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Partition function of photons (I)

Let us consider the electromagnetic field in thermal equilibrium with a
bath at the temperature T . The relevant quantity to calculate all
thermodynamical properties of the system is the grand-canonical
partition function Z, given by

Z = Tr [e−β(Ĥ−µN̂)] (1)

where β = 1/(kBT ) with kB = 1.38 · 10−23 J/K the Boltzmann constant,

Ĥ =
∑
k

∑
s

~ωk N̂ks , (2)

is the quantum Hamiltonian without the zero-point energy,

N̂ =
∑
k

∑
s

N̂ks (3)

is the total number operator, and µ is the chemical potential, fixed by
the conservation of the particle number.



Partition functions of photons (II)

For photons µ = 0 and consequently the number of photons is not fixed.
This implies that

Z =
∑
{nks}

〈 ... nks ... |e−βĤ | ... nks ... 〉

=
∑
{nks}

〈 ... nks ... |e−β
∑

ks ~ωk N̂ks | ... nks ... 〉

=
∑
{nks}

e−β
∑

ks ~ωknks =
∑
{nks}

∏
ks

e−β~ωknks

=
∏
ks

∑
nks

e−β~ωknks =
∏
ks

∞∑
n=0

e−β~ωk n

=
∏
ks

1

1− e−β~ωk
. (4)



Thermal energy of photons (I)

Quantum statistical mechanics dictates that the thermal average of any
operator Â is obtained as

〈Â〉T =
1

Z
Tr [Â e−β(Ĥ−µN̂)] . (5)

In our case the calculations are simplified because µ = 0. Let us suppose
that Â = Ĥ, it is then quite easy to show that

〈Ĥ〉T =
1

Z
Tr [Ĥ e−βĤ ] = − ∂

∂β
ln
(
Tr [e−βĤ ]

)
= − ∂

∂β
ln(Z) . (6)

By using Eq. (4) we immediately obtain

ln(Z) = −
∑
k

∑
s

ln
(

1− e−β~ωk

)
, (7)

and finally from Eq. (6) we get

〈Ĥ〉T =
∑
k

∑
s

~ωk

eβ~ωk − 1
=
∑
k

∑
s

~ωk 〈N̂ks〉T . (8)



Thermal energy of photons (II)

In the continuum limit, where∑
k

→ V

∫
d3k

(2π)3
, (9)

with V the volume, and taking into account that ωk = ck , one can write
the energy density E = 〈Ĥ〉T/V as

E = 2

∫
d3k

(2π)3

c~k
eβc~k − 1

=
c~
π2

∫ ∞
0

dk
k3

eβc~k − 1
, (10)

where the factor 2 is due to the two possible polarizations (s = 1, 2). By
using ω = ck instead of k as integration variable one gets

E =
~

π2c3

∫ ∞
0

dω
ω3

eβ~ω − 1
=

∫ ∞
0

dω ρ(ω) , (11)

where

ρ(ω) =
~

π2c3

ω3

eβ~ω − 1
(12)

is the energy density per frequency, i.e. the familiar formula of the
black-body radiation, obtained for the first time in 1900 by Max Planck.



Thermal energy of photons (III)

The previous integral can be explicitly calculated and it gives

E =
π2k4

B

15c3~3
T 4 , (13)

which is nothing but the Stefan-Boltzmann law. In an similar way one
determines the average number density of photons:

n =
〈N̂〉T
V

=
1

π2c3

∫ ∞
0

dω
ω2

eβ~ω − 1
=

2ζ(3)k3
B

π2c3~3
T 3 . (14)

where ζ(3) ' 1.202. Notice that both energy density E and number
density n of photons go to zero as the temperature T goes to zero.
We stress that these results are obtained at thermal equilibrium and
under the condition of a vanishing chemical potential, meaning that the
number of photons is not conserved when the temperature is varied.


