Optimal control theory Pontryagin's Maximum Principle

Alessandra Buratto

optimal control problem (OC)

$$
\begin{aligned}
\operatorname{maximize} & J(\underline{u})=\int_{t_{0}}^{t_{1}} f_{0}(\underline{x}(t), \underline{u}(t), t) d t+S\left(\underline{x}\left(t_{1}\right)\right) \\
\text { subject to } & \underline{\dot{x}}(t)=\underline{f}(\underline{x}(t), \underline{u}(t), t) \\
& \underline{x}\left(t_{0}\right)=\underline{x}^{0} \\
& x_{i}\left(t_{1}\right)=x_{i}^{1} \quad i=1, \ldots, l \\
& x_{i}\left(t_{1}\right) \geq x_{i}^{1} \quad i=I+1, \ldots, m \\
& x_{i}\left(t_{1}\right) \in \Re \quad i=m+1, \ldots, n \\
& \underline{u}(t) \in \Omega \subset \Re^{r}
\end{aligned}
$$

associated Hamiltonian function

$$
H(\underline{x}, \underline{u}, \underline{p}, t)=p_{0} f_{0}(x(t), u(t), t)+\underline{p} \cdot \underline{f}(\underline{x}(t), \underline{u}(t), t)
$$

Hamiltonian function

$$
\begin{gathered}
H(\underline{x}, \underline{u}, \underline{p}, t)=p_{0} f_{0}(x(t), u(t), t)+\underline{p} \cdot \underline{f}(\underline{x}(t), \underline{u}(t), t) \\
H(\underline{x}, \underline{u}, \underline{p}, t)=p_{0} f_{0}(x(t), u(t), t)+\sum_{i=1}^{i=n} p_{i} f_{i}(\underline{x}(t), \underline{u}(t), t)
\end{gathered}
$$

Pontryagin Maximum principle (BOLZA form) $1 / 2$

Theorem

Let $u^{*}(t)$ be a piecewise continuous control defined on $\left[t_{0}, t_{1}\right]$ which solves problem (OC) and let $x^{*}(t)$ be the associated optimal path. Then $\exists n+1$ constants $p_{0}, \gamma_{1}, \ldots, \gamma_{n} \in \Re$ and a continuous and piecewise continuously differentiable function $p(t)=\left(p_{1}(t), \ldots, p_{n}(t)\right)$ such that $\forall t \in\left[t_{0}, t_{1}\right]$
i) $\left(p_{0}, \gamma_{1}, \ldots, \gamma_{n}\right) \neq(0,0, \ldots, 0)$
ii) $u^{*}(t)$ maximizes $H\left(x^{*}(t), u, p(t), t\right)$ for all $u \in \Omega$ that is

$$
H\left(x^{*}(t), u^{*}(t), p(t), t\right)>H\left(x^{*}(t), u, p(t), t\right) \quad \text { for all } u \in \Omega
$$

iii) Excepts at the points of discontinuities of $u^{*}(t)$ for $i=1,2, \ldots, n$

$$
\dot{p}_{i}(t)=-\frac{\partial H\left(x^{*}(t), u^{*}(t), p(t), t\right)}{\partial x_{i}}---->
$$

Pontryagin Maximum principle (BOLZA form) 2/2

Theorem

iv) $p_{0} \in\{0,1\}$
v) Transversality conditions

$$
p_{i}\left(t_{1}\right)=p_{0} \frac{\partial S\left(x^{*}\left(t_{1}\right)\right)}{\partial x_{i}}+\gamma_{i}, \quad i=1, \ldots n
$$

where

$$
\begin{array}{lll}
\gamma_{i} \in \Re, & i=1, \ldots, l & \text { if } x_{i}^{*}\left(t_{1}\right)=x_{i}^{\prime} \\
\gamma_{i} \geq 0 & i=I+1, \ldots, m & \text { if } x_{i}^{*}\left(t_{1}\right) \geq x_{i}^{\prime} \\
& \gamma_{i}\left(x_{i}^{*}\left(t_{1}\right)-x_{i}^{\prime}\right)=0 & \\
\gamma_{i}=0 & i=m+1, \ldots, n & \text { if } x_{i}^{*}\left(t_{1}\right) \in \Re
\end{array}
$$

Transversality conditions - Examples

Transversality conditions - Other formulations

$$
x_{i}\left(t_{1}\right) \leq x_{i}^{1}
$$

v) Transversality conditions

$$
p_{i}\left(t_{1}\right)=p_{0} \frac{\partial S\left(x^{*}\left(t_{1}\right)\right)}{\partial x_{i}}-\gamma_{i}, \quad i=1, \ldots n
$$

Exercise 1

$$
\begin{aligned}
\operatorname{maximize} & J(u)=\int_{0}^{2} x(t) d t \\
\text { subject to } & \dot{x}(t)=u(t)-x(t) \\
x(0) & =x^{0} \\
u(t) & \in[0,1]
\end{aligned}
$$

