Febremory $23^{\text {d }}, 2023 \quad 2301.23$
Static games in normal form Choice of strategies

- Dominating strategies
- MiniMax Theorem (von Newmann)
bum Saddle points existence not guaranteed

Nash Equilibrium

A set of strategies constitutes a Nash equilibrium if no single player is interested in changing his strategy unless one of the other players changes his own.

Keeping the choices of other players fixed, max J Nobody is interested in changing his own.

Example with No saddle point but there exists 1 Nash equilibria

Set of strategies (a, $\boldsymbol{\beta}$) s.t.:
Knowing that G1 playes a then for G2 has not choise (convenience) but to play $\boldsymbol{\beta}$ Knowing that G2 playes $\boldsymbol{\beta}$ then for G1 has not choise (convenience) but to play a

Example with No saddle point but there exist 2 Nash equilibria

Set of strategies (a, $\boldsymbol{\beta}$) s.t.:
Knowing that G1 playes a then for G2 has not choise (convenience) but to play $\boldsymbol{\beta}$ Knowing that G2 playes $\boldsymbol{\beta}$ then for G1 has not choise (convenience) but to play a

G2
α
β

G1 | a | b |
| :--- | :--- |\(\left[\begin{array}{cc}\boldsymbol{\alpha} \& \boldsymbol{\beta}

(-3,-2) \& (2,0)

(0,2) \& (1,1)\end{array}\right]\)

CAR RACE / Chichens gome

1	Devige	Siroighi
D	$(5,5)$	$(1,8)$
S	$(8,1)$	$(-2,-2)-2$
	-2	

MATCHING PENNY \sim Scissor PRepoe Stome

A^{\prime}	$H \quad T$	
H	$(1,-1)(-1,1)$	-1
T	$(-1,1)(1,-1)$	-1

7 Dom STzAl
7 saddle poimi
F Nasb eq. for
\exists mixed sirategies PURE STRATEGIES

$$
A\left\{\begin{array} { l l }
{ H } & { T } \\
{ p } & { (1 - p) }
\end{array} \quad M \left\{\begin{array}{ll}
H & T \\
q & (1-q)
\end{array}\right.\right.
$$

Expecred
$\xlongequal{A}\left\{\begin{array}{cccc}1 & -1 & -1 & 1 \\ p q & p(1-q) & (1-p) q & (1-p)(1-q)\end{array} \begin{array}{l}E(\pi A)=\cdots \\ \frac{\partial E(\pi A)}{\partial p} \rightarrow q=\frac{1}{2}, p=\frac{1}{2}\end{array}\right.$

Nash equilibria for static games

Existence of Nash equilibrium Kakutani fixed point theorem for multivalued maps. Consequence of the classical Brouwer fixed point theorem.

In a zero-sum game, if a Nash equilibrium exists, then all Nash equilibria yield the same payoff \vee (value of the game) (von Neumann)

Nash Equilibrium Existence Theorem

(1950)

In a finite game there exists at least one Nash equilibrium (eventually mixed strategies)

P2

$\left(u_{i}{ }^{N}, u_{-i}{ }^{N}\right)$ Nash equilibrium

$$
J^{i}\left(u_{i}^{N}, u_{-i}^{N}\right)>J^{i}\left(u_{i}, u_{-i}^{N}\right) \text { for all } u_{i} \in U^{i}
$$

Nash Equilibrium

- There might be other combination of strategies that increase the payoff of some players without reducing the payoffs of the others. Or, more, that increase the payoff of all players: Prisoners' dilemma.

Prisoners' Dilemma

- If only one confesses, and puts the blame on the other one, then he is set free and the other will be sentenced to 6 years of jail;
- If both confess, they will be sentenced to 5 years.
- If neither one confesses, they will be sentenced to 1 year.

$$
\begin{gathered}
\\
C \\
N C
\end{gathered}\left[\begin{array}{cc}
C & N C \\
(-5,-5) & (0,-6) \\
(-6,0) & (-1,-1)
\end{array}\right] \begin{array}{cc}
& \begin{array}{c}
\\
-5
\end{array} \\
-6
\end{array}
$$

Prisoners' Dilemma A

Prisoners' Dilemma B

Prisoners' Dilemma

Prisoners' Dilemma
 Nash equilibrium

Nash Equilibrium

- Existence and uniqueness is not guaranteed
\rightarrow There might exist more that one NE
- It gives solution when there might be uncertainty
- Each player does what is better for him (noncooperative)
- It might not be the better solution for everybody.
- Someone might increase his payoff moving far from the equilibrium. Nash Equilibrium might not be Pareto Optimum.

