
Appendix D

Fermi Golden Rule

Let us consider a quantum system described by the Hamiltonian

Ĥ = Ĥ0 + ĤI , (D.1)

where Ĥ0 is the Hamiltonian of the unperturbed part while ĤI is the Hamiltonian of the
perturbation.

A generic eigenstate |φn〉 of the unperturbed Hamiltonian Ĥ0 satisfies the stationary
Schrödinger equation

Ĥ0|φn〉 = En|φn〉 , (D.2)

where En is the corresponding eigenstate of the unperturbed Hamiltonian Ĥ0.
If the perturbation is zero, i.e. if ĤI = 0, then the time evolution of |φn〉 is simple:

|φn(t)〉 = e−iEnt/~|φn(0)〉 . (D.3)

Clearly, in this case, it is zero the probability of finding the eigenstate |φn〉 of the unper-
turbed Hamiltonian Ĥ0 in another eigenstate |φl〉 of the unperturbed Hamiltonian Ĥ0.

If instead the perturbation is not zero, i.e. if ĤI 6= 0, then the time evolution of |φn〉
is, in general, quit complicated because, usually, |φn〉 is not an eigenstate of the total
Hamiltonian Ĥ. The Fermi golden rule is relevant in this case because it gives a way to
calculate the probability of finding the eigenstate |φn〉 of the unperturbed Hamiltonian Ĥ0

into another eigenstate |φl〉 of the unperturbed Hamiltonian Ĥ0.
A generic time-dependent state |ψ(t)〉 of the total Hamiltonian Ĥ of Eq. (D.1) satisfies

the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 =

(

Ĥ0 + ĤI

)

|ψ(t)〉 . (D.4)

This state |ψ(t)〉 can be expanded in the orthonormal basis of the time-independent eigen-
states |φj(0)〉 of the unperturbed Hamiltonian Ĥ0 as follows

|ψ(t)〉 =
∑

j

cj(t) e
−iEjt/~ |φj(0)〉 , (D.5)
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where the complex coefficients cj(t) are all equal to one only in the very special case of

ĤI = 0. For the sake of simplicity we approximate Eq. (D.5) adopting the two-mode
approximation which involves only two eigenstates |φI(0)〉 and |φF (0)〉 of the unperturbed
Hamiltonian H0:

|ψ(t)〉 =
∑

j=I,F

cj(t) e
−iEjt/~ |φj(0)〉 , (D.6)

assuming that at t = 0 the state |ψ(0)〉 of the system is in the initial state |φI(0)〉, namely
cI(0) = 1 and cF (0) = 0. Here |φF (0)〉 is our final state, and clearly 〈φI(0)|φF (0)〉 = 0.

Inserting the expression (D.6) into Eq. (D.4) and the bra 〈φF (0)| on the left side of the
resulting formula we obtain

i~ ċF (t) = 〈φF (0)|ĤI |φI(0)〉 e
iωIF t , (D.7)

where ωIF = (EI − EF )/~. The solution of this equation is given by

cF (t) =
〈F |ĤI |I(0)〉

i~

∫ t

0

eiωIF t′ dt′ =
〈F |ĤI |I〉

~ωIF

(

1− eiωIF t
)

, (D.8)

where we set |I〉 = |φI(0)〉 and F = |φF (0)〉. It follows that

|cF (t)|
2 =

|〈φF (0)|ĤI |φF (0)〉|
2

~2ω2
IF

4 sin2 (ωIF t/2) . (D.9)

We can now introduce the transition probability per unit time

|cF (t)|
2

t
=

1

~2
t
sin2(ωIF t/2)

(ωIF t/2)2
. (D.10)

Because the Dirac delta function δ(x) can be written as

δ(x) =
1

2π
lim

t→+∞
t
sin2(x t)

(x t)2
, (D.11)

the asymptotic transition probability per unit time

WIF = lim
t→+∞

|cF (t)|
2

t
(D.12)

reads

WIF =
2π

~
|〈F |HI |I〉|

2 δ(EI − EF ) , (D.13)

which is the Fermi golden rule.


