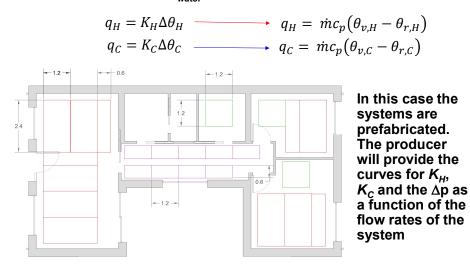
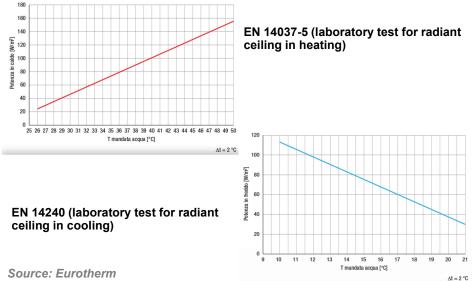
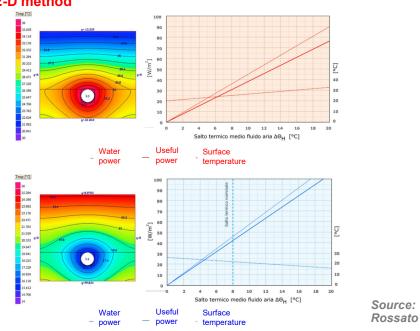

Step 1: Resume

Step 2: Sizing

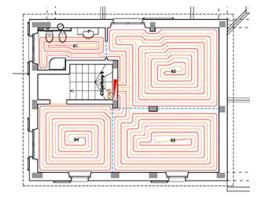

There are 4 methods for sizing a radiant system:


Sizing radiant walls and ceilings:


Check the available area and assume the possible amount of radiant systems, their distribution and connections. Fix the mass flow rate/ $\Delta \theta_{water}$:

Example of \mathbf{K}_{H} and \mathbf{K}_{C} for a radiant ceiling provided with testing:

Same test room, used also for radiators (EN 442), but different testing methodology.



Example of \mathbf{K}_{H} and \mathbf{K}_{C} for a radiant ceiling calculated with a detailed 2-D method

Sizing radiant floors:

Check the available area and assume the possible lay-out of the radiant floor. Define the floor covering, the type of radiant floor and concrete layer with embedded pipes. Then evaluate the Fix the mass flow rate/ $\Delta \theta_{water}$:

$$q_{H} = K_{H} \Delta \theta_{H} \longrightarrow q_{H} = \dot{m}c_{p}(\theta_{\nu,H} - \theta_{r,H})$$
$$q_{C} = K_{C} \Delta \theta_{C} \longrightarrow q_{C} = \dot{m}c_{p}(\theta_{\nu,C} - \theta_{r,C})$$

In this case the systems are prefabricated. The producer will provide the curves for K_H , K_C and the Δp as a function of the flow rates of the system

Standard EN ISO 11855

General definition of hydronic radiant systems

Depending on the position of the pipes in the building construction, hydronic radiant systems can be sorted into 4 main categories:

- Embedded Surface Systems: pipes embedded within the surface layer (not within the structure)
- Thermally Active Building Systems (TABS): the pipes thermally coupled and embedded in the building structure (slabs, walls)
- Capillary Surface Systems: pipes embedded in a layer at the inner ceiling/wall surface
- Radiant Panels: metal pipes integrated into panels (not within the structure); heat carrier close to the surface

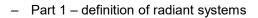
Focuses on embedded water based surface heating and cooling systems and TABS. Depending on construction details, this norm distinguishes 7 different types of those systems (Types A to G)

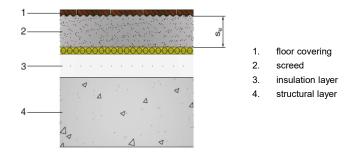
•Type A with pipes embedded in the screed or concrete ("wet" system)

•**Type B** with pipes embedded outside the screed (in the thermal insulation layer, "dry" system)

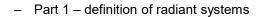
•Type C with pipes embedded in the leveling layer, above which the second screed layer is placed

