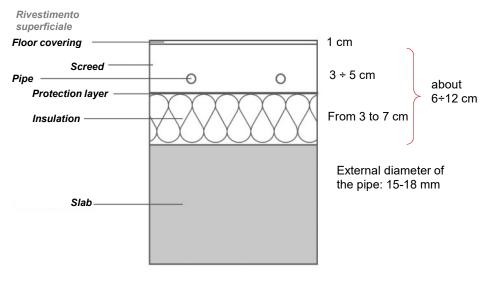


RADIANT SYSTEMS

Radiant systems


- 1. Type of radiant systems
- 2. Heat transfer phenomena
- 3. Sizing radiant systems

1. Types of radiant systems

Classic radiant floor (high inertia)

Standard EN 1264: Type A

Classic radiant systems

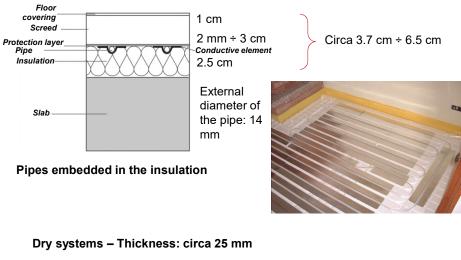
Use: residential buildings and offices

Industrial floor radiant system

Pipes fixed on welded mesh

External diameter of the pipe: 25 mm

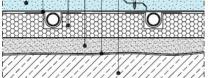
rete elettrosaldata e traliccio di armatura Pipes fixed on welded mesh and pylons armature



TABS: Thermo-Active Building systems

TABS	Application	
System with prefabricated welded mesh	Office buildings and industrial buildings	
Light filling materials in structural slabs	Office Buildings	
Corrugated sheet	Office Buildings	

Low thinckess radiant floor


Use: residential buildings and tertiary buildings

Steel sheet – Thickness: 1 mm Self-levelling screed (with addivites - 30 mm)

Low thickness Radiant systems 1/3

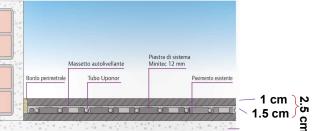
Calciumsilicate sheet thickness: 9 mm Therma conductivity: 0.35 W/(m K) Usual size of the boards: 1.2 m x 1.2 m

Fibrogesso

Calciosilicato

Plaster fibre sheet thickness: da 18 a 25 mm Thermal conductivity : 0.28–0.32 W/(m K) Limit temperature: 45°C

Lastra in acciaio


Steel sheet Limited thickness (2 mm) High conductivity Quick installation Relevant costs

Low thickness Radiant systems 2/3

Pipes inserted in prefabricated panels

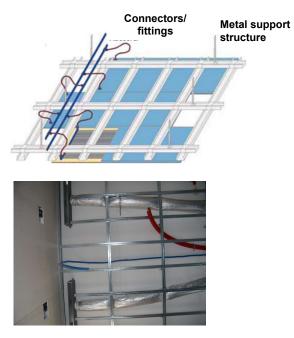
Pipes diameter: 9.9 x 1 mm

Pipes inserted in prefabricated metal structures

6

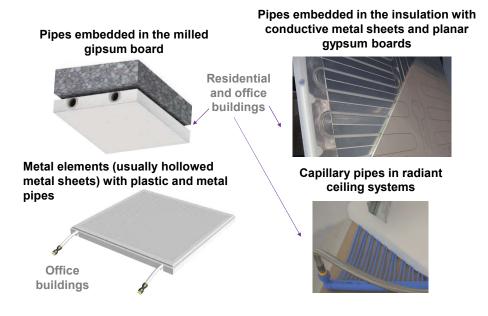
Low thickness Radiant systems 3/3 Tubazioni inserite in un supporto fresato

Pipes inserted in milled in support layer


Modular systems for raised floors

Sistemi radianti modulari per pavimenti flottanti

s = 0 mm


Ceiling radiant systems 1/2

Ceiling radiant systems 2/2

Gipsum board, insulation and pipes. Prefabricated solution

Radiant ceiling Vs. floor

Smaller pipe diameters in the ceiling than in radiant floors (6 ÷ 10 mm external diameter).

In ceiling shorter water circuits than floor radiant systems.

Lower water velocity in ceiling radiant systems than in floor radiant systems. Temperature difference:

	Heating	Cooling
Floor	3÷7	2÷3
Ceiling	2÷3	3÷4

In both systems the perimetral strip has to be installed. As an alternative the radiant ceiling has to be finished above the wall.

