Lesson 3 - Matter-Radiation Interaction Unit 3.1 Minimal coupling and dipole approximation

Luca Salasnich

Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova

Structure of Matter - MSc in Physics

Minimal coupling (I)

Let us consider the hydrogen atom with Hamiltonian

$$\hat{H}_{matt} = \frac{\hat{\mathbf{p}}^2}{2m} - \frac{e^2}{4\pi\epsilon_0 |\mathbf{r}|} , \qquad (1)$$

where $\hat{\bf p}=-i\hbar {\bf \nabla}$ is the linear momentum operator of the electron in the state $|{\bf p}\rangle$, and e>0 is the modulus of the electric charge of the electron. The minimal coupling with the electromagnetic field is obtained with the substitution

$$\hat{\mathbf{p}} \to \hat{\mathbf{p}} + e\hat{\mathbf{A}}(\mathbf{r}, t)$$
 (2)

where $\mathbf{A}(\mathbf{r},t)$ is the vector potential of the electromagnetic field. In this way we have

$$\hat{H}_{matt,shift} = \frac{\left(\hat{\mathbf{p}} + e\hat{\mathbf{A}}(\mathbf{r},t)\right)^{2}}{2m} - \frac{e^{2}}{4\pi\epsilon_{0}|\mathbf{r}|}$$

$$= \hat{H}_{matt} + \frac{e}{m}\hat{\mathbf{A}}(\mathbf{r},t) \cdot \hat{\mathbf{p}} + \frac{e^{2}}{2m}\hat{\mathbf{A}}(\mathbf{r},t)^{2}. \tag{3}$$

Dipole approximation (I)

The dipole approximation means

$$\hat{H}_{matt,shift} \simeq \hat{H}_{matt} + \hat{H}_{D} ,$$
 (4)

where

$$H_D = \frac{e}{m}\hat{\mathbf{A}}(\mathbf{0},0) \cdot \hat{\mathbf{p}} . \tag{5}$$

This means that one neglects the term $(e^2/2m)\hat{\bf A}({\bf r},t)^2$ because it is quadratic correction with respect to the weak vector potential and one uses $\hat{\bf A}({\bf 0},0)$ instead of $\hat{\bf A}({\bf r},t)$.

The latter assumption, which corresponds to

$$e^{i\mathbf{k}\cdot\mathbf{r}} = 1 + i\mathbf{k}\cdot\mathbf{r} + \frac{1}{2}(i\mathbf{k}\cdot\mathbf{r})^2 + \dots \simeq 1,$$
 (6)

is reliable if ${\bf k}\cdot{\bf r}\ll 1$, namely if the electromagnetic radiation has a wavelength $\lambda=2\pi/|{\bf k}|$ very large compared to the linear dimension R of the atom. Indeed, the approximation is fully justified in atomic physics where $\lambda\simeq 10^{-7}$ m and $R\simeq 10^{-10}$ m.

Quantum electrodynamics (I)

The total Hamiltonian of the matter-radiation system in the dipole approximation is then given by

$$\hat{H} = \hat{H}_0 + \hat{H}_D , \qquad (7)$$

where

$$\hat{H}_0 = \hat{H}_{matt} + \hat{H}_{rad} \tag{8}$$

is the unperturbed Hamiltonian, such that

$$\hat{H}_{matt} = \frac{\hat{\mathbf{p}}^2}{2m} - \frac{e^2}{4\pi\epsilon_0 |\mathbf{r}|} , \qquad (9)$$

is the matter Hamiltonian, while the radiation Hamiltonian reads

$$\hat{H}_{rad} = \sum_{\mathbf{k}} \sum_{\mathbf{s}} \hbar \omega_{\mathbf{k}} \, \hat{\mathbf{a}}_{\mathbf{k}\mathbf{s}}^{+} \hat{\mathbf{a}}_{\mathbf{k}\mathbf{s}} \,, \tag{10}$$

where $\hat{a}_{\mathbf{k}s}$ and $\hat{a}_{\mathbf{k}s}$ are the annihilation and creation operators of the photon in the state $|\mathbf{k}s\rangle$.

Quantum electrodynamics (II)

The eigenstates of the unperturbed Hamiltonian \hat{H}_0 are of the form

$$|a\rangle|\ldots n_{\mathbf{k}s}\ldots\rangle = |a\rangle\otimes|\ldots n_{\mathbf{k}s}\ldots\rangle$$
 (11)

where $|a\rangle$ is the eigenstate of \hat{H}_{matt} with eigenvalue E_a and $|\dots n_{\mathbf{k}s} \dots \rangle$ it the eigenstate of \hat{H}_{rad} with eigenvalue $\sum_{\mathbf{k}s} \hbar \omega_k n_{\mathbf{k}s}$, i.e.

$$\hat{H}_{0}|a\rangle|\dots n_{kr}\dots\rangle = \left(\hat{H}_{matt} + \hat{H}_{rad}\right)|a\rangle|\dots n_{ks}\dots\rangle$$

$$= \left(E_{a} + \sum_{ks} \hbar\omega_{k} n_{ks}\right)|a\rangle|\dots n_{ks}\dots\rangle. (12)$$