Mooch, $9^{\text {Th }}, 2023$

Linear Quadratic and Linear State games

Alessandra Buratto

Games with special structures

Desirable characteristics:

- Analytical tractability
- Time consistency

Special structures:

- Linear-Quadratic (LQ)
- Linear-State (LS)
- Exponential (E) - can be transformed into (LS)

Linear Quadratic games

Linear dynamics and quadratic payoff functions

Ex: 2 players

$$
\begin{aligned}
\min J^{1} & =\frac{1}{2} \int_{0}^{T} e^{-r t}\left[g_{1}(x(t))^{2}+g_{2}\left(u_{1}(t)\right)^{2}\right] d t+\alpha_{1}(x(T))^{2} \\
\min J^{2} & =\frac{1}{2} \int_{0}^{T} e^{-r t}\left[m_{1}(x(t))^{2}+m_{2}\left(u_{2}(t)\right)^{2}\right] d t+\alpha_{2}(x(T))^{2} \\
& \dot{x}(t)=a(t) x(t)+b(t) u_{1}(t)+c(t) u_{2}(t) \\
& x(0)=0 \\
& u_{1}(t), u_{2}(t) \in \mathcal{R}
\end{aligned}
$$

Observation: Here there are homogeneous cost functions just to simplify computation

Equilibria for LQ games

- Analytical tractability

OLNE and MNE easy to be obtained analytically

- Time consistency OLNE NOT subgame perfect MNE subgame perfect

Bressan (2011)
Dockner (2000)
Engwerda (2005) - LQ Dynamic Optimization and Differential Games

OLNE for LQ game: Example (constant coefficients)

$$
\begin{aligned}
& H_{1}^{C}\left(x, u_{1}, p_{1}, t\right)=-\frac{1}{2}\left(g_{1} x^{2}+g_{2} u_{1}^{2}\right)+p_{1}\left(a x+b u_{1}+c u_{2}\right) \\
& H_{2}^{C}\left(x, u_{1}, p_{1}, t\right)=-\frac{1}{2}\left(m_{1} x^{2}+m_{2} u_{2}^{2}\right)+p_{1}\left(a x+b u_{1}+c u_{2}\right)
\end{aligned}
$$

If $T<+\infty \quad p_{1}(T)=0, \quad p_{2}(T)=0$
$\max _{u_{i} \in \mathcal{R}} H_{i}^{C}$

$$
u_{1}(t)=\frac{b}{g_{2}} p_{1}(t) \quad u_{2}(t)=\frac{c}{m_{2}} p_{2}(t)
$$

$$
\begin{aligned}
& \dot{p}_{1}(t)=-\frac{\partial H_{1}^{c}}{\partial x}=g_{1} x(t)+(r-a) p_{1}(t) \\
& \dot{p}_{2}(t)=-\frac{\partial H_{2}^{c}}{\partial x}=m_{1} x(t)+(r-a) p_{2}(t)
\end{aligned}
$$

co-siate eq.s are coupled with the dymonics

Canonical System

$$
\left\{\begin{array}{l}
\dot{x}(t)=a x(t)+\frac{b^{2}}{g_{2}} p_{1}(t)+\frac{c^{2}}{m_{2}} p_{2}(t), \quad x(0)=0 \\
\dot{p}_{1}(t)=g_{1} x(t)+(r-a) p_{1}(t), \quad p_{1}(T)=0 \\
\dot{p}_{2}(t)=m_{1} x(t)+(r-a) p_{2}(t), \quad p_{2}(T)=0
\end{array}\right.
$$

$$
\underbrace{\left(\begin{array}{c}
\dot{x} \\
\dot{p}_{1} \\
\dot{p}_{2}
\end{array}\right)}_{\dot{Y}}=\underbrace{\left(\begin{array}{ccc}
a & b^{2} / g_{2} & c^{2} / m_{2} \\
g_{1} & r-a & 0 \\
m_{1} & 0 & r-a
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{c}
x \\
p_{1} \\
p_{2}
\end{array}\right)}_{Y}
$$

