Lesson 9 - Second Quantization of Matter Unit 9.3 Hamiltonian in second quantization with interaction

Luca Salasnich

Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova

Structure of Matter - MSc in Physics

First vs second quantization (I)

In first quantization, the non-relativistic quantum Hamiltonian of N interacting identical particles in the external potential $U(\mathbf{r})$ is given by

$$\hat{H}^{(N)} = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \nabla_i^2 + U(\mathbf{r}_i) \right] + \frac{1}{2} \sum_{\substack{i,j=1\\i\neq j}} V(\mathbf{r}_i - \mathbf{r}_j) = \sum_{i=1}^{N} \hat{h}_i + \frac{1}{2} \sum_{\substack{i,j=1\\i\neq j}}^{N} V_{ij} ,$$
(1)

where $V({\bf r}-{\bf r}')$ is the inter-particle potential. In second quantization, the quantum field operator can be written as

$$\hat{\psi}(\mathbf{r}) = \sum_{\alpha} \hat{c}_{\alpha} \ \phi_{\alpha}(\mathbf{r}) \tag{2}$$

where the $\phi_{\alpha}(\mathbf{r}) = \langle \mathbf{r} | \alpha \rangle$ are the eigenfunctions of \hat{h} such that $\hat{h} | \alpha \rangle = \epsilon_{\alpha} | \alpha \rangle$, and \hat{c}_{α} and \hat{c}_{α}^{+} are the annihilation and creation operators of the single-particle state $| \alpha \rangle$.

First vs second quantization (II)

We now introduce the quantum many-body Hamiltonian

$$\hat{H} = \sum_{\alpha} \epsilon_{\alpha} \hat{c}_{\alpha}^{+} \hat{c}_{\alpha} + \sum_{\alpha\beta\gamma\delta} V_{\alpha\beta\gamma\delta} \hat{c}_{\alpha}^{+} \hat{c}_{\beta}^{+} \hat{c}_{\delta} \hat{c}_{\gamma} , \qquad (3)$$

where

$$V_{\alpha\beta\delta\gamma} = \int d^3\mathbf{r} \ d^3\mathbf{r}' \ \phi_{\alpha}^*(\mathbf{r}) \ \phi_{\beta}^*(\mathbf{r}') \ V(\mathbf{r} - \mathbf{r}') \ \phi_{\delta}(\mathbf{r}') \ \phi_{\gamma}(\mathbf{r}) \ . \tag{4}$$

This Hamiltonian can be also written as

$$\hat{H} = \int d^3 \mathbf{r} \ \hat{\psi}^+(\mathbf{r}) \left[-\frac{\hbar^2}{2m} \nabla^2 + U(\mathbf{r}) \right] \hat{\psi}(\mathbf{r})$$

$$+ \frac{1}{2} \int d^3 \mathbf{r} \ d^3 \mathbf{r}' \ \hat{\psi}^+(\mathbf{r}) \ \hat{\psi}^+(\mathbf{r}') \ V(\mathbf{r} - \mathbf{r}') \ \hat{\psi}(\mathbf{r}') \ \hat{\psi}(\mathbf{r}) \ . \tag{5}$$

First vs second quantization (III)

The meaningful connection between the second-quantization Hamiltonian \hat{H} and the first-quantization Hamiltonian $\hat{H}^{(N)}$, which is given by the formula

$$\hat{H}|\mathbf{r}_1\mathbf{r}_2...\mathbf{r}_N\rangle = \hat{H}^{(N)}|\mathbf{r}_1\mathbf{r}_2...\mathbf{r}_N\rangle . \tag{6}$$

