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Hamiltonian in second quantization (I)

By using the number operators N̂α = ĉ+
α ĉα, the quantum Hamiltonian of

the matter field can be written as

Ĥ =
∑
α

εα N̂α , (1)

after removing the puzzling zero-point energy. This is the
second-quantization Hamiltonian of non-interacting matter.
The same Hamiltonian can also be written in the elegant form

Ĥ =

∫
d3r ψ̂+(r, t)

[
− ~2

2m
∇2 + U(r)

]
ψ̂(r, t) . (2)

This quantum Hamiltonian can be directly obtained from the classical
Schrödinger energy by promoting the complex classical field ψ(r, t) and
ψ̂(r, t) to quantum field operators:

ψ(r, t) → ψ̂(r, t) , (3)

ψ∗(r, t) → ψ̂+(r, t) , (4)

satisfying the commutation relations of bosons or the anti-commutation
relations of fermions.



Hamiltonian in second quantization (II)

It is straightforward to show that the bosonic field operator satisfies the
following equal-time commutation rules

[ψ̂(r, t), ψ̂+(r′, t)] = δ(r − r′) , (5)

while for the fermionic field operator one gets

{ψ̂(r, t), ψ̂+(r′, t)} = δ(r − r′) . (6)

A remarkable property of the field operator ψ̂+(r, t), which works for
bosons and fermions, is the following:

ψ̂+(r, t)|0〉 = |r, t〉 (7)

that is the operator ψ̂+(r, t) creates a particle in the state |r, t〉 from the
vacuum state |0〉.



Second quantization at finite temperature (I)

Let us consider the non-interacting matter field in thermal equilibrium
with a bath at the temperature T . The relevant quantity to calculate all
the thermodynamical properties of the system is the grand-canonical
partition function Z, given by

Z = Tr [e−β(Ĥ−µN̂)] (8)

where β = 1/(kBT ) with kB the Boltzmann constant,

Ĥ =
∑
α

εα N̂α , (9)

is the quantum Hamiltonian,

N̂ =
∑
α

N̂α (10)

is total number operator, and µ is the chemical potential, fixed by the
conservation of the average particle number.



Second quantization at finite temperature (II)

This implies that

Z =
∑
{nα}

〈 ... nα ... |e−β(Ĥ−µN̂)| ... nα ... 〉

=
∑
{nα}

〈 ... nα ... |e−β
∑

α(εα−µ)N̂α | ... nα ... 〉

=
∑
{nα}

e−β
∑

α(εα−µ)nα =
∑
{nα}

∏
α

e−β(εα−µ)nα =
∏
α

∑
nα

e−β(εα−µ)nα

=
∏
α

∞∑
n=0

e−β(εα−µ) n =
∏
α

1

1− e−β(εα−µ)
for bosons (11)

=
∏
α

1∑
n=0

e−β(εα−µ) n =
∏
α

(
1 + e−β(εα−µ)

)
for fermions (12)



Second quantization at finite temperature (III)

Quantum statistical mechanics dictates that the thermal average of any
operator Â is obtained as

〈Â〉T =
1

Z
Tr [Â e−β(Ĥ−µN̂)] . (13)

Let us suppose that Â = Ĥ − µN̂, it is then quite easy to show that

1

Z
Tr [(Ĥ − µN̂) e−β(Ĥ−µN̂)] = − ∂

∂β
ln
(
Tr [e−β(Ĥ−µN̂ ]

)
= − ∂

∂β
ln(Z) .

(14)
By using Eq. (11) or Eq. (12) we immediately obtain

ln(Z) = ∓
∑
α

ln
(

1∓ e−β(εα−µ)
)
, (15)

where − is for bosons and + for fermions, and finally from Eq. (14) we
get

〈Ĥ〉T =
∑
α

εα 〈N̂α〉T with 〈N̂α〉T =
1

eβ(εα−µ) ∓ 1
. (16)



Second quantization at finite temperature (IV)

The one-body local density operator is defined as

ρ̂(r, t) = ψ̂+(r, t) ψ̂(r, t) , (17)

and it is such that∫
d3r ρ̂(r, t) =

∑
α

ĉ+
α (t)ĉα(t) =

∑
α

N̂α = N̂ , (18)

taking into account the expansion

ψ̂(r, t) =
∑
α

ĉα(t) φα(r) . (19)

Moreover, one immediately finds the following thermal average

〈ρ̂(r, t)〉T =
∑
α

|φα(r)|2〈N̂α〉T =
∑
α

|φα(r)|2

eβ(εα−µ) ∓ 1
, (20)

that is the local density at temperature T for identical bosons (−) or
identical fermions (+).


