Introduction to differential games

PhD Program in Mathematical Sciences

Buratto Alessandra
buratto@math.unipd.it

Course contents
 (12 hours)

- Recall of basic concepts of game theory, best response strategies, dominating strategies, Nash equilibrium
- Dynamic games: formalization of a differential game
- Simultaneous Noncooperative differential games (Nash equilibrium)
- Hierarchic differential games (Stackelberg equilibrium)

References

- Basar T., and Olsder G.J., Dynamic Noncooperative Game Theory Classics in Applied Mathematics.. SIAM 2 Ed., 1999.
- Dockner, E.J. et al., Differential Games in Economics and Management Science, Cambridge University Press, 2000.
- Van Long, N., A Survey of Dynamic Games in Economics Surveys on Theories in Economics and Business Administration, Vol. 1, 2010.
- Bressan, A. "Noncooperative differential games." Milan Journal of Mathematics 79.2 (2011) 357-427.
- Jehle, G. A. and Reny P.J., Advanced Microeconomic Theory (Third). Essex: Pearson Education Limited, 2011.
- Haurie, A., et al, Games and dynamic games. Vol. 1 World Scientific Publishing Company, 2012.

Exam

1. The lecturer will suggest a set of recent scientific publications on differential games
2. Each student will choose a paper among the suggested ones to read, comprehend and present in class

Introduction to game theory

Buratto Alessandra

Game theory

Quantitative methods
for strategic interactions
among entities

Our logical thread

From Mathematical programming to Game Theory

\[

\]

Game Theory

Game

Basic elements:

- Players with clear preferences, represented by a Payoff function.
- Each Action leads to an associated Consequence

Axioms:

- Players are rational:

They are aware of their alternatives, forms expectations about any unknowns, have clear preferences, and choose their action deliberately after some process of optimization.

- And think strategically.

When designing his strategy for playing the game, each player takes into account any knowledge or expectation he may have regarding his opponents' behaviour.

Rational Behavior

A Set of Actions from which the decision-maker makes a choice.
C Set of possible Consequences of these actions.
J: A --> C

Consequence function that associates a Consequence with each Action.

Preference relation (a complete transitive reflexive binary relation) on C .

Static games (One-shot games)

- Each player makes one choice and this completely determines the payoffs.
- Zero-Sum (Noncooperative) matrix games $\leftrightarrow \rightarrow$ NonZero-sum bimatrix
- Normal (strategic) form: all possible sequences of decisions of each player are set out against each other (no dynamic)
- Matrix structure

Normal form

Non-zero sum game
Existence questions
Pure and mixed strategies

Extensive form for G1

Single-act games
Multi-act games

Choice of strategies

WHAT IS OPTIMAL?

Best response strategies

$\mathbf{P 1}^{\mathbf{P 2}}$	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$
a	$(1,-1)$	$(0,0)$
b	$(2,-2)$	$(0,-3)$
c	$(1,-1)$	$(1,-1)$

u_{i}^{b} best reply (response) by player 1 to a profile of strategies for all other players u_{-i} if

$$
J^{i}\left(u_{i}^{b}, u_{-i}\right) \geq J^{j}\left(u_{i}, u_{-i}\right) \text { for all } u_{i} \in U^{i}
$$

Strictly Dominating strategies

$\mathbf{P 1}^{\mathbf{P 2}}$	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$
a	$(1,0)$	$(0,0)$
b	$(2,-2)$	$(1,0)$
c	$(1,-1)$	$(0,-1)$

u_{i}^{d} of player ${ }^{i}$
$J^{j}\left(u_{i}^{d}, u_{i-}\right)>J^{i}\left(u_{i}, u_{-i}\right)$ for all $u_{i} \in U^{i}$, for all $u_{-i} \in U^{1} \times U^{2} \times \ldots \times U^{i-1} \times U^{i+1} \times \ldots \times U^{N}$

Dominating strategies

- Eliminating some rows and/or columns which are known from the beginning to have no influence on the equilibrium solution
- Looking for Saddle points
- best reply to any feasible profile of the $N-1$ rivals:

Example: Zero Sum Marketing game

Market 1 Market			strategies of b		
	2		2,0	1,1	0, 2
		4,0	$1+0=1$		
FIRM B 2 units of capital	R	3,1			
	$\stackrel{1}{1}$	2,2		$1+1=2$	
Payoffs of A	$\stackrel{s}{s}$	1,3	$-1+1=0$		
	A	0,4			

Example: Zero Sum Marketing game -2-

Dominating strategies Player A

\mathbf{A}	2,0	1,1	0,2
4,0	1	0	0
3,1	2	1	0
2,2	1	2	1
1,3	0	1	2
0,4	0	0	1

MaxiMin rule
 (von Neumann)

- non-probabilistic decision-making rule
- decisions are ranked on the basis of their worst-case outcomes
- the optimal decision is one with the least worst outcome.
"In the worst of cases..."

MaxiMin rule

MaxiMin rule

Saddle point

A B	s_{1}^{B}	s_{2}^{B}	s_{3}^{B}	MIN of A
s_{1}^{A}	$(7,-7)$	$(5,-5)$	$(4,-4)$	4
s_{2}^{A}	$(2,-2)$	$(6,-6)$	$(3,-3)$	2
s_{3}^{A}	$(8,-8)$	$(0,0)$	$(1,-1)$	0
MIN of B MAX MIN of A				

Saddle points may not exist ($\nexists \boldsymbol{\not})$

Static games in normal form Choice of strategies

- Dominating strategies
- MiniMax Theorem (von Newmann)
buri Saddle points existence not guaranteed

Nash Equilibrium

A set of strategies constitutes a Nash equilibrium if no single player in interested in changing his strategy unless one of the other players changes his own.

That is:

Keeping the choices of other players fixed, Nobody is interested in changing his own.

Example with No saddle point but there exists 1 Nash equilibria

Set of strategies (a, $\boldsymbol{\beta}$) s.t.:
Knowing that G1 playes a then for G2 has not choise (convenience) but to play $\boldsymbol{\beta}$ Knowing that G2 playes $\boldsymbol{\beta}$ then for G1 has not choise (convenience) but to play a

Example with No saddle point but there exist 2 Nash equilibria

Set of strategies (a, $\boldsymbol{\beta}$) s.t.:
Knowing that G1 playes a then for G2 has not choise (convenience) but to play $\boldsymbol{\beta}$ Knowing that G2 playes $\boldsymbol{\beta}$ then for G1 has not choise (convenience) but to play a

G2
α
β

G1 | a | b |
| :--- | :--- |\(\left[\begin{array}{cc}\boldsymbol{\alpha} \& \boldsymbol{\beta}

(-3,-2) \& (2,0)

(0,2) \& (1,1)\end{array}\right]\)

