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Course contents
(12 hours)

• Recall of basic concepts of game theory, best response 
strategies, dominating strategies, Nash equilibrium 
• Dynamic games: formalization of a differential game 
• Simultaneous Noncooperative differential games (Nash 

equilibrium) 
• Hierarchic differential games (Stackelberg equilibrium) 
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Exam

1. The lecturer will suggest a set of recent scientific publications on 
differential games

2. Each student will choose a paper among the suggested ones to 
read, comprehend and present in class



Introduction to game theory
Buratto Alessandra



Game theory

Quantitative methods 
for strategic interactions 

among entities



MILITARY Gulf war,…

ECONOMICS - MARKETING Advertising, Promotion, Price, …

ECONOMICS – FINANCE Portfolio Management

POLITICS Voting systems,…

SPORT Attack / Defense Strategies 

SOCIOLOGY Migration, …

MEDICINE- BIOLOGY Neurons, Bacterial evolution

PSICOLOGY Prisoners’ dilemma, …

ENVIRONMENT Pollution, Kyoto cartel, …

Motivations

… LOGIC – PHILOSOPHY– RELIGION …



1928 von Neumann Minimax Theorem 

1940 von Neumann,Turing, Zu Computer à MILITARY

1944 von Neumann, Morgenstern The Theory of Games and Economic 
Behavior → ECONOMICS

1950 Nash Equilibrium & Bargaining

1951 Isaacs Differential games

1953 Nash, Gillies, Shapley Threat Core Value

1957 Bellmann Dynamic programming (DP)
1962 Pontryagin Pontryagin ‘s Maximum Principle (OC)

A little bit of history



Nobel prizes in Economics
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Thomas C. Schelling

Roger Myerson
Leonid Hurwicz
Eric Maskin

Lloyd Shapley
Alvin Roth

Jean Tirole

Non cooperative

Sargent Sims 2011



Our logical thread



From Mathematical programming to Game Theory

Two decision makers P1 , P2

max
!"

𝐽 𝑢1, 𝑢2 , 𝑢1 ∈ 𝑈1
max
!#

𝐽 𝑢1, 𝑢2 , 𝑢2 ∈ 𝑈2

One decision maker
max
!
𝐽 𝑢 , 𝑢 ∈ 𝑈,                 U set of actions

Game Theory



Game
Basic elements:
• Players with clear preferences, represented by a Payoff function.
• Each Action leads to an associated Consequence
Axioms:
• Players are rational:

They are aware of their alternatives, forms expectations about any unknowns, have
clear preferences, and choose their action deliberately after some process of 
optimization.

• And think strategically. 
When designing his strategy for playing the game, each player takes into account any
knowledge or expectation he may have regarding his opponents' behaviour. 



Rational Behavior

A Set of Actions from which the decision-maker makes a choice. 
C Set of possible Consequences of these actions. 

J: A --> C  
Consequence function that associates a Consequence with each Action. 

Preference relation (a complete transitive reflexive binary relation)  on C.



Static games (One-shot games)

• Each player makes one choice and this completely determines
the payoffs. 
• Zero-Sum (Noncooperative) matrix  games ßà NonZero-sum 

bimatrix
• Normal (strategic) form: all possible sequences of decisions of 

each player are set out against each other (no dynamic)
•Matrix structure



Normal form Extensive form for G1      

(-3, -2) (2, 0)

(0, 2) (1, 1)
G1

G2

a

b

𝛂 𝛃

G1

a b

𝛂 𝛂𝛃 𝛃

-3 2 0 1

Existence questions
Pure and mixed strategies

Single-act games 
Multi-act games



Choice of strategies

WHAT IS OPTIMAL?



