
COOLING LOAD CALCULATION 
 

Heat Gain and cooling load 
 

Most of the dynamic  models are based on the shift in time of the heat gain which occurs in a 

certain time step due to the thermal inertial of the building structures. As a matter of fact usually 

there is a clear division between the heat gain, which is defined as the actual thermal solicitation, 

and the load that a cooling system has to extract (i.e. the cooling load), which is the effective 

load considering the effect of the building structures in terms of thermal inertia as storage and 

later released of the thermal energy embedded in the structures (Figure 1). Therefore cooling 

load is the rate at which heat must be removed from the space to maintain a constant space air 

temperature. The sum of all space instantaneous heat gains at any given time does not 

necessarily (or even frequently) equal the cooling load for the space at that same time. The 

integral of energy of the heat gain over one day has to be the same of the cooling load. 

 

 
Figure 1: Graphical view of a step-wise constant heat gain and related cooling load  

 

 

Method based on equivalent temperature difference 
 

This is one of the oldest methods which is in use by practitioners for determining the sensible 

cooling load of a room. It is based on the superposition of different solicitations may be summed 

based on the superposition technique. 

For each hour of the day, the following equation can be written: 
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The convective heat flow qg due to the incoming and outgoing air rates in the room can be 

calculated via these two equations equation (equation 2 for the mechanical ventilation and 

equation 3 for infiltration): 

 

 qg = Ga cp (timm -ta)        (2) 

 

 qinf = Ga cp (te -ta)        (3) 
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As for the conduction through elements, windows are supposed to have no capacity, therefore 

for each k-th surface the following heat flow can be calculated: 
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As for the conduction through walls different behaviour of the structures are supposed, 

depending on the latitude of the site, on the orientation and on the colour of the wall, on the 

hour of the day and on the specific mass of the wall per surface area (mf). Depending on the 

combination of these parameters, for each i-th surface the following heat flow can be calculated: 
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where the teq,i is the equivalent temperature difference which includes the sol-air temperature 

and the shift in time of the thermal capacity of the wall, as reported in Figure 2.a. As for the 

thermal capacity of outer walls, the following equation is used: 
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where q is the density of each layer composing the wall and sq its thickness. 

 

  

a b 

Figure 2: Equivalent difference of temperature for a clear grey South wall (a) and attenuation 

factor for the solar radiation entering the room as a function of the thermal capacity of the 

room for a window facing South (b) 

 

The effect of solar radiation through glazing components can be evaluated by means of the 

following equation: 
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where Ix,k is the maximum solar radiation on the considered orientation passing through the 

reference glass (depending on latitude, time of the year and orientation), Cs,k is the shading 

coefficient, and fa,k is the attenuation factor of the room, which is calculated based on the overall 

thermal inertia of the room. The thermal capacity of the room MR is calculated as  
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where the thermal inertia of the j-th generic wall facing outside has to be considered as a whole, 

while the r-th internal wall is counted for half of the thermal capacity. The overall weight of the 

room is divided by the floor area Sf. As an example, in Figure 2.b the attenuation factor for a 

window facing South is shown as a function of the room mass. 

As for the internal gains, convective and radiant gains are considered together and multiplied by 

the internal gain storage factor fs,j, as follows: 
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The storage factor depends on the duration of the presence of the internal gains and on the 

specific mass of the room MR. The storage factor begins (time step 0, as reported in Figure 3) 

when the internal gain starts.  

 

 
Figure 3: Storage factor for 10 hours internal gains in a room as a function of the thermal 

capacity of the room  

 

The method is easy to implement and has been widely used. Some lacks in accuracy derives by 

the fact that the mass involved in dumping the solar radiation and in storing the internal gains 

do not consider the position of insulation material on the outer walls. A more detailed method is 

the one presented hereafter. 
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QUASI STEADY STATE MODEL FOR THE ENERGY 
DEMAND 
 

The quasi-steady state model has been the basis for the standard ISO EN 13790, for determining 

sensible heating and cooling demand. The reference calculation step could be monthly or 

seasonal.  

The building energy need for space heating and cooling in the reference period for a room with 

this method is based on a single equation, respectively equation (10) for the heating period and 

equation (12) for the cooling period. The average values of the weather conditions are considered 

(average solar energy and mean outdoor temperature). As shown in detail hereafter, due to the 

use of a parameter which considers intrinsically the thermal behaviour of the structures via the 

time constant of the room, the method is called quasi steady state. 

This method is the basis of the energy certifications in Europe and it is the most widely used. It 

is more accurate for determining the energy demand in heating season rather than in cooling 

season, mainly due to the difference between indoor and outdoor temperatures. 

 

4.3.1 Building energy demand for space heating 
The building energy need for space heating in the reference period for a room (QH,nd) for 

conditions of continuous heating, is calculated as given by the following equation: 
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where QH,ht is the total heat transfer for the heating mode, QH,gn gives the total heat loads (solar 

radiation and internal loads) for the heating mode and H,gn is the dimensionless gain utilization 

factor. 

This last coefficient considers the fact that not all the heat loads can be fruitfully used. As shown 

in Figure 4, during a typical day in heating season the building has losses, which are typically 

higher in night time (lower outdoor temperatures) and lower during the day (higher 

temperatures). As for heat loads, they have usually a peak during the day, due to the solar 

radiation. As shown before, when a heat gain occurs it needs some time before it appears clearly 

and, at the same time, when it stops it needs some time in order to disappear. This delay time 

is due to the thermal inertia of the room, i.e. by the time constant of the room (defined  as a 

combination of the capacitance of the building and its overall resistance), since the heat gain 

has to be first partially stored and then released by the structures. 

Considering again Figure 4, the heat load QH,gn is useful if it is lower than the amount of heat 

loss, therefore the heating energy demand is represented by the area between the two profiles. 

When the heat load exceeds the heat loss the surplus of heat gain QH,gn,extra is not useful, hence 

it cannot be included in the calculations. Therefore the efficiency in the use of internal gains can 

be calculated as: 
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Figure 4: Heat losses and heat gains in an average day in winter period 

 

4.3.2 Building energy demand for space cooling 
 

The building energy need for space cooling in the reference period for a room (QC,nd) for 

conditions of continuous cooling, is calculated as given by the following equation: 
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where QC,gn gives the total heat gains (solar radiation and internal loads) for the cooling mode, 

QC,ht is the total heat transfer for the cooling mode and C,ht is the dimensionless utilization factor 

for heat losses. 

The definition of the utilization factor for the heat losses can be understood by using Figure 5. 

In the cooling period the heat load has a peak during the day, mainly due to solar radiation. The 

shape of the heat load curve is smoothed, due to the effect of the structures and the time 

constant of the room. The heat loss shape is similar to the one in winter time, but the average 

value is lower due to the reduced temperature difference between indoor and outdoor in summer 

time and, in the afternoon, it becomes negative, since the outdoor temperature is higher than 

the indoor temperature. The negative heat loss is called Q-
C,ht and it becomes an extra load to 

be removed by the cooling system, which has to face the amount of energy QC,gn,extra + |Q-
C,ht| 

(pink and red areas in Figure 5). During night time the heat loss might exceed the heat load, 

thus leading to a free cooling. In any case the surplus of heat loss (QC,ht,extra) cannot be used, 

hence the useful part of the heat loss for free cooling is QC,ht - QC,ht,extra - |Q-
C,ht|.  

Therefore, the utilization factor for heat losses can be calculated as the useful part of heat loss 

and the overall amount of heat loss (QC,gn - |Q-
C,ht|): 
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Figure 5: Heat losses and heat gains in an average day in summertime 
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