Lesson 4 - Electromagnetic Transitions Unit 4.2 Line width of electromagnetic transitions

Luca Salasnich

Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova

Structure of Matter - MSc in Physics

<ロト <回ト < 注ト < 注ト = 注

Life time (I)

We have seen that the Einstein coefficient $A_{ba} = W_{ba}^{spont}$ gives the transition probability per unit of time from the atomic state $|b\rangle$ to the atomic state $|a\rangle$. This means that, according to Einstein, in the absence of an external electromagnetic radiation one has

$$\frac{dN_b}{dt} = -A_{ba} N_b \tag{1}$$

with the unique solution

$$N_b(t) = N_b(0) \ e^{-A_{ba}t} \ . \tag{2}$$

It is then quite natural to consider $1/A_{ba}$ as the characteristic time of this spontaneous transition.

More generally, the life-time τ_b of an atomic state $|b\rangle$ is defined as the reciprocal of the total spontaneous transition probability per unit time to all possible final atomic states $|a\rangle$, namely

$$\tau_b = \frac{1}{\sum_a A_{ba}} \,. \tag{3}$$

Clearly, if $|b\rangle$ is the ground-state then $A_{ba} = 0$ and $\tau_b = \infty$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

On the basis of the time-energy indetermination principle of Werner Heisenberg, in the radiation energy spectrum the natural line-width Γ_N due to the transition from the state $|b\rangle$ to the state $|a\rangle$ can be defined as

$$\Gamma_N = \hbar \left(\frac{1}{\tau_b} + \frac{1}{\tau_a} \right) \ . \tag{4}$$

Indeed it is possible to prove that in this transition the intensity of the emitted electromagnetic radiation follows the Lorentzian peak

$$I(\epsilon) = \frac{I_0 \Gamma_N^2 / 4}{(\epsilon - E_{ba})^2 + \Gamma_N^2 / 4} ,$$
 (5)

where $\epsilon = \hbar \omega$ is the energy of the emitted photon and $E_{ba} = E_b - E_a$ is the energy difference of the two atomic states. The Lorentzian peak is centered on $\epsilon = E_{ba}$ and Γ_N is its full width at half-maximum.

Experimental line width (I)

The effective line-width Γ measured in the experiments is usually larger than Γ_N because the radiating atoms move and collide. In fact, one can write

$$\Gamma = \Gamma_N + \Gamma_C + \Gamma_D , \qquad (6)$$

where in addition to the natural width Γ_N there are the so-called collisional broadening width Γ_C and the Doppler broadening width Γ_D . The collisional width can be then written as

$$\Gamma_C = \frac{\hbar}{\tau_{col}} , \qquad (7)$$

where τ_{col} is the collisional time. According to the results of statistical mechanics, τ_{col} is given by

$$\tau_{col} = \frac{1}{n\sigma v_{mp}} , \qquad (8)$$

where *n* is the number density of atoms, σ is the interaction cross-section, and

$$v_{mp} = \sqrt{\frac{2k_B T}{m}} \tag{9}$$

is the most probable speed of the particles in the gas at temperature T.

Experimental line width (II)

The Doppler broadening is due to the Doppler effect caused by the distribution of velocities of atoms. For non-relativistic velocities ($v_x \ll c$) the Doppler shift in frequency is

$$\omega = \omega_0 \left(1 - \frac{v_x}{c} \right) , \qquad (10)$$

where ω is the observed angular frequency, ω_0 is the rest angular frequency, v_x is the component of the atom speed along the axis between the observer and the atom and c is the speed of light. The Maxwell-Boltzmann distribution $f(v_x)$ of speeds $v_x = -c(\omega - \omega_0)/\omega_0$ at temperature T becomes

$$f(\omega) d\omega = \left(\frac{m}{2\pi k_B T}\right)^{1/2} e^{-mc^2(\omega-\omega_0)^2/(2\omega_0^2 k_B T)} \frac{c}{\omega_0} d\omega \qquad (11)$$

in terms of the angular frequency ω . The full width at half-maximum of the Gaussian is taken as Doppler width, namely

$$\Gamma_D = \sqrt{\frac{8\ln(2)k_BT}{mc^2}}\,\hbar\omega_0\;. \tag{12}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●