Lesson 10 - Bosons in a double-well potential

Unit 10.1 Bose-Hubbard Hamiltonian

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita di Padova

Structure of Matter - MSc in Physics



Dimensional reduction (1)

The starting point is the quantum-field-theory Hamiltonian
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where the external trapping potential is given by

U(r) = Vow(x) + 5 med (2 +22) @)
that is a generic double-well potential Vpw(x) in the x axial direction
and a harmonic potential in the transverse (y, z) plane.

We assume that the system of bosons, described by the field operator
1/3(r) is dilute and approximate the inter-particle potential with a contact
Fermi pseudo-potential, namely

V(ir—r')=gd(r—r'), (3)

with g the strength of the interaction.



Dimensional reduction (I1)

If the frequency w, of transverse confinement is sufficiently large, the
system is quasi-1D and the bosonic field operator can be written as

A N e (PH2)/(R)

P(r) = ¢(x) T (4)

We are thus supposing that in the transverse (y, z) plane the system is
Bose-Einstein condensed into the transverse single-particle ground-state,
which is a Gaussian wavefunction of width

I = : (5)

that is the characteristic length of the harmonic confinement.



Dimensional reduction (llI)

Inserting Eq. (4) into the Hamiltonian (1) and integrating over y and z
variabiles we obtain the effective 1D Hamiltonian
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where g
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is the effective 1D interaction strength.



Double-well potential and two-mode approximation (1)

We suppose that the barrier of the double-well potential Vpw/(x), with
its maximum located at x = 0, is quite high such that there several
doublets of quasi-degenerate single-particle energy levels.

Moreover, we suppose that only the lowest doublet (i.e. the
single-particle ground-state and the single-particle first excited state) is
occupied by bosons. Under these assumptions we can write the bosonic
field operator as

$(x) = 3L du(x) + 3r dr(x) (8)

that is the so-called two-mode approximation, where ¢;(x) and ¢gr(x)
are single-particle wavefunctions localized respectively on the left well
and on the right well of the double-well potential.

These wavefunctions (which can be taken real) are linear combinations of
the even wavefunction ¢g(x) of the ground state and the odd
wavefunction ¢1(x) of the first excited state.

Clearly the operator &; annihilates a boson in the j-th site (well) while the
operator éf creates a boson in the j-th site (j = L, R)



Bose-Hubbard Hamiltonian (1)

Inserting the two-mode approximation (8) of the bosonic field operator in
the effective 1D Hamiltonian, we get the following two-site Hamiltonian
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where N; = éjréj is the number operator of the j-th site,

€ = /dx ®j(x) [_in;;fz + Vow(x) + ML} ®j(x) (10)

is the kinetic plus potential energy on the site j,

Jj = /dx ¢i(x) [ il + Vow(x) + th] oi(x) , (11)
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is the hopping energy (tunneling energy) between the site i and the site
J, and

Ui = g / dx 5(x)* (12)

is the interaction energy on the site .



Bose-Hubbard Hamiltonian (1)

The Hamiltonian (9) is the two-site Bose-Hubbard Hamiltonian, named
after John Hubbard introduced a similar model in 1963 to describe
fermions (electrons) on a periodic lattice.

If the double-well potential Vpw (x) is fully symmetric then e, = eg =€,
Jir =Jre = J, U, = Ug = U, and the Bose-Hubbard Hamiltonian
becomes

~ N o U
H=c¢ (Nl_ + NR) —J (éz_éR + Q?\,—QL) + 5

|
=
=
=
s

I
Nt
+
=
2
=
By

|
=

The two-site Bose-Hubbard Hamiltonian can be easily extendend to L
sites as follows

L L-1
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Actually the first term, which contains the total number of particles
ZJ 1 Nj, does not affect the dynamical properties of the system.



