Lesson 3 - Matter-Radiation Interaction Unit 3.2 Fermi golden rule and spontaneous emission

Luca Salasnich

Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova

Structure of Matter - MSc in Physics

Fermi golden rule (I)

We have seen that the total Hamiltonian of the matter-radiation system in the dipole approximation is given by

$$\hat{H} = \hat{H}_0 + \hat{H}_D , \qquad (1)$$

where

$$\hat{H}_0 = \hat{H}_{matt} + \hat{H}_{rad} \tag{2}$$

is the unperturbed Hamiltonian and \hat{H}_D is the dipole Hamiltonian, which couples matter and radiation.

Fermi golden rule: Given the initial $|I\rangle$ and final $|F\rangle$ eigenstates of the unperturbed Hamiltonian \hat{H}_0 under the presence to the perturbing Hamiltonian \hat{H}_D , the probability per unit time of the transition from $|I\rangle$ to $|F\rangle$ is given by

$$W_{IF} = \frac{2\pi}{\hbar} |\langle F | \hat{H}_D | I \rangle|^2 \, \delta(E_I - E_F) \,, \tag{3}$$

with the constraint of energy conservation.

Spontaneous emission (I)

Let us now apply the Fermi golden rule to the very interesting case of the hydrogen atom in the state $|b\rangle$ and the radiation field in the vacuum state $|0\rangle$. We are thus supposing that the initial state is

$$|I\rangle = |b\rangle|0\rangle . (4)$$

Notice that, because we are considering the hydrogen atom, one has

$$\hat{H}_{matt}|b\rangle = E_b|b\rangle$$
, (5)

where

$$E_b = -\frac{13.6 \text{ eV}}{n_b^2} \tag{6}$$

is the well-known quantization formula of the nonrelativistic hydrogen atom with quantum number $n_b=1,2,3,...$. In addition we suppose that the final state is

$$|F\rangle = |a\rangle |\mathbf{k}s\rangle ,$$
 (7)

i.e. the final atomic state is $|a\rangle$ and the final photon state is $|\mathbf{k}s\rangle = |1_{\mathbf{k}s}\rangle = \hat{a}_{\mathbf{k}c}^{+}|0\rangle$.

Spontaneous emission (II)

From Eq. (3) one finds

$$W_{ba,\mathbf{k}s}^{spont} = \frac{2\pi}{\hbar} \left(\frac{e}{m}\right)^2 \left(\frac{\hbar}{2\epsilon_0 \omega_k V}\right) |\varepsilon_{\mathbf{k}s} \cdot \langle a|\hat{\mathbf{p}}|b\rangle|^2 \delta(E_b - E_a - \hbar \omega_k), \quad (8)$$

because

$$\hat{\mathbf{a}}_{\mathbf{k}'s'}|I\rangle = \hat{\mathbf{a}}_{\mathbf{k}'s'}|b\rangle|0\rangle = |b\rangle\hat{\mathbf{a}}_{\mathbf{k}'s'}|0\rangle = 0, \qquad (9)$$

while

$$\hat{a}_{\mathbf{k}'s'}^{+}|I\rangle = \hat{a}_{\mathbf{k}'s'}^{+}|b\rangle|0\rangle = |b\rangle\hat{a}_{\mathbf{k}'s'}^{+}|0\rangle = |b\rangle|\mathbf{k}'s'\rangle , \qquad (10)$$

and consequently

$$\langle F|\hat{\mathbf{p}}\,\hat{a}_{\mathbf{k}'s'}|I\rangle = 0 , \qquad \langle F|\hat{\mathbf{p}}\,\hat{a}_{\mathbf{k}'s'}^{+}|I\rangle = \langle a|\hat{\mathbf{p}}|b\rangle \,\,\delta_{\mathbf{k}',\mathbf{k}} \,\,\delta_{s',s} . \qquad (11)$$

Spontaneous emission (III)