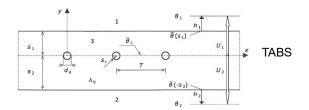
•Type D include plane section systems (extruded plastic / group of capillary grids)


•Type E with pipes embedded in a massive concrete layer


•Type F with capillary pipes embedded in a layer at the inner ceiling or as a separate layer in gypsum

•Type G with pipes embedded in a wooden floor construction




- Part 1 - definition of radiant systems

Plane section systems, type D covered by the method in EN 1264

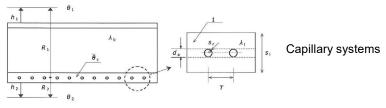
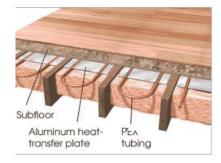
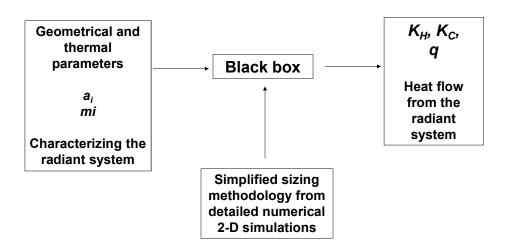



Figure 5 — Capillary pipes embedded in a layer at the inner surface, systems of type F

- Part 1 - definition of radiant systems

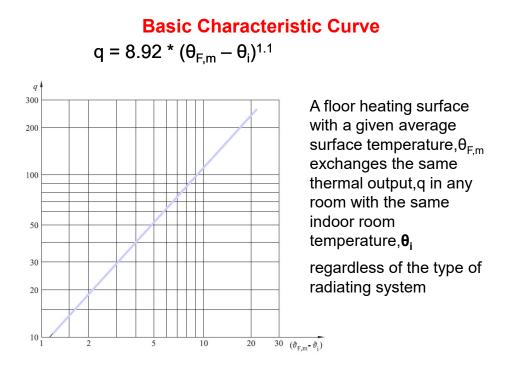


pipes embedded in wooden floor constructions using heat conducting plates, systems of type G

Parte 1 – Determinazione delle potenze di riscaldamento e di raffrescamento

	Table 2 — Criteria for selection of simplified calculation me			
	Pipe position	Type of system	Figure	Boundary conditions
For each type of radiant system (A,B,C,D,F,G) there is a method for the calculation:	In screed, one side loss less than or equal to 10 % of total	A, C	2a)	$\begin{split} T &\geq 0.050m \mathrm{S_u} \geq 0.01\mathrm{m} \\ 0.008 &\mathrm{m} \leq d \leq 0.03 \mathrm{m} \\ \mathrm{S_u} \; / \; \lambda_\mathrm{e} \geq 0.01 \end{split}$
	In insulation, conductive devices, one side loss less than or equal to 10 % of total	В	2b)	$0.05 \le T \le 0.45m$ 0.014 m < d < 0.022 m $0.01 \le S_u / \lambda_e \le 0.18$
	Plane section system	D		
	In concrete slab	E	4	$S_T / T \ge 0,3$
	Capillary tubes in concrete surface	F	5	$d_a/T \leq 0,2$
	Wooden constructions, pipes in sub floor or under sub floor, conductive devices	G	6	$\lambda_{wl} \ge 10 \cdot \lambda_{surroundirgmaterial}$ $S_{WL} \cdot \lambda \ge 0,01$

Method according to EN 1264 Backgrounds:



Thermal boundary conditions

- A <u>floor heating</u> surface with a <u>given average surface</u> <u>temperature</u> exchanges the <u>same thermal output</u> in any room with the same indoor room temperature θ_i.
- It is possible to give a <u>curve of the relationship between</u> <u>specific thermal output and average surface temperature</u> that is independent of the heating system and applicable to all floor heating surfaces.
- In contrast, every floor heating system has <u>its own maximum</u> permissible specific thermal output, *q*_G.

q_G in design conditions:

 $\theta_i = 20^{\circ}C$; $\theta_{F max} = 29^{\circ}C$ (for peripheral area $\theta_{F max} = 35^{\circ}C$) water temperature drop supply/return $\sigma = 0^{\circ}C$,