Best response strategies

𝝰 𝝱

a (1,-1) (0,0)

b (2,-2) (0,-3)

c (1,-1) (1,-1)

P1
P2

ui
b best reply (response) by player 1 to a profile of strategies for all other 

players u-i if
Ji(ui

b , u-i) ≥ Ji(ui , u-i) for all ui ∈Ui



Strictly Dominating strategies

𝝰 𝝱

a (1,0) (0,0)

b (2,-2) (1,0)

c (1,-1) (0,-1)

P1
P2

ui
d of player I

Ji(ui
d , u-i) > Ji(ui , u-i) for all  ui∈Ui ,

for all u-i∈U1×U2 ×…×Ui-1 ×Ui+1 ×…×UN 



Dominating strategies

• Eliminating some rows and/or columns which are known from the 
beginning to have no influence on the equilibrium solution

• Looking for Saddle points

• best reply to any feasible profile of the N — 1 rivals: 



Example: Zero Sum Marketing game

Market Market

FIRM A      4 units of capital

FIRM B      2 units of capital

Payoffs of A

4 , 0 1+0=1

3 , 1

2 , 2 1+1=2

1 , 3 -1+1=0

0 , 4

S
T
R
A
T
E
G
I
E
s

of

A

STRATEGIES of B

2 , 0 1 , 1 0 , 2



Example: Zero Sum Marketing game -2-

2 , 0 1 , 1 0 , 2

4 , 0 (1,-1) (0,0) (0,0)

3 , 1 (2,-2) (1,-1) (0,0)

2 , 2 (1,-1) (2,-2) (1,-1)

1 , 3 (0,0) (1,-1) (2,-2)

0 , 4 (0,0) (0,0) (1,-1)

A
B



Dominating strategies Player A

2 , 0 1 , 1 0 , 2

4 , 0 1 0 0

3 , 1 2 1 0

2 , 2 1 2 1

1 , 3 0 1 2

0 , 4 0 0 1

A
B



MaxiMin rule
(von Neumann)

• non-probabilistic decision-making rule
• decisions are ranked on the basis of their worst-case outcomes
• the optimal decision is one with the least worst outcome.

“In the worst of cases…”



(7,-7) (5,-5) (4,-4)

(2,-2) (6,-6) (3,-3)

(8,-8) (0,0) (1,-1)

A B

MaxiMin rule



(7,-7) (5,-5) (4,-4)

(2,-2) (6,-6) (3,-3)

(8,-8) (0,0) (1,-1)

MIN of A

4

2

0

A B

MIN of B -8 -6 -4

MaxiMin rule

MAX MIN of A

MAX MIN of B

Saddle point



(-3, -2) (2, 0)

(0, 2) (1, 1)

Saddle points may not exist (∄ )

G1

G2

a

b

𝛂 𝛃



• Dominating strategies

• MiniMax Theorem (von Newmann)

• Saddle points existence not guaranteed

Static games in normal form
Choice of strategies



Nash Equilibrium

A set of strategies constitutes a Nash equilibrium if no 
single player in interested in changing his strategy unless
one of the other players changes his own.

That is: 

Keeping the choices of other players fixed, 
Nobody is interested in changing his own. 



(5, 5) (3, 3)

(2, 2) (0, 0)

Example with No saddle point
but there exists 1 Nash equilibria

G1

G2

a

b

𝛂 𝛃

Set of strategies (a, 𝛃) s.t.:
Knowing that G1 playes a then for G2 has not choise (convenience)  but to play 𝛃
Knowing that G2 playes 𝛃 then for G1 has not choise (convenience)  but to play a



(-3, -2) (2, 0)

(0, 2) (1, 1)

Example with No saddle point
but there exist 2 Nash equilibria

G1

G2

a

b

𝛂 𝛃

Set of strategies (a, 𝛃) s.t.:
Knowing that G1 playes a then for G2 has not choise (convenience)  but to play 𝛃
Knowing that G2 playes 𝛃 then for G1 has not choise (convenience)  but to play a



Nash equilibria for static games

Existence of Nash equilibrium Kakutani fixed point theorem
for multivalued maps. Consequence of the classical Brouwer
fixed point theorem. 

In a zero-sum game, if a Nash equilibrium exists, then all Nash 
equilibria yield the same payoff  V (value of the game) 
(von Neumann)



3 0

-1 1

Nash Equilibrium Existence Theorem
(1950)

In a finite game there exists at least one Nash equilibrium
(eventually mixed strategies) 

P1

P2

z1

z2

y1 y2

(ui
N , u-i

N) Nash equilibrium

Ji (ui
N , u-i

N) > Ji(ui , u-i
N) for all  ui∈Ui



Nash Equilibrium

• There might be other combination of strategies that
increase the payoff of some players without reducing
the payoffs of the others. Or, more, that increase the
payoff of all players: Prisoners’ dilemma.