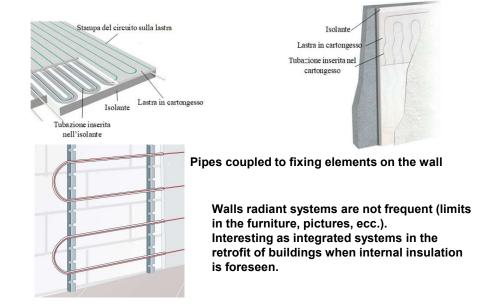
The ceiling can have sound-absorbing characteristics: acoustic comfort possibility combined with the hollow structure.

With radiant floor the screed has to be decoupled acoustically for tapping noise.

Perimetral strip

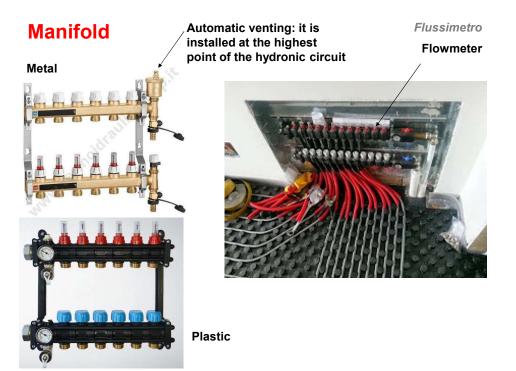
The perimetral strip allows the expansion of the support layer embedding the pipes

The standard EN 1264 declares that the minmum thickness of the perimetral strip has to allow at least 5 mm expansion. Usually the thicnkess varies from 5 to 8 mm.


Important: surround pillars and stairs, if any

Walls radiant systems 1/2

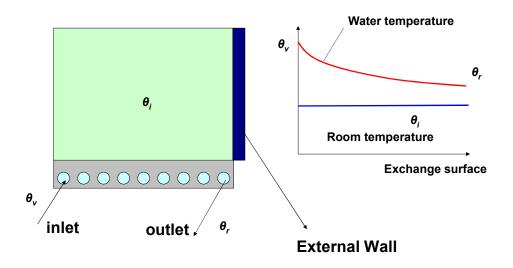


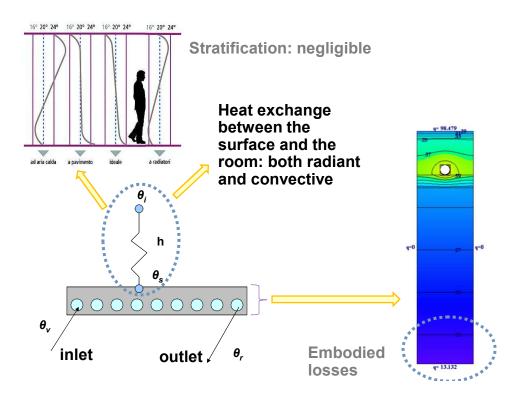

Walls radiant systems 2/2

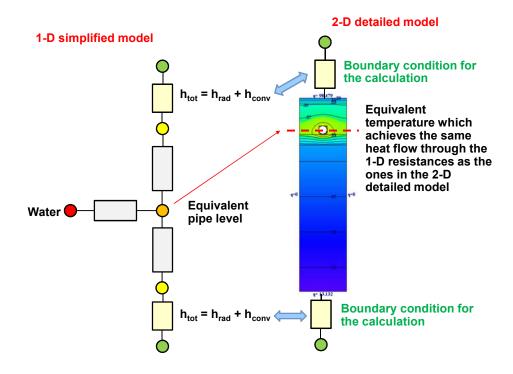
Pipes embedded in prefabricated panels (similar to radiant floors)

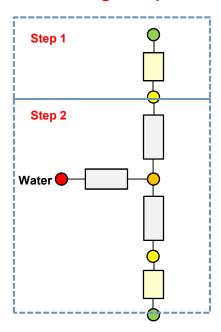
Components of a radiant system

Usual screed



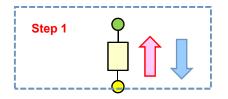

Self-levelling screed





2. Heat transfer phenomena

Design steps for sizing the radiant system


Useful heat exchange between the surface and the room = f (indoor temperature, peak load, surface orientation, local discomfort parameters)