Thermal output of the radiant floor system

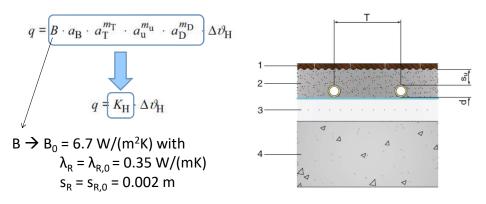
- The centre of the heating surface is used as the reference point for θ_{F.max}.
- The average surface temperature θ_{F,m}, determining the <u>specific thermal output</u>.
- The condition $\theta_{F,m} < \theta_{F,max}$ always applies.
- The value of θ_{F,m} is affected by both floor heating system and operating conditions (<u>temperature drop σ, q_u, heat</u> <u>resistance of the floor covering R_{λ,B}</u>).

Conditions for the calculation

- Heat transfer of the floor <u>is calculated in according with the</u>
 <u>basic characteristic curve</u>.
- The temperature drop of the heat carrier fluid is equal to $\sigma = 0^{\circ}C$ (if the temperature drop is > 0°C it can be used the equation with the logarithmically determined temperature difference $\Delta \theta_{\rm H}$).
- Turbulent pipe flow: $m_{\rm H}/d_{\rm i} > 4\ 000\ \rm kg/(\rm h\cdot m)$.
- The lateral surfaces of the floor are adiabatics
- The heat-conducting layer of the floor heating system is thermally decoupled by thermal insulation from the structural base of the building.

- For the calculation of q the following parameters and data are required:
 - T → pipe spacing (pitch)
 - $\mathbf{s}_{u} \rightarrow$ thickness of the screed
 - λ_{E} \rightarrow conductivity of the layer above the pipe
 - $R_{\lambda,B} \rightarrow$ heat conduction resistance of the floor covering
 - $D = d_a \rightarrow$ external diameter of the pipe
 - λ_{R} \rightarrow conductivity of the pipe

B type


- $a_{\kappa} \rightarrow$ factor for the evaluation of the contact between the pipes and the heat diffusion devices or the screed
- $K_{WL} \rightarrow$ heat diffusion devices

$$q = f[(\Delta \theta_H)^n] = f\left[\left(\frac{\theta_V - \theta_R}{\ln \frac{\theta_V - \theta_i}{\theta_R - \theta_i}}\right)^n\right] \text{ with } n = 1.0 - 1.05$$

The specific thermal output is calculated with:

$$q = f[(\Delta \theta_H)^n] \quad \Rightarrow \quad q = B * \prod_i (a_i^{m_i}) * \Delta \theta_H$$

- B system-dependent coefficient [W/(m²K)];
- $\prod_i (a_i^{m_i})$ power product linking the parameters of the floor construction with one another;
- A distinction shall be made between systems, where the <u>pipes are installed</u> inside or below the screed or wood floors (A,C and B), and systems with <u>surface elements (D, plane section systems</u>). For usual constructions, the previous eq. can be apply directly.
- For systems with <u>additional devices for heat distribution</u>, for air filled hollow sections or for other components <u>influencing the heat distribution</u>, the thermal output is determined experimentally.

If pipe wall thickness and conductivity of the material are different it is possible to use the next equation:

$$\frac{1}{B} = \frac{1}{B_0} + \frac{1}{\pi} * \prod_i (a_i^{m_i}) * T * \left[\frac{1}{2\lambda_R} ln \frac{d_a}{d_a - 2s_R} - \frac{1}{2\lambda_{R_0}} ln \frac{d_a}{d_a - 2s_{R,0}} - \right]$$

• $a_B \rightarrow$ is the floor covering factor

$$a_{\rm B} = \frac{\frac{1}{\alpha} + \frac{s_{\rm u,\,0}}{\lambda_{\rm u,\,0}}}{\frac{1}{\alpha} + \frac{s_{\rm u,\,0}}{\lambda_{\rm E}} + R_{\lambda,\,\rm B}} \begin{vmatrix} \alpha &= 10,8\,\,\text{W/(m^2 \cdot K)}; \\ \lambda_{\rm u,\,0} &= 1\,\,\text{W/(m \cdot K)}; \\ s_{\rm u,\,0} &= 0,045\,\,\text{m}; \\ R_{\lambda,\,\rm B} &\text{is the heat conduction resistance of the floor covering, in m^2 \cdot K/W}; \\ \lambda_{\rm E} &\text{is the heat conductivity of the screed, in W/(m \cdot K)}; \end{vmatrix}$$

