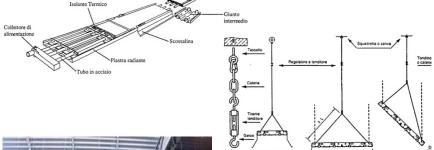

Radiant systems

Radiation form different surfaces

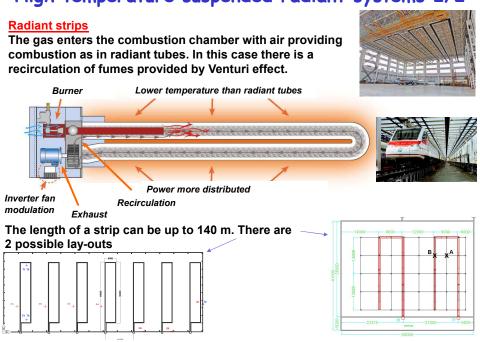


Let us consider a panel with surface temperature $t_{\mbox{\tiny p}}$ and a room at 20°C

$$q / A = \sigma_n \epsilon (T_p^4 - T_s^4)$$

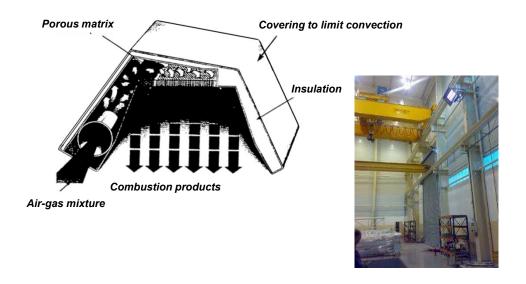
t _p [°C]	$T_p[K]$	q/A [W/m²]
28	300	43
50	322	180
100	372	613
200	472	2'181
400	672	10'101

Water based suspended radiant systems

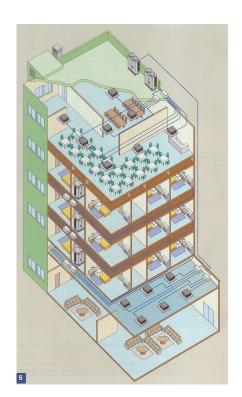


Water at 90°C or pressurized water or vapour at 110-130°C. Length from 4 m to 6 m. Modular solution

High temperature suspended radiant systems 1/2


The gas enters the combustion chamber with air providing combustion. AIR GAS FUMES Combustion fumes flow inside the radiant tube and they exchange heat with the room. Surface temperature 300°C-400°C Length from 5 m to 15 m (from 15 to 50 kW). The fan is installed on the exhaust soa s to provide depression to avoid fumes in the room

High temperature suspended radiant systems 2/2


Radiant Luminous Systems

The combustion chamber is in the ambient (need of adequate ventilation or open spaces

5. DIRECT EXPANSION UNITS

WATER AND AIR-WATER BASED SYSTEMS

Heating operation

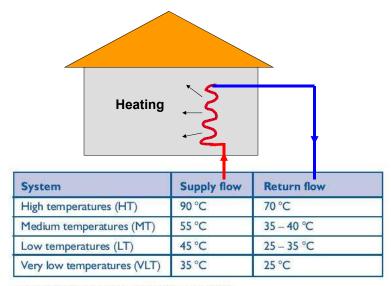
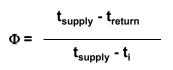
In the past the heating systems have been designed and they were supposed to operate at high temperature, due to the use of combustion boilers.

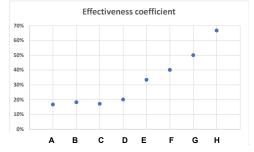
Hence the usual temperature in the '70ies was 90°C or even vapour or high pressure hot water.

In the '90ies the condensing boilers were introduced reducing the water temperature at 60°C or even less.

The increase use of radiant systems and of the heat pumps has also lead to further reduction of the water temperature in the building

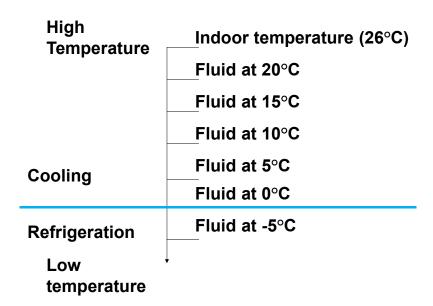
Usual temperatures in heating systems

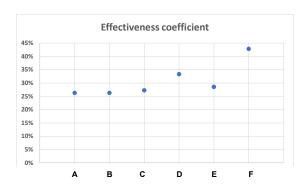




Table 1. Definition of temperature ranges for heating designs

Effectiveness coefficient in heating

It is a qualitative parameter which is not useful for sizing the systems, but it is interesting to show the qualitative efficiency for


heating solutions:


		Supply Temp.	Return Temp.	Effectiveness coefficient
Α	High temperature radiators (70ies)	80	70	17%
В	Mid temperature radiators (90ies)	75	65	18%
С	Low temperature radiators (today)	55	49	17%
D	Fan-coil	45	40	20%
E	Chilled beams	35	30	33%
F	Radiant systems (90ies)	35	29	40%
G	Radiant systems (2000)	30	25	50%
Н	Radiant systems (today)	26	22	67%

Temperatures in cooling

Effectiveness coefficient in cooling

		Supply	Return	Effectiveness
		Temp.	Temp.	coefficient
Α	Fan coils	7	12	26%
В	All air/dehumidification	7	12	26%
С	Fan beams	15	18	27%
D	Radiant ceiling	17	20	33%
Е	Radiant floor	19	21	29%
F	TABS	19	22	43%

Hydronic terminal units

- Radiators
- Finned coils/baseboard
- Convector heating system
- Fan-coils
- Active beams / chilled beams
- Unit heaters
- Radiant systems