Appendix D
Fermi Golden Rule

Let us consider a quantum system described by the Hamiltonian
H=Hy,+H;, . (D.1)

where Hj is the Hamiltonian of the unperturbed part while H; is the Hamiltonian of the
perturbation.
A generic eigenstate |¢,) of the unperturbed Hamiltonian H, satisfies the stationary
Schrodinger equation R
H0|¢n> = En’¢n> ) (D'Q)

where £, is the corresponding eigenstate of the unperturbed Hamiltonian H,.
If the perturbation is zero, i.e. if H; = 0, then the time evolution of |¢,) is simple:

|6 (1)) = e~ 6,,(0)) . (D.3)

Clearly, in this case, it is zero the probability of finding the eigenstate |¢,) of the unper-
turbed Hamiltonian Hy in another eigenstate |¢;) of the unperturbed Hamiltonian Ho.

If instead the perturbation is not zero, i.e. if H; # 0, then the time evolution of |¢,)
is, in general, quit complicated because, usually, |¢,) is not an eigenstate of the total
Hamiltonian H. The Fermi golden rule is relevant in this case because it gives a way to
calculate the probability of finding the eigenstate |¢,) of the unperturbed Hamiltonian H,
into another eigenstate |¢;) of the unperturbed Hamiltonian H.

A generic time-dependent state [(t)) of the total Hamiltonian H of Eq. (D.1) satisfies
the time-dependent Schrodinger equation

(e = (Ho+ 1) [o(o) (D.4)

This state [¢(t)) can be expanded in the orthonormal basis of the time-independent eigen-
states [¢;(0)) of the unperturbed Hamiltonian Hj as follows

(1)) =Y es(t) B [g;(0)) (D.5)
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where the complex coefficients ¢;(t) are all equal to one only in the very special case of
H; = 0. For the sake of simplicity we approximate Eq. (D.5) adopting the two-mode
approximation which involves only two eigenstates |¢;(0)) and |¢r(0)) of the unperturbed

Hamiltonian H: '
(1) = D ei(t) e |9,(0)) (D.6)
j=IF

assuming that at ¢ = 0 the state |¢/(0)) of the system is in the initial state |¢;(0)), namely
¢r(0) =1 and ¢p(0) = 0. Here |¢pr(0)) is our final state, and clearly (¢;(0)|¢r(0)) = 0.

Inserting the expression (D.6) into Eq. (D.4) and the bra (¢£(0)| on the left side of the
resulting formula we obtain

ih ép(t) = (6r(0)|Hlér(0)) et (D.7)

where wrp = (Er — Er)/h. The solution of this equation is given by

(F|H,;|1(0)) /t wrrtt o \FIHI|T) it
= ~—-"" 77 WIF dt — v/ 1 _ pWIF D
CF( ) iR 0 € A P ( € ) ) ( 8)

where we set |I) = |¢;(0)) and F' = |¢r(0)). It follows that

er(y = LOr OO, 2 p079) D.9)

We can now introduce the transition probability per unit time

lep®))? 1 sin®(wpt/2)
R et (b-10)

Because the Dirac delta function d(x) can be written as

sin?(z t)

1
= — i D.11
o(x) 21 t—1+moot (xt)? 7 ( )
the asymptotic transition probability per unit time
2
t——+o0 t
reads )
m
VVIF:f|(F|HI|I>|2 S(E;— EFr), (D.13)

which is the Fermi golden rule.