Exercize 2

$$
\begin{aligned}
\text { maximize } & J(u)=\int_{0}^{1}\left(x(t)-\frac{u^{2}(t)}{2}\right) d t \\
\text { subject to } & \dot{x}(t)=u(t)-x(t) \\
& x(0)=0 \\
& x(1) \in \Re \\
& u(t) \in \Re
\end{aligned}
$$

- Ex 2 with $u(t) \in[0,1]$
- Ex 2 with $u(t) \in[0,1 / 2]$

Exercize 3

$$
\begin{aligned}
\operatorname{minimize} & J(u)=-\int_{0}^{1} x(t) d t \\
\text { subject to } & \dot{x}(t)=u(t)+x(t) \\
& x(0)=0 \\
& x(1)=1 \\
& u(t) \in[-1,1]
\end{aligned}
$$

Exercize 4

$$
\begin{aligned}
\operatorname{minimize} & J(u)=\int_{0}^{3}-\frac{u^{2}(t)}{2} d t \\
\text { subject to } & \dot{x}(t)=u(t)-x(t) / 3 \\
& x(0)=0 \\
& x(3) \geq 10 \\
& u(t) \geq 0
\end{aligned}
$$

Exercize 5

$$
\begin{aligned}
\text { maximize } & J(u)=-\frac{1}{2} \int_{0}^{T} u^{2}(t) d t+x(T) \\
\text { subject to } & \dot{x}(t)=u(t)+M(1-x(t)) \quad M>0 \\
& x(0)=0
\end{aligned}
$$

Optimal control problem discount factor (DOC)

$$
\begin{aligned}
\operatorname{maximize} & J(\underline{u})=\int_{0}^{T} e^{-\rho t} F_{0}(\underline{x}(t), \underline{u}(t), t) d t+e^{-\rho T} S(\underline{x}(T)) \\
\text { subject to } & \underline{\dot{x}}(t)=\underline{f}(\underline{x}(t), \underline{u}(t), t) \\
& \underline{x}(0)=\underline{x}^{0} \\
& x_{i}(T)=x_{i}^{1} \quad i=1, \ldots, l \\
& x_{i}(T) \geq x_{i}^{1} \quad i=I+1, \ldots, m \\
& x_{i}(T) \in \Re \quad i=m+1, \ldots, n \\
& \underline{u}(t) \in \Omega
\end{aligned}
$$

associated current value Hamiltonian function

$$
\begin{aligned}
H^{C}(\underline{x}, \underline{u}, \underline{q}, t) & =p_{0} F_{0}(x(t), u(t), t)+\underline{q} \cdot \underline{f}(\underline{x}(t), \underline{u}(t), t) \\
H^{C}(\underline{x}, \underline{u}, \underline{q}, t) & =p_{0} F_{0}(x(t), u(t), t)+\sum_{i=1}^{i=n} q_{i} f_{i}(\underline{x}(t), \underline{u}(t), t)
\end{aligned}
$$

Pontryagin Maximum principle (discount factor)

Theorem

Let $u^{*}(t)$ be a piecewise continuous control defined on $[0, T]$ which solves problem (DOC) and let $x^{*}(t)$ be the associated optimal path. Then \exists $n+1$ constants $p_{0}, \gamma_{1}, \ldots, \gamma_{n} \in \Re$ and a continuous and piecewise continuously differentiable function $q(t)=\left(q_{1}(t), \ldots, q_{n}(t)\right)$ such that $\forall t \in[0, T]$

- $\left(p_{0}, \gamma_{1}, \ldots, \gamma_{n}\right) \neq(0,0, \ldots, 0)$
- $u^{*}(t)$ maximizes $H^{C}\left(x^{*}(t), u, q(t), t\right)$ for all $u \in \Omega$
- Excepts at the points of discontinuities of $u^{*}(t)$

$$
\dot{q}_{i}(t)=-\frac{\partial H^{C}\left(x^{*}(t), u^{*}(t), q(t), t\right)}{\partial x_{i}}+\rho q(t)
$$

- $p_{0} \in\{0,1\}$

$$
\text { for } i=1, \ldots, n
$$

- Transversality conditions
$(\rightarrow$ next page)

Theorem

- Transversality conditions

$$
q_{i}(T)=p_{0} \frac{\partial S\left(x^{*}(T)\right)}{\partial x_{i}}+\gamma_{i}, \quad i=1, \ldots n
$$

where

$$
\begin{array}{lll}
\gamma_{i} \in \Re, & i=1, \ldots, l & \text { if } x_{i}^{*}(T)=x_{i}^{\prime} \\
\gamma_{i} \geq 0 & i=I+1, \ldots, m & \text { if } x_{i}^{*}(T) \geq x_{i}^{\prime} \\
& \gamma_{i}\left(x_{i}^{*}(T)-x_{i}^{\prime}\right)=0 & \\
\gamma_{i}=0 & i=m+1, \ldots, n & \text { if } x_{i}^{*}(T) \in \Re
\end{array}
$$