Prisoners’ Dilemma

C (-5  ,  -5) (0   , -6)

NC (-6,  0) (-1   ,   -1) -6

-5
Min AC NC

• If only one confesses, and puts the blame on the other one, then 
he is set free and the other will be sentenced to 6 years of jail;

• If both confess, they will be sentenced to 5 years.
• If neither one confesses, they will be sentenced to 1 year.



C (-5  ,  -5) (0   , -6)

NC (-6,  0) (-1   ,   -1)

Prisoners’ Dilemma A

Min A

-6

-5

C NC



Prisoners’ Dilemma  B

-6-5Min B

(-5  ,  -5) (0   , -6)
(-6,  0) (-1   ,   -1)

C NC

C

NC



Prisoners’ Dilemma 

(-5  ,  -5) (0   , -6)
(-6,  0) (-1  , -1) ß Cooperative solution

Max Min of B

A

A

NA

NA
MaxMin A



Prisoners’ Dilemma
Nash equilibrium

(-5  ,  -5) (0   , -6)
(-6,  0) (-1  , -1)

A

NA

A NA



Nash Equilibrium
• Existence and uniqueness is not guaranteed

à There might exist more that one NE

• It gives solution when there might be uncertainty
• Each player does what is better for him (noncooperative)
• It might not be the better solution for everybody.
• Someone might increase his payoff moving far from the equilibrium. 

Nash Equilibrium might not be Pareto Optimum.



Nash equilibrium

• Symmetric Information structure

Max J1(u1,u2) u1
BR=u1(u2)

𝑢1 ∈ 𝑈1

Max J2(u1,u2) u2
BR=u2(u1)

𝑢2 ∈ 𝑈2

(u1
N,u2

N)

Noncooperative simultaneous game



Stackelberg game

• Asymmetric information structure 

1. LEADER: declares his action uL
2. FOLLOWER: computes his best response uF(uL) (to any Leader’s strategy uL)
3. LEADER: computes his optimal Stackelberg strategy uL

S

4. FOLLOWER: adjust his strategy to obtain the Stackelberg strategy uF
S

Max JF(uL,uF) uF
BR=uF(uL) Max JL(uL, uF(uL))

𝑢F ∈ 𝑈F 𝑢L ∈ 𝑈L

(uL
S, uF

S)

Noncooperative sequential game



Coordination game

• Symmetric information structure

Max J1(u1,u2)+J2(u1,u2)
u1,u2 ∈ 𝑈1X 𝑈2

Cooperative simultaneous game



Example Cournot duopoly
static game with infinite strategy sets

J1=(α-β(Q1+Q2))Q1-K1Q1
2 J2=(α-β(Q1+Q2))Q2-K2Q2

2

NASH: (Q1
N,Q2

N)=
𝛼

2 𝐾! + 3𝛽
,

𝛼
2 𝐾" + 3𝛽

Symm.case 𝛼 = 𝛽 = 1, 𝐾# = 0 ⇒ (Q1
N,Q2

N)=(1/3,1/3). J1N= J2N=1/9

STACKELBERG: (QLS,QFS)=
𝛼 1 − 𝛽

2 𝐾$ + 𝛽
2 (𝐾%+𝛽) − 𝛽"/(𝐾$ + 𝛽)

,
𝛼 − 𝛽𝑄%&

2 (𝐾$ + 𝛽)

Symm. case 𝛼 = 𝛽 = 1, 𝐾# = 0 ⇒ (Q1
S,Q2

S)=(1/2,1/4) JLS=1/8, JFS=1/16 

COOPERATIVE: Symm. case 𝛼 = 𝛽 = 1, 𝐾# = 0 ⇒ JC=2/9 = J1N+ J2N

IN GENERAL   ( 𝛼, 𝛽 ∈ ℝ, 𝐾! = 0) ⇒ JC>J1N+ J2N
JC  > J1

N+ J2
N-