•
$$a_{T} \rightarrow$$
 is the spacing factor

R _{λ, B} m ² · K/W	0	0,05	0,10	0,15
a _T	1,23	1,188	1,156	1,134

$$m_{\rm T} = 1 - \frac{T}{0.075}$$

applies where 0,050 m \leq *T* \leq 0,375 m

• $a_u \rightarrow$ is the covering factor

type A and type C

R _{λ, B} m ² · K/W	0	0,05	0,10	0,15
<i>T</i> (m)		4	z u	
0,05	1,069	1,056	1,043	1,037
0,075	1,066	1,053	1,041	1,035
0,1	1,063	1,05	1,039	1,033 5
0,15	1,057	1,046	1,035	1,030 5
0,2	1,051	1,041	1,031 5	1,027 5
0,225	1,048	1,038	1,029 5	1,026
0,3	1,039 5	1,031	1,024	1,021
0,375	1,03	1,022 1	1,018 1	1,015

 $m_{\rm u}$ = 100(0,045 - $s_{\rm u}$) applies where $s_{\rm u} \ge$ 0,010 m

R _{λ, B} m ² · K/W	0	0,05	0,10	0,15
<i>T</i> (m)		a	'D	
0,05	1,013	1,013	1,012	1,011
0,075	1,021	1,019	1,016	1,014
0,1	1,029	1,025	1,022	1,018
0,15	1,04	1,034	1,029	1,024
0,2	1,046	1,04	1,035	1,03
0,225	1,049	1,043	1,038	1,033
0,3	1,053	1,049	1,044	1,039
0,375	1,056	1,051	1,046	1,042

• $a_D \rightarrow$ is the pipe external diameter factor

 $m_{\rm D}$ = 250(D – 0,020) applies where 0,008 m $\leq D \leq$ 0,030 m

$$q = B \cdot a_{\rm B} \cdot a_{\rm T}^{m_{\rm T}} \cdot a_{\rm u} \cdot a_{\rm WL} \cdot a_{\rm K} \cdot \Delta \vartheta_{\rm H}$$

$$B = B_0 = 6,5 \text{ W/(m^2 \cdot \text{K})}$$
is the pipe spacing factor
$$m_{\rm T} = 1 - \frac{T}{0,075}$$

 $a_{\rm u}$ $\,$ is the covering factor, which is calculated in accordance with the following equation:

$$a_{u} = \frac{\frac{1}{\alpha} + \frac{s_{u,0}}{\lambda_{u,0}}}{\frac{1}{\alpha} + \frac{s_{u}}{\lambda_{E}}} \begin{vmatrix} \alpha &= 10.8 \text{ W/(m^{2} \cdot \text{K})}; \\ \lambda_{u,0} &= 10.8 \text{ W/(m^{2} \cdot \text{K})}; \\ \lambda_{u,0} &= 10.8 \text{ W/(m^{2} \cdot \text{K})}; \\ \lambda_{u,0} &= 10.8 \text{ W/(m^{2} \cdot \text{K})}; \\ s_{u,0} &= 0.045 \text{ m}; \\$$

$$q = B \cdot a_{\rm B} \cdot a_{\rm T}^{m_{\rm T}} \cdot a_{\rm u} \cdot \Delta \vartheta_{\rm H}$$
where
$$B = B_0 = 6,5 \text{ W/(m^2 \cdot \text{K}) and}$$

$$a_{\rm T}^{m_{\rm T}} = 1,06;$$

$$a_{\rm u} \quad \text{is the covering factor in accordance with Equation (12);}$$