Exercise

$$
\begin{aligned}
\text { maximize } & J(u)=\int_{0}^{1} \frac{u^{2}(t)}{2} e^{-\rho t} d t \\
\text { subject to } & \dot{x}(t)=u(t)-x(t) / 10 \\
& x(0)=5 \\
& x(1) \geq 10 \\
& u(t) \geq 0
\end{aligned}
$$

Sufficient conditions

Theorem (Mangasarian sufficient conditions)

Let $\left(x^{*}(t), u^{*}(t)\right)$ be an admissible pair. Suppose Ω convex and $\frac{\partial f_{i}}{\partial u_{j}}$ exist continuous. If there exist a continuous and piecewise cont. differentiable function $p(t)$ such that the following conditions are satisfied with $p_{0}=1$,

- $\dot{p}_{i}(t)=-\frac{\partial H\left(x^{*}(t), u^{*}(t), p(t), t\right)}{\partial x_{i}}$
- $u^{*}(t)$ maximizes $H\left(x^{*}(t), u, p(t), t\right)$ for all $u \in \Omega$
- $\gamma_{i} \in \Re, \quad i=1, \ldots$, l if $x_{i}^{*}(t)=x_{i}^{\prime}$
$\gamma_{i} \geq 0 \quad \gamma_{i}\left(x_{i}^{*}(t)-x_{i}^{\prime}\right)=0 \quad i=1+1, \ldots, m$ if $x_{i}^{*}(t) \geq x_{i}^{\prime}$
$\gamma_{i}=0 \quad i=m+1, \ldots, n$ if $x_{i}^{*}(t) \in \Re$
- $H(x, u, p(t), t)$ is concave in (x, u) for all t. then $\left(x^{*}(t), u^{*}(t)\right)$ is the optimal solution of $(O C)$.

Mangasarian sufficient conditions - uniqueness

H strictly concave in $(x, u), \forall t$

$$
\begin{gathered}
\Downarrow \\
\left(x^{*}(t), u^{*}(t)\right) \text { is unique }
\end{gathered}
$$

Sufficient conditions

Theorem（Arrow sufficient conditions）

Let $\left(x^{*}(t), u^{*}(t)\right)$ be an admissible pair．If there exist a continuous and piecewise cont．differentiable function $p(t)$ such that the following conditions are satisfied with $p_{0}=1$ ，
－$\dot{p}_{i}(t)=-\frac{\partial H\left(x^{*}(t), u^{*}(t), p(t), t\right)}{\partial x_{i}}$
－$u^{*}(t)$ maximizes $H\left(x^{*}(t), u, p(t), t\right)$ for all $u \in \Omega$
－$\gamma_{i} \in \Re$ ， $i=1, \ldots, l \quad$ if $x_{i}^{*}(t)=x_{i}^{\prime}$ $\gamma_{i} \geq 0 \quad \gamma_{i}\left(x_{i}^{*}(t)-x_{i}^{\prime}\right) \quad i=I+1, \ldots, m$ if $x_{i}^{*}(t) \geq x_{i}^{\prime}$ $\gamma_{i}=0 \quad i=m+1, \ldots, n$ if $x_{i}^{*}(t) \in \Re$
－$\hat{H}(x, p(t), t)=\max _{u \in \Omega} H(x, u, p(t), t)=H\left(x, u^{*}, p(t), t\right)$ is concave in x for all t ． then $\left(x^{*}(t), u^{*}(t)\right)$ is the optimal solution of $(O C)$ ．

Arrow sufficient conditions- uniqueness

\hat{H} strictly concave in $x, \forall t$

$$
\begin{gathered}
\Downarrow \\
\left(x^{*}(t), u^{*}(t)\right) \text { is unique }
\end{gathered}
$$

Optimal control problem infinite horizon

$$
\begin{aligned}
\text { maximize } & J(\underline{u})=\int_{t_{0}}^{+\infty} e^{-\rho t} F_{0}(\underline{x}(t), \underline{u}(t), t) d t \\
\text { subject to } & \underline{\dot{x}}(t)=\underline{f}(\underline{x}(t), \underline{u}(t), t) \\
& \underline{x}\left(t_{0}\right)=\underline{x}^{0} \\
& \underline{u}(t) \in \Omega \\
H^{C}(\underline{x}, \underline{u}, \underline{q}, t) & =p_{0} F_{0}(x(t), u(t), t)+\underline{q} \cdot \underline{f}(\underline{x}(t), \underline{u}(t), t)
\end{aligned}
$$

Necessary conditions: Pontryagin Maximum Principle without transversality conditions

Sufficient conditions:

$$
\lim _{T \rightarrow+\infty} \inf e^{-\rho T} q(T)\left(x(T)-x^{*}(T)\right) \geq 0 \text { for all feasiblex }(t)
$$

Steady state solutions

Definition

A dynamic system is in a steady state if the state variable associated to the optimal (steady state) control are unchanging in time.

In this context, the system is in a steady state if

$$
\underline{\dot{x}}^{S S}(t)=\underline{f}\left(\underline{x}^{S S}(t), \underline{u}^{S S}(t), t\right)=\underline{0}
$$

We study the equilibria of a dynamic system

