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First vs second quantization (1)

In first quantization, the non-relativistic quantum Hamiltonian of N
interacting identical particles in the external potential U(r) is given by
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where V(r — ') is the inter-particle potential.
In second quantization, the quantum field operator can be written as
d(r) = & dalr) (2)

where the ¢, (r) = (r|o) are the eigenfunctions of h such that
hla) = €q|), and &, and & are the annihilation and creation operators
of the single-particle state |«).



First vs second quantization (I1)

We now introduce the quantum many-body Hamiltonian
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This Hamiltonian can be also written as
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First vs second quantization (I11)

The meaningful connection between the second-quantization Hamiltonian
A and the first-quantization Hamiltonian AM | which is given by the
formula

I:l\rlrz...rm = I:l(N)|r1r2...rN) . (6)

In fact, after some calculations one finds that
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From these two expressions Eq. (6) follows immediately, after space
integration.



Coherent states for bosons (1)

The classical analog of the bosonic quantum field operator

h(r) = Z ¢;(r) & 9)
is the complex classical field
¢(r) = Zd)a(r) ¢j (10)
such that )
P()[Y) = p()[Y) (11)
where
v =1Tle) (12

is the bosonic coherent state of the system, |¢;) is the coherent state of
the bosonic operator ¢;, and ¢; is its complex eigenvalue, namely

&le) = ¢lg) - (13)



Coherent states for fermions (1)

Similarly, one can introduce the pseudo-classical Grassmann analog of the
fermionic field operator by using fermionic coherent states. Thus, the
classical analog of the fermionic quantum field operator

h(r) = Z o;(r) & (14)
is the Grassmann classical field
() =D dalr) G (15)
such that A
P(N)[Y) = Y(N)[Y) (16)
where
) =T1le) (17)

is the fermionic coherent state of the system, |c;) is the coherent state of
the fermionic operator ¢;, and ¢; is its Grassmann eigenvalue, namely

&lg) = glg) - (18)



Coherent states for fermions (I1)

In the case of fermions, it is immedate to verify that, for mathematical
consistency, this eigenvalue ¢; must satisfy the following relationships

GG +gg=1, =¢ =0, (19)

where ¢; is such that
(elef” = gel - (20)

Obviously ¢; and ¢; are not complex numbers. They are instead
Grassmann numbers, namely elements of the Grassmann linear algebra
{1,¢, G, Cjcj} characterized by the independent basis elements 1, ¢j, €j,
with 1 the identity (neutral) element.

The most general function on this Grassmann algebra is given by
f((_?,C):fl1+f12C+leZ'+f22(__‘C, (21)

where fi1, fi2, 1, f22 are complex numbers. In fact, the function 7(¢, c)
does not have higher powers of ¢, € and ¢c because they are identically
zero.