Nash equilibrium

Noncooperative simultaneous game

- Symmetric Information structure

$$
\begin{aligned}
& u_{2} \in U^{2}
\end{aligned}
$$

Stackelberg game

Noncooperative sequential game

- Asymmetric information structure

1. LEADER: declares his action u_{L}
2. FOLLOWER: computes his best response $u_{F}\left(u_{L}\right)$ (to any Leader's strategy u_{L})
3. LEADER: computes his optimal Stackelberg strategy $u_{L}{ }^{s}$
4. FOLLOWER: adjust his strategy to obtain the Stackelberg strategy $u_{F}{ }^{s}$

$\operatorname{Max} J_{L}\left(u_{L}, \bar{u}_{F}\left(u_{L}\right)\right)$
$u_{\mathrm{L}} \in U^{\mathrm{L}}$

$$
\left(u_{L}{ }^{s}, u_{F}{ }^{s}\right)
$$

Coordination game
Cooperative simultaneous game

- Symmetric information structure

$\left(u_{1}^{c}, u_{2}^{e}\right) \rightarrow J^{C}$..S? How can we shore T?
Bargaining ~ Raionalky / fair
$\frac{\text { Nash Bargaining Solution } \frac{18-(7+10)}{m}=1 / 2.1 / 2 \quad F=10+1 / 2}{m}=1 / 2$ $A: 7+1 / 2 \quad F=10+1 / 2$

Example Cournot duopoly

static game with infinite strategy sets

$$
J_{1}=\left(\alpha-\beta\left(Q_{1}+Q_{2}\right)\right) Q_{1}-K_{1} Q_{1}^{2} \text { peris } \quad J_{2}=\left(\alpha-\beta\left(Q_{1}+Q_{2}\right)\right) Q_{2}-K_{2} Q_{2}^{2}
$$

NASH: $\left(\mathrm{Q}_{1}{ }^{\mathrm{N}}, \mathrm{Q}_{2}{ }^{\mathrm{N}}\right)=\left(\frac{\alpha}{2 K_{1}+3 \beta}, \frac{\alpha}{2 K_{2}+3 \beta}\right) \nless$
Symm.case $\alpha=\beta=1, K_{i}=0 \Rightarrow\left(\mathrm{Q}_{1}{ }^{\mathrm{N}}, \mathrm{Q}_{2}{ }^{\mathrm{N}}\right)=(1 / 3,1 / 3) . \mathrm{J}_{1}{ }^{\mathrm{N}}=\mathrm{J}_{2}{ }^{\mathrm{N}}=1 / 9$
STACKELBERG: $(\mathrm{QLS}, \mathrm{QFS})=\left(\frac{\alpha\left(1-\frac{\beta}{2\left(K_{F}+\beta\right)}\right)}{2\left(K_{L}+\beta\right)-\beta^{2} /\left(K_{F}+\beta\right)}, \frac{\left.\alpha-\beta{Q_{L}{ }^{S}}_{2\left(K_{F}+\beta\right)}\right)}{\square}\right.$
Symm. case $\alpha=\beta=1, K_{i}=0 \Rightarrow\left(\mathrm{Q}_{1}{ }^{\mathrm{S}}, \mathrm{Q}_{2}{ }^{\mathrm{S}}\right)=(1 / 2,1 / 4) \mathrm{J}_{\mathrm{L}}^{\mathrm{S}}=1 / 8, \mathrm{~J}_{\mathrm{F}}{ }^{\mathrm{S}}=1 / 16$

$$
\begin{aligned}
& \frac{1}{16}<\frac{1}{9}<\frac{1}{8} \\
& \stackrel{1}{F}_{F}<J_{N}<J_{L}
\end{aligned}
$$

COOPERATIVE: Symm. case $\alpha=\beta=1, K_{i}=0 \Rightarrow \mathrm{~J}^{\mathrm{C}}=2 / 9=\mathrm{J}_{1}{ }^{\mathrm{N}}+\mathrm{J}_{2}{ }^{\mathrm{N}}$

$$
\mathrm{J}^{\mathrm{C}}>\mathrm{J}_{1} \mathrm{~N}^{2}+\mathrm{J}_{2} \mathrm{~N}
$$

Nosh
$\operatorname{mox} J_{1}\left(Q_{1}, Q_{2}\right)$
Q,

$$
\left\{\begin{array}{l}
\frac{\partial J_{1}}{\partial Q_{1}}=\alpha-\beta\left(Q_{1}+Q_{2}\right)-\beta Q_{1}-2 k_{1} Q_{1}=0 \\
\frac{\partial J_{2}}{\partial Q_{2}}=\alpha_{1} \beta\left(Q_{1}+Q_{2}\right)-\beta Q_{2}-2 k_{2} Q_{2}=0 \\
\sim \beta Q_{1}-2 k_{1} Q_{1}+\beta Q_{2}+2 k_{2} Q_{2}=0 \\
\left(\beta+2 k_{2}\right) Q_{2}=\left(\beta+2 k_{1}\right) Q_{1}
\end{array}\right.
$$

Sincherberg $\frac{\partial J_{F}}{\partial Q_{F}}=\alpha-\beta\left(Q_{L}+Q_{F}\right)-\beta Q_{F}-2 K_{F} Q_{E}=0$

$$
Q_{F}^{\beta R}\left(Q_{L}\right)=\frac{\alpha-\beta Q_{L}}{2 \beta+2 K_{F}} \rightarrow Q_{F}^{B R} \text { im }
$$

$$
J_{L}=\left(\alpha-\beta\left(Q_{L}+\frac{\alpha-\beta Q_{L}}{2 \beta+2 K_{F}}\right)\right) Q_{L}-K_{L} Q_{L}^{2}
$$

mos $\cdot \frac{\partial \mathbb{I}_{L}}{\partial Q_{L}}=0$.

$$
Q_{L}^{S}
$$