can be solved analitically
look for eigen values $\operatorname{det}(A-\lambda I)=(\lambda-r+a)^{2}(\lambda-a)-(\lambda-r+a) M=0$ where $M=c^{2}\left(m_{1} / m_{2}\right)+b^{2}\left(g_{1} / g_{2}\right)>0$

$$
\begin{aligned}
& \quad Y=\sum_{i=1}^{3} \\
& \lambda_{1}=\frac{r}{2}-\sqrt{\frac{r^{2}}{4}-a(r-a)+M} \\
& \lambda_{2}=\frac{r}{2}+\sqrt{\frac{r^{2}}{4}-a(r-a)+M}>0 \\
& \lambda_{3}=r-a
\end{aligned}
$$

$$
x(t)=h\left(g_{1}, g_{2}, m_{1}, m_{2}, x_{0}\right)
$$

OLNE

$$
\left(\Phi_{1}, \Phi_{2}\right)=\left(\frac{b}{g_{2}} \frac{w_{21}}{w_{11}} e^{\lambda_{1} t} x_{0}, \frac{c}{m_{2}} \frac{w_{21}}{w_{31}} e^{\lambda_{1} t} x_{0}\right)
$$

it is NOT markovian, NOT subgame perfect See paper Li Yu et al "A new feedback form of open-loop stackelberg strategy in a general linear-quadratic differential game." (2022)

MNE for LQ games

Hamilton Jacobs Bellman equation turns out to be quadratic in x Quadratic value function:

Homogeneous case:
V $(x, t)=\frac{1}{2} v_{i}(t) x^{2}$ if $T<+\infty$ Finite Time hotezon
$V_{i}(x, t)=\frac{1}{2} \frac{v_{i} x^{2}}{\xi}$ if $T=+\infty \quad$ infinite Time hozizon
(STeady sian solutions)

Non Homogeneous case: $V(x, t)=x^{2}+\beta(t) x+\gamma(t)$
Linear feedback strategies $\alpha(t) \quad \overline{\alpha(t)} \overline{\alpha(t)}$

$$
\left(\Phi_{1}(x, t), \Phi_{2}(x, t)\right)=\left(\frac{b}{g_{2}} v_{1}(t) x, \frac{c}{m_{2}} v_{2}(t) x\right)
$$

Definition (Linear - State games)

Linear - State games

Definition (Linear - State game)

$$
\begin{gathered}
J^{i}=\int_{0}^{T} e^{-r t} L_{i}\left(x(t), u_{i}(t), u_{2}(t), t\right) d t+e^{-r T} S_{i}(x(T) \\
\dot{x}(t)=f\left(x(t), u_{1}(t), u_{2}(t), t\right)
\end{gathered}
$$

Define $\tilde{H}_{i}\left(x, u_{1}, u_{2}, p_{i}, t\right)=L_{i}\left(x(t), u_{1}, u_{2}, t\right)+p_{i} f\left(x(t), u_{1}, u_{2}, t\right)$
i)

$$
\frac{\partial^{2} \tilde{H}_{i}}{\partial x^{2}}\left(x, u_{1}, u_{2}, p_{i}, t\right)=0, \quad \frac{\partial^{2} S_{i}(x)}{\partial x^{2}}=0
$$

ii)
wheneare $\left.\frac{\partial \tilde{H}_{i}}{\partial u_{i}}\left(x, u_{1}, u_{2}, p_{i}, t\right)=\underset{0}{\Rightarrow} \Rightarrow \frac{\partial^{2} \widetilde{H_{i}}}{\partial u_{i} \partial x}\left(x, \stackrel{\rightharpoonup}{u_{1}}, u_{2}, p_{i}, t\right)\right\}=0$

Linear state game: Sufficient conditions

Proposition (Sufficient conditions)

