Time consistency and Stackelberg games

Alessandra Buratto

.

Time consistency

(Dockner et al. p.98)

Notation

- Weak time consistency (WTC) \equiv Time consistency (TC)
- Strong time consistency (STC) \equiv Subgame-perfect (SP)

Definition ((Weak) time consistency)

A MNE in $\Gamma(0,x_0)$ is time consistent if it is a MNE in any subgame $\Gamma(t,x)$ that starts in $x^*(t)$

- Any OLNE is (weakly) time consistent
- Any MNE is (weakly) time consistent

Definition ((Strong) time consistency)

A MNE in $\Gamma(0, x_0)$ is subgame perfect (strongly time consistent) if it is a MNE in any subgame $\Gamma(t, x), \forall x \in X$ (either on the optimal equilibrium trajectory OR not). Any $\Gamma(t, x)$ is identical to $\Gamma(0, x_0)$ except for the initial point.

Markov Perfect Nash Equilibrium

Theorems

- Any OLNE is NOT subgame perfect (in general)
- Any MNE is subgame perfect
- A MNE with $T = +\infty$ is subgame perfect if ϕ^* is independent of x_0

OLNE NOT subgame perfect: Example

N players

$$J^{i}(u^{i}()) = -\int_{0}^{T} (u^{i}(t))^{2} dt - x(T)^{2} \dot{x}(t) = \sum_{j=1}^{N} u^{j}(t) x(0) = 0 u(t) \in \mathcal{R}$$

 $J^{i}(u^{i}()) \leq 0$ for any feasible control \Rightarrow Optimal value $J^{i}(u^{i}()) = 0$ optimal control $u^{i}(t) \equiv 0 \Rightarrow$ Optimal path $x^{i}(t) \equiv 0$ $x(t) \equiv 0, \Rightarrow$ eq. trajectory $u^{i}(t) = \Phi^{i}(x(t), t) = x(t)$

 $u^{i*}(t)$ is Time consistent: (strategies credible along the eq. trajectory) Let all players $j \neq i$ use $\Phi^{j}(x, t) = x$, then player *i* has to face

$$\begin{cases} \dot{x}(t) = u^i + (N-1)x \\ x(0) = 0 \end{cases} \Rightarrow u^{i*}(t) = 0 \Rightarrow x^*(t) = 0.$$

Strategies not credible along any trajectory

 Φ^i not credible as optimal behaviour OFF the equilibrium path

If there exists some time t such that $x(t) \neq 0$, then:

- All players sticking to Φ^i would have to choose non-zero controls $\Phi^i(x(t), t) = x(t) \neq 0$ state is driven away from 0
- Each player prefers to choose $u^{i*}(t) = 0$ to avoid the cost associated with a non-zero control value and to reduce the speed at which the system diverges from 0.

Although the strategies $\Phi^i(x, t) = x$ are credible along the equilibrium trajectory $x^*(t)$, they are not credible as specifications of optimal behaviour out of the equilibrium path.

HJB ...

$$\Phi^{i}(x,t) = \frac{x}{(2N-1)(t-T)-1}$$
$$V(x,t) = \frac{x^{2}}{(2N-1)(t-T)-1}$$

 $\limsup_{t \to +\infty} e^{-rt} V(x_f(t), t) \leq 0$ for any x_f feasible trajectory.

Markov perfect Nash equilibrium

・ 何 ト ・ ヨ ト ・ ヨ ト

7/19

Sequential, asymmetric information, hierarchical

Leader (L), Follower (F)

- a) L: declares his strategy u^L
- b) F: computes his best response (rational choice) u^F = u^F(u^L)
 c) L:

$$\max_{u^L \in \mathcal{U}^{\mathcal{L}}} J^L(u^L, u^F(u^L))$$

backward induction.

Open-Loop Stackelberg Equilibrium (OLSE)

System dynamics

$$\begin{cases} \dot{x}_i(t) = f_i(x_i(t), u^L(t), u^F(t), t) \\ x_i(0) = x_0 \\ x_i(T) \in \mathcal{R}, u^L(t) \in \mathcal{U}^{\mathcal{L}}, u^F(t) \in \mathcal{U}^{\mathcal{F}} \end{cases}$$

- a) L: declares his control path $u^{L}(t)$
- b) F: computes his best response

$$\max_{u^F \in \mathcal{U}^F} J^F = \int_0^T e^{-r^F t} v^F(x(t), u^L, u^F(t), t) dt$$

$$H_{C}^{F}(x, u^{F}, \lambda_{i}, t) = v^{F}(x, u^{L}, u^{F}, t) + \sum_{i=1}^{n} \lambda_{i}(t) f_{i}(x, u^{L}, u^{F}, t)$$

concavity, $\mathcal{U}^{\mathcal{F}}$ open, stationary points.

