\forall i \geq 0$, $uv^i x y^i z \in L$ (possiamo "pompare" contemporaneamente v e y rimanendo in L)

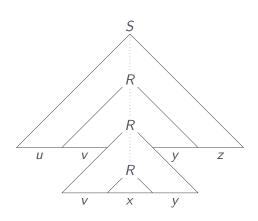
Idea di dimostrazione (1)

- Consideriamo la grammatica G che genera il linguaggio L
- Prendiamo una stringa w "molto lunga" in L
- L'albero sintattico di w deve essere "molto alto"
- Esiste un cammino nell'albero che ripete una variabile R
- Replicando il sottoalbero di *R* possiamo "pompare" la stringa rimanendo nel linguaggio

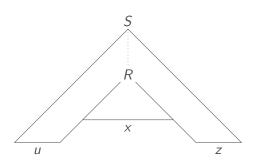
Idea di dimostrazione (2)



Idea di dimostrazione (2)



Idea di dimostrazione (2)



Uso del Pumping Lemma

- Ogni CFL soddisfa il Pumping Lemma context-free.
- Un linguaggio che falsifica il Pumping Lemma non può essere context-free:
 - **p**er ogni lunghezza $k \ge 0$
 - **e** esiste una parola $w \in L$ di lunghezza $|w| \ge k$ tale che
 - **per ogni suddivisione** w = uvxyz tale che:
 - 1 |vy| > 0 ($v \in y$ non entrambi vuoti)
 - $|vxy| \le k$ (il pezzo centrale è lungo al max k)
 - esiste un $i \ge 0$ tale che $uv^i x y^i z \in L$ (possiamo "pompare" ed uscire da L)

Attenzione!

Esistono linguaggi non context-free che rispettano il Pumping Lemma: $\{a^i b^j c^k \mid i, j, k \text{ tutti diversi tra loro}\}$

Il Pumping Lemma come Gioco

- L'avversario sceglie la lunghezza k
- Noi scegliamo una parola w
- L'avversario spezza w in uvxyz
- Noi scegliamo i tale che $uv^i x y^i z \notin L$
- allora abbiamo vinto

Esempi

Per ognuno dei seguenti linguaggi, dire se rispetta il Pumping Lemma per linguaggi context-free oppure no.

- II linguaggio $L_1 = \{a^n b^n \mid n \ge 0\}$
- II linguaggio $L_2 = \{a^n b^n c^n \mid n \ge 0\}$
- Il linguaggio $L_3 = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$
- II linguaggio $L_4 = \{ww^R \mid w \in \{0,1\}^*\}$
- II linguaggio $L_5 = \{ww \mid w \in \{0,1\}^*\}$

Dall'idea alla dimostrazione

Idea di dimostrazione del Pumping Lemma per linguaggi context-free:

- Consideriamo la grammatica G che genera il linguaggio L
- Prendiamo una stringa w "molto lunga" in L
- L'albero sintattico di w deve essere "molto alto"
- Esiste un cammino nell'albero che ripete una variabile R
- Replicando il sottoalbero di *R* possiamo "pompare" la stringa rimanendo nel linguaggio

Per passare dall'idea alla dimostrazione dobbiamo stabilire cosa vuol dire che la stringa è molto lunga e perché l'albero sintattico è molto alto

Proprietà degli alberi

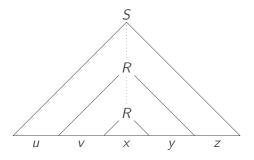
- Sia G una grammatica per il linguaggio L
- Sia b il numero massimo di simboli nel lato destro delle regole
- In un albero sintattico, ogni nodo avrà al massimo *b* figli:
 - al più *b* foglie per un albero di altezza 1
 - al più b² foglie per un albero di altezza 2
 - \blacksquare al più b^h foglie per un albero di altezza h
- Un albero di altezza h genera una stringa di lunghezza minore o uguale a b^h
- Viceversa: una stringa di lunghezza maggiore o uguale a $b^h + 1$ richiede un albero sintattico di altezza maggiore di h

Stringhe molto lunghe e alberi molto alti

- Prendiamo come lunghezza del pumping $k = b^{|V|+1}$ (|V| numero di variabili in G)
- Presa una stringa $w \in L$, se $|w| \ge k$ allora ogni albero sintattico per w deve avere altezza maggiore o uguale a |V| + 1
- lacktriangle Prendiamo più piccolo albero sintattico au per w
- Prendiamo il cammino più lungo in τ : sarà di lunghezza \geq |V|+2
- Quindi ci sono almeno |V| + 1 variabili nel cammino
- Qualche variabile *R* si ripete nel cammino
- Scegliamo R in modo che si ripeta nei |V|+1 nodi più in basso nel cammino

Suddividiamo w

- La variabile R ci dà la suddivisione w = uvxyz:
 - il sottoalbero più in alto genera vxy
 - il sottoalbero più in basso genera x



Pompiamo w

- possiamo sostituire i due sottoalberi tra loro, ottenendo di nuovo un albero sintattico corretto:
 - sostituire ripetutamente il più piccolo con il più grande ci dà uv^ixy^iz per ogni i>1
 - sostituire il più grande con il più piccolo ci dà *uxz*
- \blacksquare in tutti i casi la nuova stringa appartiene a L
- rimane da dimostrare:
 - che |vy| > 0 (v e y non possono essere entrambi la parola vuota)
 - che $|vxy| \le k$

v e y non sono entram<u>bi vuoti</u>

- supponiamo che $v = \varepsilon$ e $y = \varepsilon$
- allora se sostituiamo il sottoalbero più grande con il più piccolo otteniamo di nuovo w:

$$w = uvxyz = u\varepsilon x\varepsilon z = uxz$$

■ Assurdo: avevamo scelto τ come l'albero sintattico più piccolo!

- l'occorrenza più in alto di R genera vxy
- lacksquare avevamo scelto le occorrenze tra i |V|+1 nodi più in basso
- lacksquare il sottoalbero che genera \emph{vxy} è alto al massimo $|\emph{V}|+1$
- lacktriangle quindi può generare una stringa di lunghezza al più $b^{|V|+1}=k$

FINE!