Heat exchange between the water and the structure = f (surface orientation, pipe diameter, layer, surface finishing, pipes spacing)

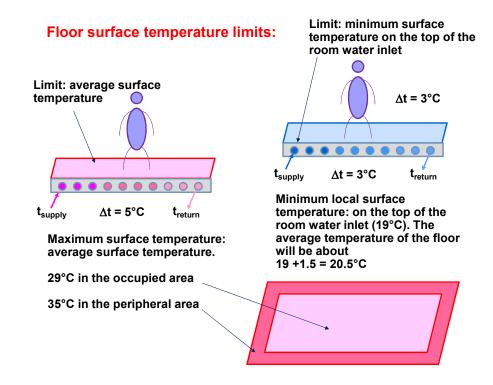
Step 1: heat exchange between the surface and the room

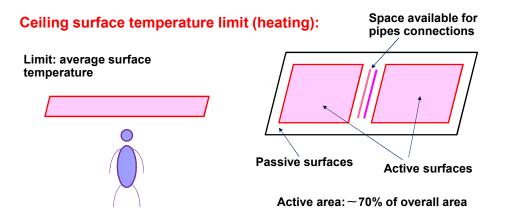
Overall surface heat exchange coefficients

System Type		RADIANT [W(m² K)]	CONVECTIVE [W(m ² K)]	TOTAL [W(m² K)]
	Heating	5.5	5.5	11
Floor	Cooling	5.5	1.5	7
Wall	Heating	5.5	2.5	8
	Cooling	5.5	2.5	8
Ceiling	Heating	5.5	0.5	6
Centry	Cooling	5.5	5.5	11

Specific Peak Load q:

q = Peak power / active area [W/m²]

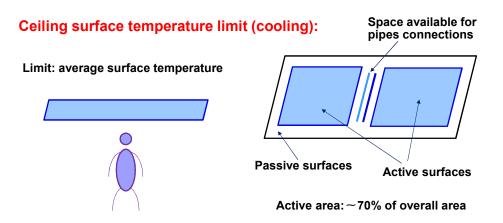

 $\mathbf{q} = \mathbf{h}_{tot} \mathbf{x} \mid \mathbf{t}_{surf} - \mathbf{t}_i \mid \qquad [W/m^2]$


To compare against the maximum/minimum allowable temperature for local discomfort

Maximum flow rate: flow rate with the maximum (in heating) and minimum (in cooling) allowable temperature for the surface

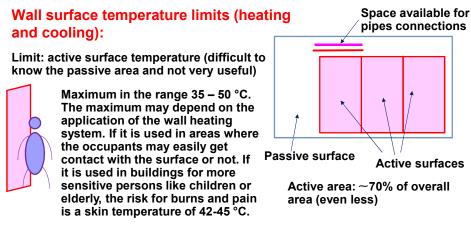
Heating: $q_{max} = h_{tot} x | t_{surf, max} - t_i | [W/m^2]$

Cooling: $q_{max} = h_{tot} x | t_{surf, min} - t_i | [W/m^2]$



Maximum surface temperature of active area: radiant vertical asymmetry 5°C

Usually it is a difficult parameter to calculate in design phase. Hence approximately it is estimated as a maximum surface temperature. This parameter is under discussion and recently the temperatures have been risen compared to the past (when a suggested temperature of 30-32°C was provided). The following temperature can be used:


t_{max} =35°C in the active area

Minimum surface temperature of active area: not a question of radiant vertical asymmetry.

The minimum temperature depends on the dew point temperature. In general the following temperature can be assumed for the active area:

 t_{min} =18°C in the active area

The losses to the backside must be considered.

 t_{max} =40°C in the active area

The minimum temperature depends on the dew point temperature. In general the following temperature can be assumed for the active area:

t_{min} =18°C in the active area

Maximum specific power of a radiant system

			t _{min} /t _{max} [°C]	h _{tot} [W/(m² K)]	t _i [°C]	q _{max} [W/m²]
FLOOR Periphera	Occupied	Heating	29	11	20	100
		Cooling	20	7	26	40
	Perinheral	Heating	35	11	20	165
	renpileiai	Cooling	19	7	26	50
CEILING Overal area	Active area	Heating	35	6	20	90
	Active area	Cooling	18	11	26	88
	Overal area	Heating	30.5	6	20	63
	Overal area	Cooling	20.5	11	26	60
WALL Act	Active area	Heating	40	8	20	160
	Active alea	Cooling	19	8	26	55