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Dirac equation with electromagnetic field (I)

Now we analyze the non-relativistic limit of the Dirac equation. Let us
suppose that the relativistic particle has the electric charge q. In presence
of an electromagnetic field, by using the Gauge-invariant substitution

i~
∂

∂t
→ i~

∂

∂t
− q φ(r, t) (1)

−i~∇→ −i~∇− qA(r, t) (2)

in the Dirac equation, we obtain

i~
∂

∂t
Ψ(r, t) =

(
c α̂ · (p̂− qA(r, t)) + β̂mc2 + q φ(r, t)

)
Ψ(r, t) , (3)

where p̂ = −i~∇, φ(r, t) is the scalar potential and A(r, t) the vector
potential.



Non-relativistic limit (I)

To workout the non-relativistic limit of Eq. (3) it is useful to set

Ψ(r, t) = e−imc2t/~


ψ1(r, t)
ψ2(r, t)
χ1(r, t)
χ2(r, t)

 = e−imc2t/~
(
ψ(r, t)
χ(r, t)

)
, (4)

where ψ(r, t) and χ(r, t) are two-component spinors, for which we obtain

i~
∂

∂t

(
ψ
χ

)
=

(
q φ c σ̂ · (p̂− qA)

c σ̂ · (p̂− qA) q φ− 2mc2

)(
ψ
χ

)
(5)

where σ̂ = (σ̂1, σ̂2, σ̂3).



Non-relativistic limit (II)

Remarkably, only in the lower equation of the previous system it appears
the mass term mc2, which is dominant in the non-relativistic limit.
Indeed, under the approximation

(
i~ ∂
∂t − q φ+ 2mc2

)
χ ' 2mc2 χ, the

previous equations become(
i~∂ψ∂t

0

)
=

(
q φ c σ̂ · (p̂− qA)

c σ̂ · (p̂− qA) −2mc2

)(
ψ
χ

)
, (6)

from which

χ =
σ̂ · (p̂− qA)

2mc
ψ . (7)

Inserting this expression in the upper equation of the system (6) we find

i~
∂

∂t
ψ =

(
[σ̂ · (p̂− qA)]2

2m
+ q φ

)
ψ . (8)

This is a non-relativistic Schordinger-like equation, derived from the
relativistic Dirac equation.



Pauli equation and the spin (I)

From the identity

[σ̂ · (p̂− qA)]2 = (p̂− qA)2 − i q (p̂ ∧ A) · σ̂ (9)

where p̂ = −i~∇, and using the relation B = ∇ ∧ A which introduces
the magnetic field we finally get

i~
∂

∂t
ψ(r, t) =

(
(−i~∇− qA(r, t))2

2m
− q

m
B(r, t) · Ŝ + q φ(r, t)

)
ψ(r, t) ,

(10)
that is the so-called Pauli equation with

Ŝ =
~
2
σ̂ . (11)

the spin operator. This equation was introduced in 1927 (a year before
the Dirac equation) by Wolfgang Pauli as an extension of the Schrödinger
equation with the phenomenological inclusion of the spin operator.



Pauli equation and the spin (II)

If the magnetic field B is constant, the vector potential can be written as

A =
1

2
B ∧ r (12)

and then

(p̂− qA)2 = p̂2 − 2qA · p̂ + q2A2 = p̂2 − qB · L̂ + q2(B ∧ r)2 , (13)

with L̂ = r ∧ p̂ the orbital angular momentum operator. Thus, the Pauli
equation for a particle of charge q in a constant magnetic field reads

i~
∂

∂t
ψ(r, t) =

(
−~2∇2

2m
− q

2m
B ·
(
L̂ + 2Ŝ

)
+

q2

2m
(B ∧ r)2 + q φ(r, t)

)
ψ(r, t) .

(14)



Pauli equation and the spin (III)

Thus, we have shown that the spin Ŝ naturally emerges from the Dirac
equation.
Moreover, the Dirac equation predicts very accurately the magnetic
moment µS of the electron (q = −e, m = me) which appears in the spin
energy Es = −µ̂S · B of the Pauli equation. In particular, we have found

µS = −ge
µB

~
Ŝ (15)

where
ge = 2 (16)

is the gyromagnetic ratio and

µB =
e~
2m
' 5.79 · 10−5 eV/T (17)

is the Bohr magneton.