If there is no multiplicative interaction between the state $x(t)$ and the controls $u_{i}(t)$, then the game is Linear-State

$$
\frac{\partial^{2} \tilde{H}_{i}}{\partial u_{1} \partial x}\left(x, u_{1}, u_{2}, p_{i}, t\right)=\frac{\partial \tilde{H}_{i}^{2}}{\partial u_{2} \partial x}\left(x, u_{1}, u_{2}, p_{i}, t\right)=0 \underset{<\neq}{\Rightarrow} \text { Linear State }
$$

Example: addilive coniribexions

$L_{i}\left(x(t), u_{1}, u_{2}, t\right)=c_{i}(t) x(t)+k\left(u_{1}(t), u_{2}(t), t\right)$
$\dot{x}(t)=A(t) x(t)+g_{1}\left(u_{1}(t), u_{2}(t), t\right)=f\left(x(t), u_{1}, u_{2}, t\right)$
$S_{i}(x)=W_{i} x$ Linear in x

Linear state game: Sufficient conditions example

$x(t)$ stock of knowledge
$u_{i}(t)$ investment of player i in public knowledge

$$
\begin{gathered}
\dot{x}(t)=u_{1}(t)+u_{2}(t)-a x(t) \\
\max J_{i}=\int_{0}^{T} e^{-r t}\left[x(t)-k_{i}\left(u_{i}(t)\right)\right] d t+e^{-r T} W_{i} x(T)
\end{gathered}
$$

$$
\begin{aligned}
& \tilde{H}_{i}\left(x, u_{1}, u_{2}, p_{i}, t\right)=x-k_{i}\left(u_{i}\right)+p_{i}\left(u_{i}+u_{j}-a x\right) \\
& \frac{\partial \tilde{H}_{i}}{\partial u_{i}}=-k_{i}^{\prime}\left(u_{i}\right)+p_{i} \stackrel{\Delta \Delta a}{\Rightarrow}, k_{i}^{\prime}\left(u_{i}\right)=p_{i}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{p}_{i}(t)=-\frac{\partial \tilde{H}_{i}}{\partial x}+r p_{i}(t)=-1+(a+r) p_{i}(t) \Rightarrow p(t)=M e^{(a+r) t}+\frac{1}{a+r} \\
& \Rightarrow \text { OLNE subgame perfect depend anst }
\end{aligned}
$$

Linear state game: Not Necessary conditions example

2 Firms producing durable goods.
$s_{i}(t)$ sales of firm $i \quad X_{i}(t)$ accumulated sales of firm i up to time t $\dot{X}_{i}(t)=s_{i}(t)=\alpha_{i}(t)\left(M-X_{1}(t)-X_{2}(t)\right)$
Assuming α_{i} depend on price strategies $u_{i}(t)$ and defining the state of the game $x(t)=M-X_{1}(t)-X_{2}(t)$

$$
\dot{x}(t)=-\left[\alpha_{1}\left(u_{1}(t), u_{2}(t)\right)+\alpha_{2}\left(u_{1}(t), u_{2}(t)\right)\right] x(t)
$$

Payoffs

$$
\begin{gathered}
J_{i}=\int_{0}^{T} e^{-r t}\left[u_{i}(t)-c_{i}\right] \cdot x(t)-\alpha_{i}\left(u_{1}(t), u_{2}(t)\right)\left(M-x_{1}(t)-x_{2}(t)\right) d t \\
\frac{\partial \tilde{H}_{i}^{2}}{\partial x^{2}}=0 \mathrm{It} \text { is linear state }
\end{gathered}
$$

BUT

$\frac{\partial \tilde{H}_{i}^{2}}{\partial u_{i} \partial x} \neq 0$ there is a multiplicative term between u_{i} and x

Linear State games

There may be a multiplicative interaction between the state variable of player i, x_{i} and the control variables of player j, u_{j}.

And still get a Markov perfect open-loop Nash Equilibrium.

See Example 7.3 Dockner page 191

In Linear State games OLNE \equiv Markov Perfect MNE Subgoune perfece
sizong Time consisehi

Enjoy with differential games

Enjoy with your research

Find the equilibria of your life!