$$\begin{aligned} \frac{\partial H^{F}}{\partial u^{F}} &= \frac{\partial v^{F}(x, u^{L}, u^{F}, t)}{\partial u^{F}} + \sum_{i=1}^{n} \frac{\lambda_{i} \partial f_{i}(x, u^{L}, u^{F}, t)}{\partial u^{F}} = 0\\ \dot{\lambda}_{i}(t) &= -\frac{\partial H^{F}}{\partial x_{i}} = -\frac{\partial v^{F}(x, u^{L}, u^{F}, t)}{\partial x_{i}} - \sum_{i=1}^{n} \frac{\lambda_{i} \partial f_{i}(x, u^{L}, u^{F}, t)}{\partial x_{i}}\\ \lambda_{i}(T) &= 0 \end{aligned}$$

 $\exists u^{F}(t) = g(x(t), \lambda(t), u^{L}(t), t)$ best response of F to the actions of the leader The co-state equation becomes

$$\dot{\lambda}_{i}(t) = -\frac{\partial v^{F}(x(t), u^{L}(t), g(x(t), \lambda(t), u^{L}(t), t))}{\partial x_{i}} + -\sum_{i=1}^{n} \frac{\lambda_{i} \partial f_{i}(x(t), u^{L}(t), g(x(t), \lambda(t), u^{L}(t), t))}{\partial x_{i}}$$

 $\lambda_i(T) = 0$

• What do we know about $\lambda_i(0)$?

2 Do they depend on the leader's announced time path $u^*(t)$ or not? The answer depends on the structure of the problem

Example 5.1 $\lambda_i(0)$ Controlled by L

$$\begin{aligned} \mathbf{J}^{\mathbf{F}} &= \sqrt[\mathbf{F}]{\mathbf{u}^{\mathbf{F}} - \frac{\mathbf{u}^{\mathbf{F}^{2}}}{2} - \frac{\mathbf{x}^{2}}{2}} \\ \sqrt{\mathbf{F}}(x, u^{\mathbf{F}}) &= u^{\mathbf{F}} - \frac{(u^{\mathbf{F}})^{2}}{2} - \frac{\mathbf{x}^{2}}{2} \\ \begin{cases} \dot{x}(t) &= u^{\mathbf{F}}(t) + u^{L}(t) \\ x(0) &= x_{0} \\ H^{\mathbf{F}}(x, u^{\mathbf{F}}, \lambda, t) &= u^{\mathbf{F}} - \frac{(u^{\mathbf{F}})^{2}}{2} - \frac{\mathbf{x}^{2}}{2} + \lambda(u^{\mathbf{F}} + u^{L}) \\ u^{*}(t) &= 1 + \lambda(t) \\ \end{cases} \\ \begin{cases} \dot{\lambda}(t) &= -\frac{\partial H^{\mathbf{F}}}{\partial \mathbf{x}} = x(t), \quad \lambda(\mathbf{T}) = 0 \\ \dot{x}(t) &= (1 + \lambda(t)) + u^{L}(t) \quad x(0) = x_{0} \\ \end{bmatrix} \\ \text{The Follower's control variable } u^{\mathbf{F}}(t) \text{ at time } t \text{ depends also on the future values of } u^{L}(t), \text{ i.e. on } u^{L}(s), \quad s > t. \end{aligned}$$

Э

イロト イヨト イヨト イヨト

Example 5.2 $\lambda_i(0)$ NOT Controlled by L

$$\begin{aligned} \mathbf{v}^{F}(\mathbf{x}, u^{F}) &= u^{F} - \frac{(u^{F})^{2}}{2} - \mathbf{x} \\ \begin{cases} \dot{\mathbf{x}}(t) &= u^{F}(t) + u^{L}(t) \\ \mathbf{x}(0) &= \mathbf{x}_{0} \\ \end{bmatrix} \\ H^{F}(\mathbf{x}, u^{F}, \lambda, t) &= u^{F} - \frac{(u^{F})^{2}}{2} - \mathbf{x} + \lambda(u^{F} + u^{L}) \\ u^{*}(t) &= 1 + \lambda(t) \\ \end{cases} \\ \begin{cases} \dot{\lambda}(t) &= -\frac{\partial H^{F}}{\partial \mathbf{x}} = 1 \\ \lambda(T) &= 0 \\ \end{cases} \\ \lambda(t) &= t - T \end{aligned}$$

State redundant

The Leader has no influence on the follower's best response.