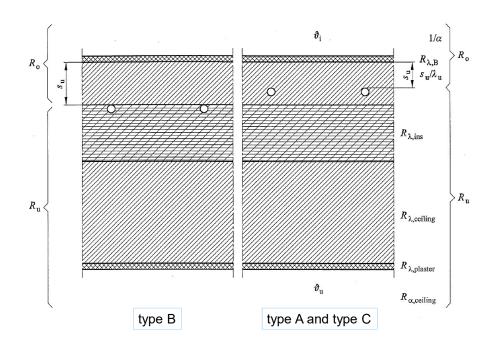
$$a_{\rm B} = \frac{1}{1 + B \cdot a_{\rm u} \cdot a_{\rm T}^{m_{\rm T}} \cdot R_{\lambda, \rm B}}$$

$$a_{\rm u} = \frac{\frac{1}{\alpha} + \frac{s_{\rm u}, 0}{\lambda_{\rm u}, 0}}{\frac{1}{\alpha} + \frac{s_{\rm u}}{\lambda_{\rm E}}}$$

Screed

Floor covering

$$a_{\rm B}$$
 is the floor covering factor:
 $a_{\rm B} = \frac{1}{1 + B \cdot a_{\rm u} \cdot a_{\rm T}^{m_{\rm T}} \cdot R_{\lambda, \rm B}}$ $a_{\rm u} =$

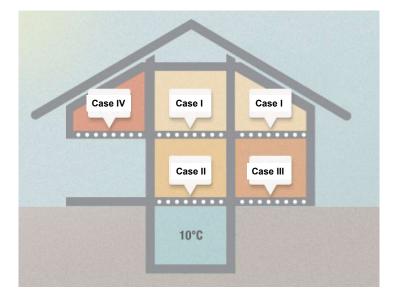

Downward Heat Losses

• The downward specific heat loss towards rooms under the radiant heating system is calculated with the following equation:

$$q_U = \frac{1}{R_U} (R_0 * q + \theta_i - \theta_U)$$

where:

- q_U downward specific heat loss
- q specific thermal output of the floor heating system
- R_{U} downwards partial heat transmission resistance of the floor structure
- R_o upwards partial heat transmission resistance of the floor structure
- $\vartheta_i \qquad \mbox{standard indoor room temperature of the floor heated room}$
- ϑ_{U} indoor room temperature of a room under the floor heated room


• Upwards partial heat transmission resistance of the floor stucture

$$R_0 = \frac{1}{\alpha} + R_{\lambda,\mathrm{B}} + \frac{s_U}{\lambda_U}$$

 $1/\alpha = 0.0926 \frac{m^2 \kappa}{W}$ con $\alpha = 10.8$ • Downwards partial heat transmission resistance of the floor structure

$$R_{U} = R_{\lambda,ins} + R_{\lambda,ceiling} + R_{\lambda,plaster} + R_{\alpha,ceiling}$$

$$1/\alpha = 0.17 \frac{m^{2}\kappa}{w} \quad con \quad \alpha = 5.9$$

	Boundary	Th.	Minimum required thickness [mm]		
Case condition below	Resist. [W/(m² K)]	k = 0.025 W/(m K)	k = 0.035 W/(m K)	k = 0.040 W/(m K)	
I	Heated room	0,75	19	27	29
II / III	Unheated or ground	1,25	31	44	50
IV	Outdoor temp. >0°C	1,25	31	44	50
IV	-5°C < outdoor temp. < 0°C	1,50	38	53	60
IV	-15°C < outdoor temp. < -5°C	2,00	50	70	80

- The total heat flow of the system is the sum of the thermal output of the system (q) and the downwards heat loss (q_U).
- The design water flow rate can be calculated with the following equation:

$$\mathbf{m}_{\mathsf{H}} = \frac{\mathbf{A}_{\mathsf{F}} \cdot \mathbf{q}}{\sigma \cdot \mathbf{c}_{\mathsf{W}}} \cdot \left(1 + \frac{\mathbf{R}_{\mathsf{o}}}{\mathbf{R}_{\mathsf{u}}} + \frac{\vartheta_{\mathsf{i}} - \vartheta_{\mathsf{u}}}{\mathbf{q} \cdot \mathbf{R}_{\mathsf{u}}}\right)$$