In fact, after some calculations one finds that

$$\hat{\psi}^{+}(\mathbf{r})\,\hat{h}(\mathbf{r})\,\hat{\psi}(\mathbf{r})\,|\mathbf{r}_{1}\mathbf{r}_{2}...\mathbf{r}_{N}\rangle = \sum_{i=1}^{N}\hat{h}(\mathbf{r}_{i})\delta(\mathbf{r}-\mathbf{r}_{i})\,|\mathbf{r}_{1}\mathbf{r}_{2}...\mathbf{r}_{N}\rangle \tag{7}$$

and also

$$\hat{\psi}^{+}(\mathbf{r}) \hat{\psi}^{+}(\mathbf{r}') V(\mathbf{r}, \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r}) |\mathbf{r}_{1}\mathbf{r}_{2}...\mathbf{r}_{N}\rangle
= \sum_{\substack{i,j=1\\i\neq j}}^{N} V(\mathbf{r}_{i}, \mathbf{r}_{i}) \delta(\mathbf{r} - \mathbf{r}_{i}) \delta(\mathbf{r}' - \mathbf{r}_{j}) |\mathbf{r}_{1}\mathbf{r}_{2}...\mathbf{r}_{N}\rangle .$$
(8)

From these two expressions Eq. (6) follows immediately, after space integration.

Coherent states for bosons (I)

The classical analog of the bosonic quantum field operator

$$\hat{\psi}(\mathbf{r}) = \sum_{i} \phi_{j}(\mathbf{r}) \ \hat{c}_{j} \tag{9}$$

is the complex classical field

$$\psi(\mathbf{r}) = \sum_{j} \phi_{\alpha}(\mathbf{r}) \ c_{j} \tag{10}$$

such that

$$\hat{\psi}(\mathbf{r})|\psi\rangle = \psi(\mathbf{r})|\psi\rangle , \qquad (11)$$

where

$$|\psi\rangle = \prod_{i} |c_{i}\rangle \tag{12}$$

is the bosonic coherent state of the system, $|c_j\rangle$ is the coherent state of the bosonic operator \hat{c}_i , and c_i is its complex eigenvalue, namely

$$\hat{c}_j|c_j\rangle = c_j|c_j\rangle \ . \tag{13}$$

Coherent states for fermions (I)

Similarly, one can introduce the pseudo-classical Grassmann analog of the fermionic field operator by using fermionic coherent states. Thus, the classical analog of the fermionic quantum field operator

$$\hat{\psi}(\mathbf{r}) = \sum_{i} \phi_{j}(\mathbf{r}) \ \hat{c}_{j} \tag{14}$$

is the Grassmann classical field

$$\psi(\mathbf{r}) = \sum_{j} \phi_{\alpha}(\mathbf{r}) \ c_{j} \tag{15}$$

such that

$$\hat{\psi}(\mathbf{r})|\psi\rangle = \psi(\mathbf{r})|\psi\rangle , \qquad (16)$$

where

$$|\psi\rangle = \prod_{i} |c_{i}\rangle \tag{17}$$

is the fermionic coherent state of the system, $|c_j\rangle$ is the coherent state of the fermionic operator \hat{c}_j , and c_j is its Grassmann eigenvalue, namely

$$\hat{c}_i|c_i\rangle = c_i|c_i\rangle \ . \tag{18}$$

Coherent states for fermions (II)

In the case of fermions, it is immedate to verify that, for mathematical consistency, this eigenvalue c_j must satisfy the following relationships

$$c_j \bar{c}_j + \bar{c}_j c_j = 1$$
, $c_j^2 = \bar{c}_j^2 = 0$, (19)

where \bar{c}_i is such that

$$\langle c|\hat{c}_j^+ = \bar{c}_j \langle c| . \tag{20}$$

Obviously c_j and \bar{c}_j are not complex numbers. They are instead Grassmann numbers, namely elements of the Grassmann linear algebra $\{1,c_j,\bar{c}_j,\bar{c}_jc_j\}$ characterized by the independent basis elements $1,c_j,\bar{c}_j$, with 1 the identity (neutral) element.

The most general function on this Grassmann algebra is given by

$$f(\bar{c},c) = f_{11} + f_{12} c + f_{21} \bar{c} + f_{22} \bar{c} c$$
, (21)

where f_{11} , f_{12} , f_{21} , f_{22} are complex numbers. In fact, the function $f(\bar{c}, c)$ does not have higher powers of c, \bar{c} and $\bar{c}c$ because they are identically zero.