Definition

The initial value $\lambda(0)$ of the Follower's co-state function is called

- Controllable if $\lambda(0)$ depends on $u^{L}(t)$ (Ex 5.1)
- Uncontrollable if $\lambda(0)$ does not depend on $u^{L}(t)$ (Ex 5.2)

The Leader's problem

L knows the best response of the Follower

$$\max_{u^{L}} J^{L} = \int_{0}^{T} e^{-r^{L}t} v^{L}(x(t), u^{L}(t), u^{FBR}(t), t)$$
$$u^{FBR}(t) = g(x(t), \lambda(t), u^{L}(t), t), t)$$

The co-state function of F becomes a state function for L \rightarrow

additive co-state function π associated with λ

$$\begin{aligned} x(0) &= x_0 \text{ fixed} \\ \lambda(0) \text{ is fixed iff it is uncontrollable} \\ H_C^L(x, \lambda, u^L, \psi, \pi, t) &= v^L(x, u^L, g(x(t), \lambda(t), u^L(t), t), t) \\ &+ \sum_{i=1}^n \psi_i(t) f_i(x, u^L, g(x(t), \lambda(t), u^L(t), t), t) + \\ &+ \sum_{i=1}^n \pi_i k_i(x, \lambda, u^L, t) \end{aligned}$$

$$\frac{\partial H^{L}(x(t),\lambda(t),u^{L}(t),\psi(t),\pi(t),t)}{\partial u^{L}} = 0$$

$$\dot{\psi}(t) = r^{L}\pi_{i}(t) - \frac{\partial H^{L}(x(t),\lambda(t),u^{L}(t),\psi(t),\pi(t),t)}{\partial x_{i}} =$$

$$\dot{\pi}(t) = r^{L}\pi(t) - \frac{\partial H^{L}(x(t),\lambda(t),u^{L}(t),\psi_{i}(t),\pi(t),t)}{\partial \lambda_{i}}$$

$$\psi_{i}(T) = 0 \text{ because } x(T) \in \mathcal{R}$$

$$\pi_i(0) = ?$$

 $\left\{ \begin{array}{ll} \mbox{If } \lambda(0) \mbox{ is controllable } \Rightarrow & \lambda(0) \mbox{ treated as a state function of L} \\ & \mbox{ associated co-state } \pi_i(0) = 0 \\ \mbox{If } \lambda(0) \mbox{ is non-controllable } (\lambda(t) = t - T) \Rightarrow & \mbox{ no need to consider it} \\ & \mbox{ a state function of L} \end{array} \right.$

Non consistent Stackelberg equilibrium

$$J^{L} = \int_{0}^{T} u^{L}(t) - \frac{1}{2}[(u^{L}(t))^{2} + (x(t))^{2}] dt$$

$$\dot{x}(t) = 1 + \lambda(t) + u^{L}(t)$$

$$\dot{\lambda}(t) = x(t)$$

$$x(0) = 0, \quad x(T) \in \mathcal{R}$$

$$\lambda(T) = 0, \quad \lambda(0) \text{ controllable}$$

$$H^{L}(x, \lambda, u^{L}, \psi, \pi) = u^{L} - \frac{1}{2}(u^{L} + x^{2}) + \psi(1 + \lambda + u^{L}) + \pi x$$

$$\begin{cases} 1 - u^{L}(t) + \psi(t) = 0 \\ \dot{\psi}(t) = x(t) - \pi(t) \\ \dot{\pi}(t) = -\psi(t) \qquad z = (x, \lambda, \psi, \pi) \\ \psi(T) = 0 \\ \pi(T) = 0 \end{cases}$$

・ロト ・四ト ・ ヨト ・ ヨト

$$B = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \quad k = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\dot{z} = Bz + k$$

$\exists ! SOL$

At a given time $t_1 > 0$, we have $\pi(t_1) \neq 0$

If L can replan his strategy at the time t_1 , he will choose a new solution such that $\pi(t_1) = 0$ (because his co-state fct at t_1 is free) and therefore he will deviate.

The Leader has no longer an incentive to keep his promises.

(Example 5.2 (continued))

$$\begin{split} \lambda(t) &= t - T \quad \lambda(0) = -T \\ 1 + \lambda(t) &= 1 + t - T \\ J^{L} &= \int_{0}^{T} u^{L}(t) - \frac{1}{2}[(u^{L}(t))^{2} + (x(t))^{2}] dt \\ \dot{x}(t) &= 1 + t - T + u^{L}(t) \\ x(0) &= 0, \quad x(T) \in \mathcal{R} \\ H^{L}(x, \lambda, u^{L}, \psi, \pi) &= u^{L} - \frac{1}{2}(u^{L} + x^{2}) + \psi(1 + t - T + u^{L}) \\ 1 - u^{L}(t) + \psi(t) &= 0 \qquad \Rightarrow u^{L}(t) = 1 + \psi(t) \\ \begin{cases} \dot{x}(t) &= \psi(t) + 2 + t - T, \quad x(0) = 0 \\ \dot{\psi}(t) &= x(t), \quad \psi(T) = 0 \end{cases} \end{split}$$

- E - - E -