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Dirac equation with a central potential (I)

We now consider the stationary Dirac equation with the confining
spherically-symmetric potential V (r) = V (|r|), namely(

−i~c α̂ ·∇ + β̂ mc2 + V (r)
)

Φ(r) = E Φ(r) . (1)

This equation is easily derived from the Dirac equation with
electromagnetic field setting A = 0, qφ = V (r), and

Ψ(r, t) = e−iEt/~ Φ(r) . (2)

In this way we find(
−i~c α̂ ·∇ + β̂ mc2 + V (r)

)
Φ(r) = E Φ(r) (3)



Dirac equation with a central potential (II)

The relativistic Hamiltonian

Ĥ = −i~c α̂ ·∇ + β̂ mc2 + V (r) (4)

commutes with the total angular momentum operator

Ĵ = L̂ + Ŝ = r ∧ p̂ +
~
2
σ̂ (5)

because the external potential is spherically symmetric. Consequently one
has

[Ĥ, Ĵ] = 0 , (6)

and also

[Ĥ, Ĵ2] = 0 , [Ĵ2, Ĵx ] = [Ĵ2, Ĵy ] = [Ĵ2, Ĵz ] = 0 , (7)

where the three components Ĵx , Ĵy , Ĵz of the total angular momentum

Ĵ = (Ĵx , Ĵy , Ĵz) satisfy the familiar commutation relations

[Ĵi , Ĵj ] = i~ εijk Ĵk (8)

with εijk the Levi-Civita symbol.



Dirac equation with a central potential (III)

These commutation relations can be symbolically synthesized as

Ĵ ∧ Ĵ = i~ Ĵ . (9)

Indicating the states which are simultaneous eigenstates of Ĥ, Ĵ2 and Ĵz
as |njmj〉, one has

Ĥ|njmj〉 = Enj |njmj〉 , (10)

Ĵ2|njmj〉 = ~2j(j + 1) |njmj〉 , (11)

Ĵz |njmj〉 = ~mj |njmj〉 , (12)

where j is the quantum number of the total angular momentum and
mj = −j ,−j + 1,−j + 2, ..., j − 2, j − 1, j the quantum number of the
third component of the total angular momentum.
It it important to stress that, in the relativistic case, contrary to the total
angular momentum Ĵ = L̂ + Ŝ, the orbital angular momentum L̂ and the
spin Ŝ are not constants of motion of a particle in a central potential.



Relativistic hydrogen atom (I)

Let us consider now the electron of the hydrogen atom. We set q = −e,
m = me and

V (r) = − e2

4πε0|r|
= − e2

4πε0 r
. (13)

Then it is possible to prove that the eigenvalues Enj of Ĥ are given by

Enj =
mc2√

1 + α2(
n−j− 1

2 +
√

(j+ 1
2 )2−α2

)2

−mc2 , (14)

with α = e2/(4πε0~c) ' 1/137 the fine-structure constant. We do not
prove this remarkable quantization formula, obtained independently in
1928 by Charles Galton Darwin and Walter Gordon.



Relativistic hydrogen atom (II)

Expanding the formula

Enj =
mc2√

1 + α2(
n−j− 1

2 +
√

(j+ 1
2 )2−α2

)2

−mc2 , (15)

in powers of the fine-structure constant α to order α4 one gets

Enj = E (0)
n

[
1 +

α2

n

(
1

j + 1
2

− 3

4n

)]
, (16)

where

E (0)
n = −1

2
mc2α

2

n2
= −13.6 eV

n2
(17)

is the familiar Bohr quantization formula of the non relativistic hydrogen
atom. The term which corrects the Bohr formula, given by

∆E = E (0)
n

α2

n

(
1

j + 1
2

− 3

4n

)
, (18)

is called fine splitting correction.



Relativistic hydrogen atom (III)

The fine splitting removes the non-relativistic degeneracy of energy levels,
but not completely: double-degenerate levels remain with the same
quantum numbers n and j but different orbital quantum number
l = j ± 1/2.

In the figure, on the left there are the non-relativistic energy levels with a
Coulomb potential (Coulomb) while on the right there are the relativistic
energy levels (Fine Structure).


