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Madelung transformation (I)

Assuming a large number N of particles and the normalization condition

N =

∫
d3r |ψ0(r, t)|2 (1)

for the wavefunction ψ0(r, t), the time-dependent Gross-Pitaevskii
equation can be written as
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∂
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ψ0(r, t) =
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∇2 + U(r) + g |ψ0(r, t)|2

]
ψ0(r, t) . (2)

Adopting the Madelung transformation, namely setting

ψ0(r, t) = n(r, t)1/2 e iθ(r,t) and v(r, t) =
~
m
∇θ(r, t) , (3)

inserting these formulas into Eq. (2) one finds

∂

∂t
n + ∇ · (n v) = 0 , (4)
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= 0 . (5)



Madelung transformation (II)

Eqs. (4) and (5) are, respectively, the equation of continuity and the
equation of conservation of linear momentum for a irrotational and
inviscid fluid.
The zero-temperature equation of state of this superfluid, i.e. the local
chemical potential as a function of the local density and its derivatives,
can be written as

µ(n,∇2n) = gn − ~2

2m

∇2
√
n√

n
, (6)

where the second term, which is usually called quantum pressure,
becomes negligible in the high-density regime.
Notice that the local velocity field

v(r, t) =
~
m
∇θ(r, t) (7)

is by definition irrotational, i.e. such that

∇ ∧ v = 0 . (8)



Superfluid hydrodynamics (I)

Quantum effects are encoded not only in the equation of state

µ(n,∇2n) = gn − ~2
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n√

n
, (9)

also into the properties of the local field v(r, t): it is proportional to the
gradient of a scalar field, θ(r, t), that is the angle of the phase of the
single-valued complex wavefunction ψ0(r, t). Indeed, one gets∮

C
v · dr = 2π

~
m
k (10)

for any closed contour C, with k an integer number. In other words, the
circulation is quantized in units of ~/m, and this property is strictly
related to the existence of quantized vortices.



Superfluid hydrodynamics (II)

Let us assume that U(r) = 0. The equations of superfluid hydrodynamics
become

∂

∂t
n + ∇ · (n v) = 0 , (11)
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We now set

n(r, t) = neq + δn(r, t) , (13)

v(r, t) = 0 + δv(r, t) , (14)

where δn(r, t) and δv(r, t) represent small variations with respect to the
uniform and constant stationary configuration neq.



Superfluid hydrodynamics (III)

In this way, neglecting quadratic terms in the variations (linearization)
from Eqs. (11) and (12) we get the linear equations of motion

∂

∂t
δn + neq∇ · δv = 0 , (15)

∂

∂t
δv +

c2
s

neq
∇δn − ~2

4m2neq
∇(∇2δn) = 0 , (16)

where cs is the sound velocity of the bosonic superfluid, given by

mc2
s = g neq . (17)

The linear equations of motion can be arranged in the form of the
following wave equation[ ∂2

∂t2
− c2

s∇2 +
~2

4m2
∇4
]
δn(r, t) = 0 . (18)



Superfluid hydrodynamics (IV)

The wave equation admits monochromatic plane-wave solutions, where
the frequency ω and the wave vector q are related by the dispersion
formula ω = ω(q) given by

Eq = ~ω(q) =

√
~2q2

2m

(~2q2

2m
+ 2mc2

s

)
. (19)

This is called Bogoliubov spectrum of elementary excitations.
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In the above Figure there is the Bogoliubov spectrum and its
low-momenta (q � 1) phonon spectrum Eq = cs ~q.


