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Dimensional reduction (I)

The starting point is the quantum-field-theory Hamiltonian

Ĥ =

∫
d3r ψ̂+(r)

[
− ~2

2m
∇2 + U(r)

]
ψ̂(r)

+
1

2

∫
d3r d3r′ ψ̂+(r) ψ̂+(r′) V (r − r′) ψ̂(r′) ψ̂(r), (1)

where the external trapping potential is given by

U(r) = VDW (x) +
1

2
mω2
⊥(y2 + z2) , (2)

that is a generic double-well potential VDW (x) in the x axial direction
and a harmonic potential in the transverse (y , z) plane.
We assume that the system of bosons, described by the field operator
ψ̂(r), is dilute and approximate the inter-particle potential with a contact
Fermi pseudo-potential, namely

V (r − r′) = g δ(r − r′) , (3)

with g the strength of the interaction.



Dimensional reduction (II)

If the frequency ω⊥ of transverse confinement is sufficiently large, the
system is quasi-1D and the bosonic field operator can be written as

ψ̂(r) = φ̂(x)
e−(y2+z2)/(2l2⊥)

π1/2l⊥
. (4)

We are thus supposing that in the transverse (y , z) plane the system is
Bose-Einstein condensed into the transverse single-particle ground-state,
which is a Gaussian wavefunction of width

l⊥ =

√
~

mω⊥
, (5)

that is the characteristic length of the harmonic confinement.



Dimensional reduction (III)

Inserting Eq. (4) into the Hamiltonian (1) and integrating over y and z
variabiles we obtain the effective 1D Hamiltonian

Ĥ =

∫
dx φ̂+(x)

[
− ~2

2m

d2

dx2
+ VDW (x) + ~ω⊥

]
φ̂(x)

+
g1D

2

∫
dx φ̂+(x) φ̂+(x) φ̂(x) φ̂(x) , (6)

where
g1D =

g

2πl2⊥
(7)

is the effective 1D interaction strength.



Double-well potential and two-mode approximation (I)

We suppose that the barrier of the double-well potential VDW (x), with
its maximum located at x = 0, is quite high such that there several
doublets of quasi-degenerate single-particle energy levels.

Moreover, we suppose that only the lowest doublet (i.e. the
single-particle ground-state and the single-particle first excited state) is
occupied by bosons. Under these assumptions we can write the bosonic
field operator as

φ̂(x) = âL φL(x) + âR φR(x) (8)

that is the so-called two-mode approximation, where φL(x) and φR(x)
are single-particle wavefunctions localized respectively on the left well
and on the right well of the double-well potential.

These wavefunctions (which can be taken real) are linear combinations of
the even wavefunction φ0(x) of the ground state and the odd
wavefunction φ1(x) of the first excited state.
Clearly the operator âj annihilates a boson in the j-th site (well) while the
operator â+

j creates a boson in the j-th site (j = L,R)



Bose-Hubbard Hamiltonian (I)

Inserting the two-mode approximation (8) of the bosonic field operator in
the effective 1D Hamiltonian, we get the following two-site Hamiltonian

Ĥ = εLN̂L+εR N̂R−JLR â+
L âR−JRLâ

+
R âL+

UL

2
N̂L(N̂L−1)+

UR

2
N̂R(N̂R−1) ,

(9)
where N̂j = â+

j âj is the number operator of the j-th site,

εj =

∫
dx φj(x)

[
− ~2

2m

d2

dx2
+ VDW (x) + ~ω⊥

]
φj(x) (10)

is the kinetic plus potential energy on the site j ,

Jij =

∫
dx φi (x)

[
− ~2

2m

d2

dx2
+ VDW (x) + ~ω⊥

]
φj(x) , (11)

is the hopping energy (tunneling energy) between the site i and the site
j , and

Uj = g1D

∫
dx φj(x)4 (12)

is the interaction energy on the site j .



Bose-Hubbard Hamiltonian (II)

The Hamiltonian (9) is the two-site Bose-Hubbard Hamiltonian, named
after John Hubbard introduced a similar model in 1963 to describe
fermions (electrons) on a periodic lattice.
If the double-well potential VDW (x) is fully symmetric then εL = εR = ε,
JLR = JRL = J, UL = UR = U, and the Bose-Hubbard Hamiltonian
becomes

Ĥ = ε
(
N̂L + N̂R

)
−J

(
â+
L âR + â+

R âL
)

+
U

2

[
N̂L(N̂L − 1) + N̂R(N̂R − 1)

]
.

(13)

The two-site Bose-Hubbard Hamiltonian can be easily extendend to L
sites as follows

Ĥ = ε

L∑
j=1

N̂j − J
L−1∑
j=1

(
â+
j âj+1 + â+

j+1âj
)

+
U

2

L∑
j=1

N̂j(N̂j − 1) . (14)

Actually the first term, which contains the total number of particles
N̂ =

∑L
j=1 N̂j , does not affect the dynamical properties of the system.