On the basis of Heisenberg equation of motion of the linear momentum operator $\hat{\boldsymbol{p}}$ of the electron

$$\frac{\hat{\mathbf{p}}}{m} = \frac{d\mathbf{r}}{dt} = \frac{1}{i\hbar} [\mathbf{r}, \hat{H}_{matt}], \qquad (12)$$

we get

$$\langle a|\hat{\mathbf{p}}|b\rangle = \langle a|m\frac{1}{i\hbar}[\mathbf{r},\hat{H}_{matt}]|b\rangle = \frac{m}{i\hbar}\langle a|\mathbf{r}\hat{H}_{matt} - \hat{H}_{matt}\mathbf{r}|b\rangle$$
$$= \frac{m}{i\hbar}(E_b - E_a)\langle b|\mathbf{r}|a\rangle = -im\omega_{ba}\langle a|\mathbf{r}|b\rangle , \qquad (13)$$

where $\omega_{ba}=(E_b-E_a)/\hbar$, and consequently

$$W_{ba,\mathbf{k}s}^{spont} = \frac{\pi \omega_{ba}^2}{V \epsilon_0 \omega_k} |\varepsilon_{\mathbf{k}s} \cdot \langle a|e \, \mathbf{r}|b \rangle|^2 \, \delta(\hbar \omega_{ba} - \hbar \omega_k) \,. \tag{14}$$

Spontaneous emission (IV)

The delta function is eliminated by integrating over the final photon states

$$W_{ba}^{spont} = \sum_{\mathbf{k}} \sum_{s} W_{ba,\mathbf{k}s}^{spont} = V \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \sum_{s=1,2} W_{ba,\mathbf{k}s}^{spont}$$
$$= \frac{V}{8\pi^{3}} \int dk k^{2} \int d\Omega \sum_{s=1,2} W_{ba,\mathbf{k}s}^{spont}, \qquad (15)$$

where $d\Omega$ is the differential solid angle.

Because $\varepsilon_{\mathbf{k}1}$, $\varepsilon_{\mathbf{k}2}$ and $\mathbf{n}=\mathbf{k}/k$ form a orthonormal system of vectors, setting $\mathbf{r}_{ab}=\langle a|\mathbf{r}|b\rangle$ one finds

$$|\mathbf{r}_{ab}|^2 = |\varepsilon_{\mathbf{k}1} \cdot \mathbf{r}_{ab}|^2 + |\varepsilon_{\mathbf{k}2} \cdot \mathbf{r}_{ab}|^2 + |\mathbf{n} \cdot \mathbf{r}_{ab}|^2 = \sum_{s=1,2} |\varepsilon_{\mathbf{k}s} \cdot \mathbf{r}_{ab}|^2 + |\mathbf{r}_{ab}|^2 \cos^2(\theta) ,$$
(16)

where θ is the angle between \mathbf{r}_{ba} and \mathbf{n} .

Spontaneous emission (V)

It follows immediately

$$\sum_{s=1,2} |\varepsilon_{\mathbf{k}s} \cdot \mathbf{r}_{ab}|^2 = |\mathbf{r}_{ab}|^2 (1 - \cos^2(\theta)) = |\mathbf{r}_{ab}|^2 \sin^2(\theta) = |\langle a|\mathbf{r}|b\rangle|^2 \sin^2(\theta).$$
(17)

In addition, in spherical coordinates one can choose $d\Omega=\sin\left(\theta\right)d\theta d\phi$, with $\theta\in[0,\pi]$ the zenith angle of colatitude and $\phi\in[0,2\pi]$ the azimuth angle of longitude, and then

$$\int d\Omega \sin^2(\theta) = \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \sin^3(\theta) = \frac{8\pi}{3}.$$
 (18)

In this way from Eq. (15) we finally obtain

$$W_{ba}^{spont} = \frac{\omega_{ba}^3}{3\pi\epsilon_0 \hbar c^3} \left| \langle a|\mathbf{d}|b\rangle \right|^2, \tag{19}$$

where the $\mathbf{d}=-e\,\mathbf{r}$ is the classical electric dipole momentum of the hydrogen atom, i.e. the dipole of the electron-proton system where \mathbf{r} is the position of the electron of charge -e<0 with respect to the proton of charge e>0, and $\langle a|\mathbf{d}|b\rangle=-\langle a|e\,\mathbf{r}|b\rangle$ is the so-called dipole transition element.